
OSATE Graphical Editor
Developer Guide

2021-08-26

OSATE Graphical Editor – Developer Guide

Contents
1 Introduction .. 1

2 Overview ... 1

2.1 Plugins ... 1

2.2 API ... 2

2.3 Services ... 2

2.4 Extension Points .. 3

3 User Interface ... 3

3.1 AADL Diagrams View ... 4

3.2 Diagram Editor .. 4

3.3 Palette ... 4

3.4 Outline View .. 5

3.5 Property Sections .. 5

4 Key Concepts ... 5

4.1 Business Object ... 5

4.2 Diagram ... 5

4.2.1 Diagram Element ... 6

4.2.2 Serialized Diagram .. 6

4.2.3 Runtime Diagram .. 6

4.3 Business Object Selection ... 6

4.4 References .. 7

4.4.1 Canonical Reference ... 7

4.4.2 Relative Reference .. 7

4.5 Partial Connections ... 7

5 Diagram Update Process ... 8

5.1 Convert Diagram to Business Object Tree .. 8

5.2 Refresh Business Object Tree ... 9

5.3 Update Diagram .. 9

5.4 Layout Diagram ... 9

6 Model Modification Process ... 9

6.1 AADL Model Modifications ... 9

6.2 AADL Model Change Notification ... 10

6.3 Diagram Updates .. 10

OSATE Graphical Editor – Developer Guide

6.4 Scene Graph Updates .. 10

7 Refactoring .. 10

8 Layout .. 10

9 Testing ... 11

OSATE Graphical Editor – Developer Guide

List of Tables
Table 1. Plugins ... 1

Table 2. OSGI Services ... 2

Table 3. Extension Points .. 3

List of Figures
Figure 1. Plugins .. 1

Figure 2. User Interface... 4

Figure 3. Example Diagram Structure ... 5

Figure 4. Diagram Update Process .. 8

Figure 5. Model Modification Handling .. 9

OSATE Graphical Editor – Developer Guide

1

1 Introduction
This document is intended to provide an overview of the implementation of the Open Source AADL Tool

Environment (OSATE) graphical editor. The graphical editor is the component of OSATE which provides

diagram-based visualization and editing of AADL models. This document is intended to serve as a

starting point for understanding the graphical editor implementation. It is intended as a supplement

rather than replacement for the Javadoc documentation.

2 Overview
The graphical editor is composed of Eclipse plugins. These plugins register Eclipse extensions, provide

OSGi services, and define extension points that are used to provide support for Business Objects (4.1).

2.1 Plugins
The org.osate.ge plugin contains most of the graphical editor code. It is the original plugin. As

development has progressed, additional plugins have been created as part of efforts to improve the

modularity. The graphical editor plugins are shown in Figure 1.

org.osate.ge

org.osate.ge.baorg.osate.ge.errormodelorg.osate.ge.gef.ui

org.osate.ge.gef

org.osate.ge.swtorg.osate.ge.diagram

Figure 1. Plugins

The green plugins are those which are not dependent on the Eclipse workbench UI. Plugins may use

internal APIs provided by other graphical editor plugins; to avoid compatibility issues, all installed

graphical editor plugins must be from the same version of the graphical editor. Plugins such as

org.osate.ge.gef and org.osate.ge.swt contain classes which are related to AADL concepts; however,

org.osate.ge, org.osate.ge.errormodel, and org.osate.ge.ba are the only plugins which depend on the

AADL meta-model. Brief descriptions of the plugins are contained in Table 1.

Table 1. Plugins

Name Description

org.osate.ge The original graphical editor plugin. Contains the stable API and non
JavaFX portions of the diagram editor. It defines services and extension
points. It also provides the AADL declarative and instance model support.

org.osate.ge.ba Behavior annex support. Defines extensions providing behavior annex
support in the diagram editor and properties view.

org.osate.ge.diagram Contains an Ecore model defining the Error! Reference source not found. (
4.2.2).

org.osate.ge.errormodel Error model annex support. Defines extensions providing error model
annex support in the diagram editor and properties view.

OSATE Graphical Editor – Developer Guide

2

org.osate.ge.gef Contains JavaFX nodes for graphics and the palette used by the graphical
editor.

org.osate.ge.gef.ui JavaFX diagram editor implementation. Integrates into Eclipse
workbench. It also contains an implementation of the
DiagramExportService service which allows saving diagrams as images.

org.osate.ge.swt A collection of SWT user interface components intended to loosely follow
the Model-View-ViewModel (MVVM) pattern.

The intention is for the “core” of the graphical editor to be contained in org.osate.ge and for it to be

independent of the AADL2 meta-model. It is felt that decoupling the editor from the meta-model makes

it easier to understand, maintain, and reason about the behavior of the graphical editor. Unfortunately,

this intention is not fully realized in the current version. While most usages of the AADL meta-model

within org.osate.ge are contained within the org.osate.ge.aadl2 package and sub packages are

registered with the “core” as extensions, other components within this plugin reference the AADL meta-

model. For example: the diagram updating mechanism and serialization provides specialized code for

supporting AADL properties. Because of this, it is non-trivial to extract the AADL2 specific portions of the

graphical editor into a separate plugin.

2.2 API
The graphical editor attempts to expose a stable API to allow adding support for additional business

objects without requiring knowledge of the libraries used to implement the graphical editor. The API

avoids exposing the graphical editor’s internal data structures and the usage of JavaFX. This API consists

of the extension points and the packages exported from org.osate.ge. All packages which do not have

“internal” in the name are considered part of this API. Other graphical editor plugins export packages,

but no effort is made to maintain compatibility between versions of these plugins.

The only known usages of the graphical editor’s API is the AGREE simulator and the AGREE graphical

editing plugins. At the time of writing this document, the state of these plugins is unknown.

2.3 Services
The graphical editor defines several OSGi declarative service components. The services are available

globally via the Eclipse service context. A few are public and are available for use by other plugins. Most

of these services are internal and exist to hold state that is shared between instances of the diagram

editor. Global services are declared in the plugin’s manifest and have a component description in the

plugin’s “components” folder. Table 2 contains a list of these global OSGi services.

Table 2. OSGI Services

Java Interface Availability

AadlModificationService Internal

AadlResourceService Internal

ClipboardService Internal

DiagramExportService Public

DiagramService Internal

ExtensionRegistryService Internal

GraphicalEditorService Public

ModelChangeNotifier Internal

OSATE Graphical Editor – Developer Guide

3

ReferenceBuilderService Public

ReferenceService Internal

SystemInstanceLoadingService Internal

In addition to these global OSGi services, the graphical editor defines other services which are provided

as arguments to methods implemented by extensions.

2.4 Extension Points
The graphical editor exposes several extension points. These extension points are briefly described in

Table 3. Additional documentation is contained in each extension point’s schema.

Table 3. Extension Points

Name Purpose

org.osate.ge.tooltips Add to tooltips shown when hovering over a diagram
element.

org.osate.ge.images Register images used as icons by palette commands.

org.osate.ge.referenceLabelProviders Register a class used to convert References (4.4) to a
form suitable to display to the user. The labels are used in
cases where the reference cannot or should not be
resolved. Examples: context labels in diagram view and
restoring missing diagram elements.

org.osate.ge.referenceResolvers Register a reference resolver: a class used to retrieve a
Business Object (4.1) using a Canonical Reference (4.4.1).

org.osate.ge.businessObjectHandlers Register a business object handler: a class which
determines how a Business Object (4.1) is represented in
a diagram.

org.osate.ge.businessObjectProviders Register a business object handler: a class which make
business objects (4.1) available to be shown in a diagram.

org.osate.ge.contentFilters Register labeled predicates which define a set of business
objects (4.1). Depending on the type of content filter,
these can be always shown or could be shown or hidden
by the user using a menu item.

org.osate.ge.diagramTypes Registers a diagram type: a class which specifies the
content filters used to determine what children are
shown for a diagram element. Diagram types also defines
the AADL properties which are shown by default.

org.osate.ge.paletteContributors Add items to the palette.

3 User Interface
The user interface implementation is split between plugins. The diagram editor uses JavaFX and depends

on the Eclipse Graphical Editing Framework (GEF). The other parts of the user interface use SWT. Figure

2Figure 1. Plugins and the following subsections contain an overview of the major parts of the user

interface and the Java code which contains their implementations.

OSATE Graphical Editor – Developer Guide

4

AADL Diagrams View

Property Sections

Diagram Editor

Outline View

Palette

Figure 2. User Interface

3.1 AADL Diagrams View
The AADL Diagrams view shows the diagrams in the workspace. It is implemented in

org.osate.ge.internal.ui.navigator.DiagramsView.

3.2 Diagram Editor
The diagram editor displays and allows editing diagrams. The editor uses JavaFX and GEF. Its

implementation is in org.osate.ge.gef.ui.editor.AgeEditor.

3.3 Palette
The palette is a custom JavaFX node (org.osate.ge.gef.palette.Palette) which is contained in the editor.

The palette model (org.osate.ge.gef.ui.editor.AgeEditorPaletteModel) uses the commands provided by

registered palette contributors.

The Select and Marquee tools are defined by the palette model. Additional items are defined by palette

contributors. Such contributors implement org.osate.ge.palette.PaletteContributor and are registered

using the org.osate.ge.paletteContributors extension point.

Palette contributors are defined in the following packages:

 org.osate.ge.palette.internal.AgePaletteContributor - Notes

 org.osate.ge.aadl2.ui.internal.palette.AadlPaletteContributor - Core AADL

OSATE Graphical Editor – Developer Guide

5

 org.osate.ge.ba.ui.palette.BehaviorAnnexPaletteContributor - Behavior Annex

 org.osate.ge.errormodel.ui.palette.ErrorModelPaletteContributor - Error Model

3.4 Outline View
The outline is implemented in org.osate.ge.internal.ui.editor.AgeContentOutlinePage and provided by

the editor via getAdapter().

3.5 Property Sections
Property sections are displayed in eclipse’s Properties view. Property sections are registered using the

org.eclipse.ui.views.properties.tabbed.propertyTabs and

org.eclipse.ui.views.properties.tabbed.propertySections extension points.

The property sections are defined in the following packages:

 org.osate.ge.internal.ui.properties - Appearance, Documentation, and Note property sections

 org.osate.ge.aadl2.ui.internal.properties - AADL

 org.osate.ge.ba.ui.properties - Behavior Annex

 org.osate.ge.errormodel.ui.properties - Error Model

4 Key Concepts

4.1 Business Object
A business object is an object which is represented by a part of the diagram. AADL model elements such

an AADL System Type object are types of business objects. In the code, “bo” is often used as an

abbreviation.

4.2 Diagram
A diagram is a tree of diagram nodes. There are two types of nodes: diagrams and diagram elements. A

diagram is the root of the tree. Each diagram has a context that restricts which business objects may be

represented by child diagram elements. If a context is not defined, the Eclipse project containing the

diagram is used as the context. An example of the structure of the contents is shown in Figure 3.

Diagram
Context: AADL Package

Business Object: <None>

Diagram Element
Business Object: AADL Package

Diagram Element
Business Object:Classifier

Diagram Element
Business Object: Classifier

Figure 3. Example Diagram Structure

There are two representations of the diagram: the Ecore based Serialized Diagram which is stored on

the disk and the Runtime Diagram which is the data structure used when a diagram is open. The two

OSATE Graphical Editor – Developer Guide

6

formats are similar. Although having two separate representations can be beneficial, it can also be a

source of confusion. Classes in separate packages often use identical names. Additionally, due to two-

stage (create then update) process by which the runtime diagrams are created from the serialized

model, it can be difficult to enforce invariants regarding validity of runtime fields. It is worth considering

replacing the two representations with a single representation of the diagram to which additional

runtime data could be attached. Such an implementation may allow a cleaner implementation without

impacting performance.

4.2.1 Diagram Element
All non-root diagram nodes are diagram elements. Each diagram element is associated with a business

object. A diagram element has a graphic which determines how it is displayed. A graphic is a shape,

connection, or flow indicator. A shape is a rectangle, polygon, label or similar graphic. A connection is an

edge between two diagram elements. A flow indicators is an edge which have one moveable end and

another end attached to an existing diagram element. In most cases, flow indicators are treated as a

type of connection.

4.2.2 Serialized Diagram
The primary purpose of the serialized diagram is to define a stable format for the persistent version of

the diagram. The intention of the serialized diagram is to contain the minimal amount of information

needed to persist the diagram in a predictable format that can be easily merged with diff and merge

tools. The serialized model avoids duplicating information that is in the AADL model. The

implementation and the Ecore model is contained in the org.osate.ge.diagram plugin. Serialized

diagrams contain a format version attribute which contains the file format version. This is used to warn

of potential compatibility issues.

4.2.3 Runtime Diagram
A separate runtime diagram was created as a means to improve the performance of the graphical

editor. Having a specialized runtime diagram data structure allows flexibility to optimize and refactor the

implementation without impacting compatibility with the diagram file format. Each runtime diagram

nodes contain a map which allows quickly finding a child using the immutable business object references

described in section 4.4. Diagram nodes contains additional fields which cache information contained in

the AADL model or provided by the business object handlers. These include such fields as business

object, graphics, or an associated diagram element. The implementation of the runtime diagram is

contained in the org.osate.ge.internal.diagram.runtime package.

The org.osate.ge.internal.diagram.runtime.DiagramSerialization class allows serializing and deserializing

diagrams. Although that class is used to create the initial runtime diagram from a serialized diagram, it

cannot fully populate the runtime diagram. That requires updating the diagram as described in section

5. Because serialized diagrams store minimal information, the AADL model business object providers,

and business object handlers are required to fully initialize a runtime diagram.

4.3 Business Object Selection
A business object selection represents a collection of selected business objects. An adapter factory,

org.osate.ge.internal.selection.AgeBusinessObjectSelectionAdapterFactory, is registered which allows

retrieving an instance of org.osate.ge.BusinessObjectSelection from an ISelection instance. The interface

is implemented by org.osate.ge.ui.UiBusinessObjectSelection.

OSATE Graphical Editor – Developer Guide

7

This interface allow components of the graphical editor such as property sections to easily edit the

business objects associated with the selected diagram elements. For example: a property section can

use BusinessObjectSelection to allow setting the classifier of all selected subcomponents without being

concerned with how the business objects were selected or the packages in which they are contained. It

also ensures that the user interface is decoupled from the process by which the AADL model is modified.

4.4 References
References are used to refer to Business Objects. References are created for a business object by the

associated business object handler. References are immutable and serializable. There are two types of

references which are described in the following sections: canonical references and relative references.

Ideally reference should not change when the model changes. In general, references change when

elements are renamed. Updating such references are handled by the refactoring process described in

section 7. This is not always possible. For example: if a mode transition does not have a name, a

reference is build which uses the attributes of the mode transition; admittedly, this may not have been

the best approach for this particular type of business object.

4.4.1 Canonical Reference
Canonical references are unique identifiers for a business object. If an appropriate reference resolver

extension is registered, canonical references can be resolved to retrieve the referenced business object.

Such resolvers are typically only needed for business object types which serve as the context for a

diagram. Because changes to the model may invalidate a large number of canonical references,

canonical references are only stored to disk when absolutely required. Canonical references are used to

persist the diagram’s context.

4.4.2 Relative Reference
The business object referenced by a relative reference is dependent on the context in which it is used.

For example: the business object referred to by the reference “classifier a” is dependent on the parent

package. Usually relative references are relative to a parent diagram element. Relative references are

stored in diagram files to associate a diagram element with a business object. The use of relative

references reduces the number of references which are invalidated when a model element is renamed.

Unlike canonical references, relative references are not “resolved”; they are typically compared with the

references of sibling business objects.

4.5 Partial Connections
Some connections are displayed as dotted lines. In the user guide these are referred to as “Abstract

Connections”. In the source code, these are referred to as “partial” connections. The dotted style

indicates that one or more of the true endpoints of the connection is not shown in the diagram. For

example: a connection which references a feature contained in a feature group may be shown as a

partial connection with the feature group if the feature not being shown in the diagram.

Partial connections are important for usability. Connections must have valid endpoints to exist in the

diagram. By showing a connection as a partial connection, the graphical editor avoids removing it

completely from the diagram when the endpoint is hidden. Additionally, the user may select to show a

connection; if one or more of the end points did not exist, then the connection would not be shown and

it would cause confusion for the users. By showing connections are partial connections whenever

possible, the cases in which unexpected behaviors occur are reduced.

OSATE Graphical Editor – Developer Guide

8

5 Diagram Update Process
Whenever a model change is detected by the graphical editor, the editor updates the diagram to reflect

those changes. The process by which the diagram is updated is shown in Figure 4.

Convert Diagram to Business Object Tree
Creates a tree of BusinessObjectNode instances.
(DiagramToBusinessObjectTreeConverter)

Business Object Tree

Refresh Business Object Tree
Refreshes tree based on diagram configuration and business
object providers.
(DefaultBusinessObjectTreeUpdater)

Updated Business Object Tree

Start

Updated Diagram

Finish

Diagram

Update Diagram
Updates the diagram to reflect the updated business object
tree.
(DiagramElementLayoutUtil)

Layout Diagram
Performs incremental diagram layout using the Eclipse Layout
Kernel (ELK). This will position diagram elements based on the
configured preference.

Laid out Diagram

Figure 4. Diagram Update Process

5.1 Convert Diagram to Business Object Tree
First, the diagram is converted to a tree of BusinessObjectNode instances. A BusinessObjectNode

represents the aspects of the structure of the diagram relevant to determining which business objects

should be represented in the diagram. A BusinessObjectNode is created for each DiagramNode.

BusinessObjectNode instances are also created for business objects which have been recently created by

the user using the graphical editor. For example, if a user creates a classifier using the palette then the

converter will be called so that a BusinessObjectNode is created for the classifier. This will ensure that

the classifier is added to the diagram in addition to being added to the model.

OSATE Graphical Editor – Developer Guide

9

5.2 Refresh Business Object Tree
Next, a new business object tree is created based on the converted business object tree and the

business objects provided by the registered business object providers. Nodes which reference non-

existent business objects are removed. The resulting nodes reference business objects which are not

EMF proxies.

Additionally, nodes are created for AADL properties referenced in the diagram configuration. The

behavior of AADL properties are different from other business objects. Nodes are created and removed

automatically based on the diagram configuration. Handling AADL properties in the

DefaultBusinessObjectTreeUpdater is a significant source of coupling to the AADL2 model outside of the

org.osate.ge.aadl2 package. A more flexible approach would be to have a business object provider which

provides business objects for all property values. This would allow the user to hide and show the

diagram nodes for individual property values.

5.3 Update Diagram
Next, the diagram is updated to reflect the new business object tree. This step removes and adds

diagram elements (4.2.1) to match the structure of the business object tree. If a shape was created using

the palette, it uses the position specified during creation to set the position of the new diagram

element.

5.4 Layout Diagram
The last step of the process is to perform incremental diagram layout. This process lays out the diagram

based on the incremental diagram layout preference. Diagram layout is described in more detail in

section 8.

6 Model Modification Process
When the AADL model is modified, open diagram editors are updated to show the modified model. This

process is shown in Figure 5.

Diagram
Editor

Diagram
AADL

Model
Notifies Updates GEF DiagramNotifies

Palette

Property
Sections

Text Editor

Other

Diagram
Scene Graph

Node

Updates

Figure 5. Model Modification Handling

6.1 AADL Model Modifications
The AADL model is modified by the text editor, palette commands, property sections or other

mechanism. Modifications made by the graphical editor use the AadlModificationService to modify the

OSATE Graphical Editor – Developer Guide

10

AADL model. That service is implemented by DefaultAadlModificationService and either modifies an

open Xtext document or an EMF resource managed by the graphical editor.

6.2 AADL Model Change Notification
Regardless of how the model is modified, a notification is generated by the ModelChangeNotifier service

which is implemented by DefaultModelChangeNotifier.

6.3 Diagram Updates
When a diagram editor received a model change notification, it updates the diagram as described in

section 5.

6.4 Scene Graph Updates
The diagram editor displays the diagram using a JavaFX scene graph. The GefAgeDiagram class is

responsible for creating the scene graph for a diagram and for updating the scene graph to match the

diagram. It can also update the diagram to match the scene graph. This is often useful when

implementing interactive diagram modification operations; at the end of the operation, the diagram is

modified so that it matches what the user sees.

7 Refactoring
The graphical editor registers a Language Toolkit (LTK) rename participant which updates diagrams

when a model is renamed via a refactoring operation. The rename participant updates references in

diagram files and open diagrams to reflect the new name. Once references are updated, diagrams are

updated using the process described in section 6.

Unless the business object handler implements CustomRenamer, the graphical editor renames model

elements using an Xtext rename refactoring.

8 Layout
The diagram layout process sets the positions and size of diagram elements. The graphical editor uses

the Eclipse Layout Kernel (ELK) to do this. The diagram is converted to an ELK graph, an ELK layout is

performed, and the diagram is updated to reflect the resulting layout. In most cases an incremental

layout is performed. The behavior of incremental layouts is determined by the incremental layout mode

set in the user’s preferences. When a diagram contains a feature groups, the process is more

complicated and multiple ELK layouts are performed. This is required because nested features cannot be

represented in the ELK graph. Diagram layout is implemented in the

org.osate.ge.internal.diagram.runtime.layout package.

The term layout is also used in the context of JavaFX. In JavaFX, scene graph nodes position and size

their children during the layout process. The position and sizes of the diagram elements are used to

configure the JavaFX scene graphs. In some cases, diagram elements do not exist for a scene graph node

or do not contain positions. In cases such as those, the positions are calculated as part of the JavaFX

scene graph node layout. An example of such a case is the positioning of a shape’s primary label.

OSATE Graphical Editor – Developer Guide

11

9 Testing
The graphical editor tests are contained in the org.osate.ge.tests plugin. The plugin contains both unit

and end-to-end tests. Most tests are end-to-end tests which automate the use of the graphical editor

using SWTBot. The JavaFX Robot and JavaFX event injection is used in addition to SWTBot to test the

JavaFX portions of the editor. In order to try to achieve more comprehensive test coverage, JavaFX

event injection is only used in cases where test compatibility issues were encountered.

