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Overview

• Reasons to Study Chaotic Magnetic Fields

• How to Obtain Chaotic Magnetic Fields

• Time Independent Vector Potential and Magnetic 
Field

• Retarded  Vector Potential and Magnetic Field for 
the Wire.

• Numerical Modeling

• Results

• Summary and Future Work
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Reasons to Study Chaotic 
Magnetic Fields

• Magnetic Fields are involved in nearly all of 
physics, so understanding their structure is 
vital.

• Chaotic magnetic fields likely exist in the 
real world.

• Chaotic magnetic fields may play crucial 
roles in several plasma and astrophysical 
process.  
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How to Obtain Chaotic 
Magnetic Fields

Several papers have 
shown that wire and 
loop configurations can 
generate magnetic fields 
that can become chaotic 
de sp i t e t he s imp l e 
c o n fi g u r a t i o n . T h e 
example studied in this 
project is shown on the 
right. 

Diagram taken from Li, Dasgupta, 
Webb, and Ram4
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Time Independent Vector 
Potential and Magnetic Field

Text

Loop Formulas Wire Formulas

C2=μ0Iwire/2π
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Retarded Vector Potential and 
Magnetic Field for the Wire

Instead of using a constant 
current , Iwire it would be more 
interesting to turn on the wire at 
t=0. Since information does not 
instantly, we must account for this 
using the retarded time. 

tr=t-r/c

Using the retarded time, we can find 
retarded vector potential and 
magnetic field as shown on the right.

ζ=|r-r’|
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Numerical Modeling

We can map the fields lines for both the 
vector potential and the magnetic field by 
solving the differential equation below.

This can solved several different ways. One 
of the most popular algorithms is the 4th 
order Runge-Kutta algorithm due to its 
speed, stability, and accuracy. 
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Numerical Modeling: 
RK4 method

yn+1=yn+1/6(k1 +k2 +k3 + k4)

where k1 =hf(tn, yn)
k2=hf(tn +h/2, yn + k1/2)
k3=hf(tn +h/2, yn + k2/2)

k4=hf(tn +h, yn + k3) 
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Time Independent Results: 
Vector Potential

Symmetric Case Antisymmetric Case

x0=0.3, Δr=0 x0=0.3, Δr=0.05
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Time Independent Vector 
Potential and Magnetic Field

Text

Loop Formulas Wire Formulas

C2=μ0Iwire/2π
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Time Independent Results: 
Magnetic Field

Symmetric Case Antisymmetric Case

x0=0.3, Δr=0 x0=0.3, Δr=0.05
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Time Independent Results: 
Poincare’ Maps
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Time Dependent Results: 
Symmetric Δx=0, x0=0.3

t=.9x0c

Vector Potential Magnetic Field

t=5x0c
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Retarded Vector Potential and 
Magnetic Field

Instead of using a constant 
current , Iwire it would be more 
interesting to turn on the wire at 
t=0. Since information does not 
instantly, we must account for this 
using the retarded time. 

tr=t-r/c
The retarded potential and magnetic 
field are shown on the right. 

ζ=|r-r’|
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Time Dependent Results: 
Asymmetric Magnetic Field 

Δx=0.05, x0=0.3

t=1.1x0c t=5.0x0c
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Summary and Future Work

• The loop wire system can lead to chaotic magnetic 
fields when an asymmetry is introduced.

• The vector potential shows no signs of chaos and 
behaves as we expect. 

• The Poincare’ map is similar to that of Li et al.

• The time dependent case still required an 
asymmetry for chaos, but produced very odd maps 
when chaos occurred.

• The method could be expanded to more 
complicated  time varying currents such as  
sinusoidal currents.
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