

PENNSTATE

STANFORD UNIVERSITY

Daniel Guggenheim School of Aerospace Engineering

"Opportunity goes where the best people go, and the best people go where good education goes." W. Von Braun

Grand Challenges in Propulsion Research Workshop Chairs

Dr. Robert Frederick, Jr.
Int. Dir. Propulsion Res. Center
Professor MAE
Robert.Frederick@uah.edu

Dr. Shankar Mahalingam
Dean. College of Engineering
Professor, MAE
Shankar.Mahalingam@uah.edu

Back Row: Robert Frederick, UAHuntsville, Mark Brandyberry, University of Illinois; Robert Santoro, Penn State,
Alan Wilhite, Georgia Tech.; Vadim Smelyanskiy, NASA Ames; Shankar Mahalingam, UAHuntsville.

Front Row: Ken Yu, University of Maryland; Roy Hartfield; Auburn; C.P. Chen; UAH; Mitchell Walker; Georgia Tech; and Bill Anderson, Purdue University.

Brian Cantwell; Stanford to present on October 28th at UAH.

October 14, 2010, Huntsville, AL

2

Overview of Discussion

Questions

- What is the State of Industry?
- What is the state of the art in academia?

Issues/Concerns

- Issues facing Academia
- Concerns about how we are going to achieve the mission together

Recommendations

- Grand Challenges in Propulsion Research
- Grand Challenges in Propulsion Education
- Grand Challenges in Propulsion Technology development

Grand Challenges in Propulsion Research Workshop Chairs

Dr. Robert Frederick, Jr.
Int. Dir. Propulsion Res. Center
Professor MAE
Robert.Frederick@uah.edu

Dr. Shankar Mahalingam
Dean. College of Engineering
Professor, MAE
Shankar.Mahalingam@uah.edu

Propulsion Technologies – Moderator Robert Frederick

8:30 UAH Propulsion Research David Linebery
Jason Cassibry

C.P. Chen

9:00 A University Perspective on the Needs for Future Space Propulsion and Effective NASA-University Programs

Robert Santoro

9:30 Research at Georgia Tech Mitchell Walker

10:00 Flame-Acoustic Interaction in Shear-Coaxial Injectors Kenneth Yu

10:30 Research Needs for Liquid Rocket Engines William Anderson

Dr. Robert Frederick, Jr.
Int. Dir. Propulsion Res. Center
Professor MAE
Robert.Frederick@uah.edu

Dr. Shankar Mahalingam
Dean. College of Engineering
Professor, MAE
Shankar.Mahalingam@uah.edu

Propulsion Modeling and Technology Development – Moderator Shankar Mahalingam

1:00 Space: Near and Far Term Alan Wilhite

1:30 Mathematical and critical physics analysis of

engineering problems: old-new way of doing things V. Smelyanskiy

2:00 Multiphysics, Multiphase and Multiscale

Solid Rocket Motor Simulations at Illinois Mark Brandyberry

2:30 Modeling and optimization of Rocket Propelled Systems Roy Hartfeild

3:00 Break/Contingency

Panel Discussion – Moderator Robert Frederick

3:30 Group Discussion Robert Frederick

Topic 1 – Grand Challenges in Propulsion Research

Topic 2 – Grand Challenges in Propulsion Education

Topic 3 – Grand Challenges in Propulsion Technology Development

Current State of Space Industry

(Bob Santoro)

- No access to low earth orbit (LEO) since Space Shuttle retirement.
- Access to Space Station dependent on Soyuz in the near term.
- Decision is to enable and rely on commercial space launch capabilities to provide access to LEO in the near term and eventually beyond LEO.
- 2011 NASA Strategic Plan notes current U.S. launch capability for many planetary missions only possible using Delta and Atlas vehicles.
- Despite the announcement of SLS, traditional rocket companies are shedding workers.

Current State of Industry

(Bob Santoro)

- Promising launch vehicles such as the Space-X
 Falcon 9 and Orbital Sciences Taurus II rely on old
 engine technology such as the former TRW pintlebased injector technology or the Russian NK-33
 engine, respectively.
- Use of innovations related to advances in lighter, stronger materials and electronics for Avionics, Guidance/Navigation/Control have impacted reliability and lowered cost for these vehicles.
- But their heritage is based on accomplishments championed in the 1960's.

% NASA Funding of Propulsion of Propulsion-Related Groups at Universities Represented (ROM)

• Purdue (20%)

• Penn State (20%)

• UAHuntsville (15%)

• GIT Atlanta (<10%)

Tale of Two Cities

(Ken Yu Maryland)

Industry

- Much experience with practical systems
- Development, testing and implementation
- Identifying system deficiencies and research areas
- Keeper of the engineering knowhow (proprietary)
- Driven by near-term profit and business needs

(concerns: near-term becoming shorter, investment smaller, and business area narrower)

Academia

- Academic freedom to remove/impose constraints
- Decoupling complex processes and analyzing the physics
- Training new generation of propulsion scientists and engineers
- Keeper of the scientific knowhow (multi-disciplinary expertise)
- Driven by long-term contribution and publication needs

(concerns: cost of innovation/ education and need for open discussion and unrestricted sharing)

Effective NASA /University Programs (Bob Santoro)

- Continuity over the graduate student's degree program (minimum 3 years).
- Do not tie academic research programs to current development programs.
 - Makes them compete for resources with mission critical elements.
 - Do not put their milestones in a critical path as research progress can not be scheduled.
- University research overall must be relevant to NASA near and long-term program goals

Grand Challenges in Propulsion Research

Issue	Stewardship	Technology	Solutions Facilitator
Mission/Vision/Strategic Direction	 Lack of realization for comprehensive National Space Policy Lack of multi-Agency vision Lack of defined space missions 	• Lack of integrated defined propulsion technology needs and roadmaps	 Lack of coordinated 'nation- centric' approach for providing solutions
Financial/Budgetary	• Lack of predictable, long-term funding	• Lack of sustained technology funding	Overcapacity of production capabilityRising supplier costs
Workforce/Skills Retention	 Frequent program/project starts and cancellations Overall decline in demand for aerospace engineers 	• Fewer engineers have experience in technology development, from concept to the field	 Difficulty in access to government expertise Aging workforce in propulsion expertise
Sustainment/Viability	 Broad impact due to Shuttle retirement Uncertainty in future needs Large solid rocket motor industrial base decline 	 Lack of long-term development programs & technology investments Lack of technology infusion into programs 	Systems infrastructure, supply chain, & skill base challenges
Infrastructure	 Industrial capacity too large for current funding/demand Declining readiness of current facilities 	• Increased cost and reduced availability of critical infrastructure for technology development	 Duplication/redundancy of facilities & capabilities Difficulty in access to government facilities Aging facilities

Participants offered content for items in red during presentations and discussion

12

General Comments

- Need a compelling mission
- Insure a proper mix of DoD and NASA Research
- Insure proper industry buy in for university research work (transition research and students into industry; understand pull)
- Provide means for integrating government, industry, and academic researchers and engineers
 - NASA CUIP Program was a Model for Healthy Government/University Interactions
 - French-German collaborations on high pressure HO systems and combustion instability are sustainable and productive
- Invest in High Risk High Payoff Technology in Foundational Research Now (i.e. Combustion Instability/Crosscutting Disciplines/Life Prediction)
- Affordability/Demand is Critical to the Future (NASA Cost Models do not Include University Research)
- Focus on most difficult problems that *require* collaboration between multiple disciplines (but do not eliminate individual researcher contributions)

NIRPS Academic Advisory Group Future

- Support NIRPS Planning
- Host Annual Academic Strategy Meeting
- Present Capabilities Papers for National Space Symposium
- Refine Research Topic Recommendations

