David B. Pollock, born in Louisville, Kentucky, attended the University of Louisville where he received a BS (Physics and Math ) and a MS (Physics) degrees, 1960 & 1962. He continued his studies at the University of Arizona where he completed a MS (Optical Sciences) degree, 1983. He is currently an Associate Research Professor in the Electrical Computer Engineering Department and a Senior Research Scientist in the Center for Applied Optics at the University of Alabama Huntsville. His international recognition is for his efforts in Remote Sensor Calibration. He continues with an active role organizing, conducting an annual Calibration Meeting, CALCON, in collaboration with the Space Dynamics Laboratory, Utah State University since its inception, 1985.
His essential work element is founded upon a thorough understanding of Physics and Physics based optical frequency electromagnetic energy: thermal radiance, transmittance, reflectance, absorptance models. Propagation, and detection, estimation measurements and their uncertainty traced to the International System of Units. Mr. Pollock has collaborated with the Optical Technology Division of the National Institute of Standards and Technology, Physics Laboratory since 1964 for remote sensor radiometric calibration. The sensors spectral sensitivity span the vacuum ultra-violet, 300 nm, through the long wave length infrared, 30 ?m at optical powers and temperature from 2 to 6 million Kelvins. The national and international Remote Sensing community as a whole recognizes his work to establish data uncertainty relative to the International System of Units. Erroneous thinking had led the community to accept data precision as adequate to quantify global temperature trends. A Co-Investigator for Data Certification and Technology Transfer, Department of Defense, Mid-course Space Experiment (MSX) satellite, 1989 to 2005, his responsibilities included radiometric and goniometric performance of the 12 sensors on this sun-synchronous, 900 km altitude, satellite. His team's effort, 1 of the 8-Science teams, respectively, validated data reduction Level 1 to Engineering Units including error analysis and uncertainty traced to the International System of Units maintained by the International Bureau of Weights and Measures (BIPM), France. The sensors, imagers as well as spectrographic imagers, span the 300 nm to 30-?m spectral range. The respective instrument operating temperatures and environment range 2K and the ambient conditions at a 900 km, nearly circular, polar orbit, includes passage through the South Atlantic Anomaly each orbit. Reconstructed Earth Centered Inertial pointing uncertainty rivaled State-of-the-art radars inside and outside CONUS. His work since 1962 has included cryogenic-optical sensor design, manufacture, assembly and radiometric calibration. His work included technical support to SMDC for the Airborne Surveillance Testbed Sensor. This responsibility includes design, fabrication, test, radiometric performance, radiometric calibration, data reduction and validation. For more than a decade this instrument provided the primary radiometric and goniometric signatures used for ballistic missile defense applications. His work with the design, development, construction and cryogenically cooled optics, sensors and their performance test began at North American Aviation, then Rockwell International, which is now Boeing. Most recent responsibility has been as the lead engineer/scientist to successfully design, and radiometric performance tests of a high altitude, high resolution, giga-pixel surveillance camera to provide information within a 7.6 km square footprint from an altitude of 7.6 km. A Patent is issued for the design.
Professor Pollock continues to collaborate with NIST, NASA, DOD, and NOAA remote sensing community to resolve calibration issues. Current issues continue to be the need to establish Climate Data Records of unprecedented accuracy, 0.01° K / decade, and the need to set an exo-atmospheric reference flux standard such as a Lunar flux scale.
Pollock, D. B., Statistical Calibration Relative to the Meter and the Triple Point of Water, Space Dynamics Laboratory, Utah State University, Proceedings CALCON 2015, August 24, 2015
Pollock, D. B., Statistical Calibration, Relative to the Triple Point of Water (Visibility, Signal, Noise per pixel per data frame), Space Dynamics Laboratory, Utah State University, Proceedings CALCON 2014, September 3, 2014. Pollock, D. B.,
Marathay, A. S., McCalmont, J. E., Radiant Sensing Calibration, Zero-to-infinity, Space Dynamics Laboratory, Utah State University, Proceedings CALCON 2010, August 23-26, 2010.