

Rotating Detonation Rocket Engine Development from the Air Force Research Laboratory

Blaine R. Bigler

ERC, Inc. Combustion Devices Branch AFRL/RQRC

April 9, 2019

Distribution Statement A: Approved for Public Release; Distribution is Unlimited.

AFRL

Overview

• Introduction

- Rotating Detonation Rocket Engines
- Hardware Specifications
- Test Campaign Summary
- Image Processing Method
- Experimental Results
 - Performance Measurements
 - Stable Behavior
 - Unstable Behavior
- High-fidelity Simulations
 - Partial Annulus
 - Full Annulus

Rotating Detonation Rocket Engines

• Pressure Gain Combustion

- Detonative combustion may provide pressure increase, resulting in higher efficiency or similar efficiency at lower pressures
- 10-15% increase in theoretical efficiency or up to 5x reduction in initial combustion pressure

Rotating Detonation Rocket Engines (RDRE)

- Annular combustion geometry
- Detonation wave travels continuously around channel
- Mechanically simple and compact

THE AIR FORCE RESEARCH LABORATORY

Model RDRE Specifications

Specifications

- Annular geometry:
 - 3" (76.2 mm) diameter
 - 3" (76.2 mm) length
 - 0.2" (5 mm) channel width
- 72 unlike impinging injector elements
- Propellants: gas-gas, CH₄/GO₂
- <u>Pre-detonator</u>: CH₄/GO₂

RDRE on Thrust Stand

Measurements

- Thrust, Isp
- Mass flow (fuel/ox.)
- Plenum pressures (fuel/ox.)
- CTAP chamber pressure (3 axial locations)
 (1) 0.35" (8.9 mm)
 (2) 1.15" (29.2 mm)
 (3) 2.58" (65.5 mm)
- 200 kfps visible imaging (direct view into annulus)

CH₄/O₂ Firing

- $\phi = 1.1$, $\dot{m}_{tot} = 0.6$ lbm/s; Firing time of 1.25 seconds
- The last 100 ms of the test (bounded by the red lines) is the time duration for reported measurements.

Test Campaign 1.0 (2017-2018)

- Over 600 successful hot-fire tests
- Performance and operability examined for:
 - Increasing injector area (Pressure drop)
 - Variable reactant mixing (align/misalign)

Test Campaign 1.5 (2018-2019)

- Additional 600 successful hot-fire tests
- Performance and operability examined for:
 - Variable throat size
 - Reduced annulus length
 - Variable reactant mixing (72->36 elements)
- Additional measurements implemented
 - Dynamic pressure transducers (plenums and annulus)
 - External microphones

AFRL High-Speed Image Processing Technique

Distribution Statement A: Approved for Public Release; Distribution is Unlimited.

AFRL

Image Processing Results

Distribution Statement A: Approved for Public Release; Distribution is Unlimited.

Counter-Propagating Modes

- Operating mode characterized by two sets of waves propagating in opposing directions
- Observed in low total mass flow and off-stoichiometric conditions
- Typically features a dominant (brighter) set of waves and an opposing (dimmer) set of waves
- Complex behavior makes even qualitative analysis difficult

AFRL Counter-Propagating Mode Analysis: Synthetic Data

Motivation: Extract wave characteristics in both directions for the counter-propagating (CP) wave cases

- Sample test cases were generated with known wave parameters to send through the existing code to determine effects on automated analysis
- Synthetic data generated can alter number of waves, orientation, wave speed and luminescent intensity of detonation fronts.

AFRL

Counter-Propagating Mode Analysis

- Dominant and opposing mode decoupled using 2-D FFT.
- For more information about the image processing method and additional tools developed:
 - Bennewitz, J., Bigler, B., and Hargus,W., "Automated Image Processing Method to Quantify Rotating Detonation Wave Behavior," *Review of Scientific Instruments*, Submitted, Currently under review. 2019.

AFRL Injector Area Study - Flow Conditions

- Performed the following flow condition studies:
 - Equivalence Ratio Sensitivity: $\phi = 0.3 2.3$, for $\dot{m}_{tot} = 0.6$ lbm/s
 - Total Mass Flow Sensitivity: $\dot{m}_{tot} = 0.2 1.0$ lbm/s, for $\phi = 1.1$

THE AIR FORCE RESEARCH LABORATORY

Distribution Statement A: Approved for Public Release; Distribution is Unlimited.

AFRL Injector Area Study: Plenum Pressures

Distribution Statement A: Approved for Public Release; Distribution is Unlimited.

AFRL

Injector Area Study: Performance

- Peak performance occurred at $\phi = 1.1$ for all injector geometries, where $I_s = 150$ s.
- No appreciable change in performance observed for the various injector geometries.
- Max. performance appears to correlate with higher wave speeds.
- Counter-prop. occurs at off nominal conditions.
- Note: "X" denotes the existence of counterpropagating mode.

Sym. Legend

• 1.0A -	Baseline
• 1.5A -	1.5X
• 2.0A -	2.0X
○ 2.5A -	2.5X

Distribution Statement A: Approved for Public Release; Distribution is Unlimited.

AFRL

Injector Area Study: CJ Vel.

- Chapman-Jouguet velocity was calculated using NASA CEA as a fn(ϕ , T = 298 K and P = CTAP1).
- $U_{\rm wv.}/U_{\rm CJ.}$ ranged from 33-71%

AFRL Injector Area Study: Concluding Remarks

- Demonstrated operability of RDRE from ϕ = 0.25 to 2.5, where peak performance of *F* = 90 lbf and *I*_s = 150 s occurred at ϕ = 1.1.
- While increasing the injector hole size from 1.0A to 2.5A decreased the injector pressure drop. 3-5X, there was no appreciable change in performance or operability.
- U_{wv.}/U_{CJ.} ranged from 33-71% for the various flow conditions and injector geometries, where wave speeds were generally higher at max. Isp.
- For more information:
 - Bennewitz, J., Bigler, B., Hargus, W., Danczyk, S., and Smith, R., "Characterization of Detonation Wave Propagation in a Rotating Detonation Rocket Engine using Direct High-Speed Imaging," 54th AIAA Joint Propulsion Conference, 2018.

- Objectives and Motivation:
 - Demonstrate operation of gas-gas RDRE with two different injector geometries
 - Determine effects on operability limits, performance and detonation mode characteristics for aligned and misaligned injectors
 - Evaluate importance of injection schemes in gas-gas studies

AFRL Injector Alignment Study: Performance Trends

- 11% Max. deviation between the two injector configurations at peak performance ($\phi = 1.1$).
- Minimal deviation for fuel-rich and fuel-lean conditions
- Operability range was not changed by altering injector configuration.

THE AIR FORCE RESEARCH LABORATORY

Aligned

Misaligned

0

0

Average Chamber Pressure

AFRL

Distribution Statement A: Approved for Public Release; Distribution is Unlimited.

AFRL Wave Propagation Characteristics

- Counter-prop. occurs at off nominal conditions and more prevalent for the misaligned config.

For misaligned tests, wave speed is insensitive to flow condition

AFRL Injector Alignment: Concluding Remarks

- Alignment of injectors had no effect on operability limits
- Misaligned injectors showed decrease in performance near $\phi=1$
 - 11% maximum decrease in Isp
 - 27% maximum decrease in wave speed
 - Wave speed insensitive to flow condition
- Increased pressure in CTAP 1 and 2 for misaligned configuration
 - Detonation zone moved downstream
 - Exception to general CTAP/performance trend
- For more information:
 - Bigler, B., Bennewitz, J., Schumaker, S., Danczyk, S., and Hargus, W., "Injector Alignment Study for Variable Mixing in Rotating Detonation Rocket Engines," *AIAA SciTech Forum*, 2019.

AFRL

Unsteady Wave Behavior

Background

- Steady operating mode corresponds with constant angular separation
- Mode transitions observed for a variety of flow conditions
- Unsteady behavior can lead to unexpected engine operation

Objectives

- Characterize transition behavior
- Quantify time scales of transition periods for ascending and descending transitions
- Examine stability of a given mode by tracking the relative locations and velocities of each wave front

Steady Operating Mode

Unsteady Transition

AFRL

Average Modal Properties

Descending Transition $(3 \rightarrow 2)$

Detonation Surface

- A transition event occurs from 3 CCW waves to 2 CCW.
- Non-uniform spacing among the waves appears due to "galloping-type" detonation behavior at the onset of transition (Wolanski, 2011).
- Eventually, one wave gets consumed by another that overtakes it during momentary acceleration event.

AFRL 3→2 Transition Angular Separation

AFRL 3→2 Transition Frequency Spectra

- Relates the available reactant fill volume to a critical number of waves
- Theoretical number of waves between integer values correspond with galloping behavior

AFRL Mode Transitions: Concluding Remarks

- Image processing tools extended to track the instantaneous angular position of each wave
- For these test conditions, 3 waves are more stable than 2 waves:
 - Descending $(3 \rightarrow 2)$
 - 3 waves: $\delta \theta' = 4^{\circ}$ $U'_{wv.}/\overline{U}_{wv.} = 1\%$
 - 2 waves: $\delta \theta' = 22^{\circ}$ $U'_{wv.}/\overline{U}_{wv.} = 5\%$
 - Transition: $\delta \theta' = 157^{\circ}$ $U'_{wv.}/\overline{U}_{wv.} = 28\%$
- Galloping-type behavior associated with transitions
- Descending transitions preceded by increasing galloping behavior leading to consumption of one wave
- Also examined ascending transition $(2 \rightarrow 3)$ and direction reversal (CCW \rightarrow CW)
 - Bennewitz, J., Bigler, B., Pilgram, J., and Hargus, W., "Modal Transitions in Rotating Detonation Rocket Engines," *International Journal of Energetic Materials and Chemical Propulsion*, Accepted. Awaiting publication, 2018.

Partial Annulus Simulations

- LESLIE (LES with LInear Eddy model)
 - 2nd order in time and space
 - Full reactive NS with transported k
 - Westbrook-Dryer (6 species) chemistry
- Cases
 - 104 (base) with 8 injector pairs
 - 119 (rich) with 9 injector pairs
- Flowfield evolution
 - Ignition kernel burns initial field and creates shocks (t = 0.0 ms)
 - Shocks weaken and reactants are replenished (t = 0.1 ms)
 - Two counter-propagating shocks are set up in each direction (t = 0.4 ms)
 - Three of the waves die out, leaving a single detonation (t = 0.7 ms)

AFRL Notable Observations: Captured Startup Sequence

- Startup process follows:
 - (1)Two detonation waves originate at pre-det location and consume one another (0.1 ms)
 - (2)Momentary pause in visible wave propagation (0.2 ms) before counter-propagating behavior commences
 - (3)Counter-propagating mode propagates with higher number of waves than stable condition (0.6 ms)
 - (4)Single set of waves at higher number dominates for some time (0.8 ms)
 - (5)Stable behavior at lower number of waves
- Both tests reach stable conditions by 2.5 ms.
- Transient behavior at startup is qualitatively consistent with simulations

THE AIR FORCE RESEARCH LABORATORY

	104 (Base)	119 (Richer mixture)	124 (Higher mass flow)
ṁ (kg/s)	0.263	0.276	0.363
Φ	1.15	1.77	1.15
p _{fuel} (MPa)	3.58	4.66	4.49
p _{oxid} (MPa)	2.75	2.58	3.65
T _{in} (K)	300	300	300
Number of Waves	9	8	10

AFRL

Experimental Comparison

CASE 119 (RICH)

•

• CASE 104 (BASE)

	Experiment	Simulation		Experiment	Simulation
CTAP (psia)	53.9	52.7	CTAP (psia)	56.5	64.2
Wave speed (m/s)	1050	1320, 1490	Wave speed (m/s)	1130	1580.0
Refresh time (µs)	23.7	18.8, 16.7	Refresh time (µs)	24.7	17.6
Thrust (lbf)	85.0	105.8	Thrust (lbf)	86.0	127.5

Distribution Statement A: Approved for Public Release; Distribution is Unlimited.

- Detonation and deflagration delineated using 5 atm isocontour
- Heat releases calculate using massweighted volume integration
- Plot below indicates that even by conservative definitions, only half of the reactants detonate

AFRL Partial Annulus Simulations: Concluding Remarks

- Start-up transient behavior is qualitatively similar to experiment, starting from many waves and diminishing toward a quasi-steady state periodicity
- Non-premixed wave speeds significantly slower than pre-mixed simulations (~60% of CJ)
- Wave speeds consistently several hundred m/s faster than experiment
 - WD chemistry model yields fast detonation, regardless of premixedness
 - unmodelled heat loss expected to further impact speed
- Imposing number of waves may be responsible for deviations in performance, wave speed

Full annulus simulations

- LESLIE (LES with LInear Eddy model)
 - 2nd order in time and space
 - Full reactive NS with transported k
 - Westbrook-Dryer (6 species) chemistry
- Cases
 - 104 (base) with 72 injector pairs
 - 124 (high m) with 72 injector pairs
- Flowfield evolution
 - Ignition kernel burns initial field and creates shocks (t = 0.0 ms)
 - Shocks weaken and reactants are replenished (t = 0.1 ms)
 - Over 20 shocks travel around the annulus, irregularly spaced (t = 0.3 ms)
 - Most waves die out, eventually settling on 8 detonations (t = 0.8 ms)

8 waves naturally excited during steadystate (number of waves not imposed)

AFRL Pressure field during steady operation

• CASE 104 (BASE)

• CASE 124 (HIGH M)

AFRL Full Annulus Simulations: Concluding Remarks

- Number of waves similar to experiments excited naturally
- Start-up behavior is qualitatively similar to experiment, starting from many waves and diminishing toward a quasi-steady state periodicity
- Wave speeds consistently several hundred m/s faster than experiment
 - WD chemistry model yields fast detonation, regardless of premixedness
 - Unmodelled heat loss expected to further decrease speed
- Galloping behavior seen in experiments is primary mechanism for coalescence of waves in simulations as well
- For more information:
 - C. Lietz, Y. Desai, R. Munipalli, S.A. Schumaker, and V. Sankaran. "Flowfield analysis of a 3D simulation of a rotating detonation rocket engine". AIAA Aerospace Sciences Meeting, January 2019.

Questions?

Distribution Statement A: Approved for Public Release; Distribution is Unlimited.

	Experiment	WD	FFCM-Y	FFCM-1
CTAP (psia)	56.5	64.2	70.0	72.2
Wave speed (m/s)	1130	1580	1310	1260
Refresh time (µs)	24.7	17.6	21.3	22.3

THE AIR FORCE RESEARCH LABORATORY

Distribution Statement A: Approved for Public Release; Distribution is Unlimited.

AFRL Detonation Mode or High-Amplitude Instability?

- Average wave speeds measured ~45% of the CJ velocity in this study.
 - Previous work by GHKN with same model RDRE yielded same performance for equivalent flow conditions but wave speeds closer to 75%.

For the RDRE annular geometry, acoustic mode frequencies within the observed operational frequency range (~30-45 kHz) do arise as potential candidates for c = 950 – 1150 m/s.

- Frequency analysis alone is not sufficient to determine operational regime of RDRE.
- Potentially excited a high-amplitude spinning tangential instability
 - Continuum exists between instability mode and fully-detonative mode.
- Current work is underway to address this point (e.g., measure oscillatory pressure trace).

THE AIR FORCE RESEARCH LABORATORY

High-Speed Camera Setup

AFRL Counter-Propagating Mode Analysis

Detonation Surface

<u>Flow Condition</u>: $\phi = 1.1$, $\dot{m}_{tot} = 0.2$ lbm/s

- Opposing wave behavior existed with primarily 5 CW dominant mode with a 4 CCW counter-propagating component.
- Intensity of the counter-propagating component is 83% of the dominant.

Max. Peak Characteristics

Dom. Num. Waves: m = 5**Operational Frequency**: $f_{det.} = 22.0 \text{ kHz}$ **CP Num. Waves**: m = -4**Operational Frequency**: $f_{det.} = 17.6$ kHz

THE AIR FORCE RESEARCH LABORATORY

Distribution Statement A: Approved for Public Release; Distribution is Unlimited.