

Material Strength Reliability of an E-glass Composite

UAHuntsville November 2011 Greg Doud Doudg@uah.edu

- Composite materials are now widely used for structural applications.
- Quality processing of these materials can be very complex.
- Important for Reliability community to understand composites and their properties.

Introduction

•

- Presented a problem
 with processing
 defects in the form of
 complex fiber
 waviness.
- Developed a process to represent the waviness.
- Define waviness effect on the static properties in tension.

Representative Coupons

Amplitude/Period² Ratio

- Measurement of period was defined as the point at which the fiber becomes linear.
- Measurement of amplitude was defined as the height of the inserted defect from the base of the coupon.

Scoring

FOM	САТ
0 < FOM < 0.125	1
0.125 < FOM < 0.25	1.5
0.25 < FOM < 0.85	2
0.85 < FOM < 1.75	2.5
1.75 < FOM < 3.1	3
3.1 < FOM < 4.8	3.5
4.8 < FOM < 6.8	4
6.8 < FOM < 9.3	4.5
FOM > 9.3	5

 The severity of wrinkles were described by the following equation.

 $FOM = \frac{Amplitude}{Period^2} (\% involvement) 100$

 This equation assigns a numerical value to equate to a category score.

Experimental Design

- Experimental design incorporated 5 types of wrinkle defects with varying amplitude/period in addition to a control group.
- Defect types were categorized based on a normalized Amplitude/Period² ratio.
- Static tensile tests were performed.

Coupon Type	
1 (Control)	
2.5	
3	
3.5	
4.0	
4.5	

Test

 Samples were taken to ultimate load and data was recorded for material properties of the control/defect samples in tension.

Results

- Test results were plotted graphically and compared to a theoretical strength calculation.
- Results did not seem to fit a linear regression, but more closely fit a polynomial due to the R² value.

- Testing performed allowed RFAL to see a trend of material strength degradation as the Amplitude/Period² ratio increased.
- Ongoing work is focusing on the static shear properties of the material.
- Future work will involve fatigue testing.
- Full characterization of the composites' material properties.

For Questions or comments please visit us at http://rfal.uah.edu and reply via the contact us page

Measurements

• Dimensional measurements were collected after the materials were processed and machined.

• Statistical methods were performed to qualify process variability of the samples created.

Sample Qualification

Statistical Significance of Sample Mean to Sample Goal of (0.1")

Confidence Limits - Mean		
$LCL_{MEAN} =$	0.086	
$UCL_{MEAN} =$	0.104	
Test of Hypotheses - Means		
$T_{TEST} =$	-1.157	
T _{CRIT} =	2.032	
p-Value =	0.255	
Confidence Limits - Sample		
$LCL_{SAMPLE} =$	0.041	
$UCL_{SAMPLE} =$	0.149	

Illustration of Upper and Lower 95% Confidence Limits

 The cross sectional area falls within the range for the dimensional goal of the sample.

