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Background

-Magnetohydrodynamics (MHD)Turbulence:
Magneto — magnetic fluid

hydro - Liquid
dynamics - movement

-MHD deals with dynamics of electrically
conducting fluids.

-MHD Turbulence is observed when the
Reynolds number of magnetofluid is large.



Background
e Sun - source of solar wind which is highly inhomogeneouns magnetoflunid expanding

radially outward from it.
The wvelocity and magnetic field in terms of fluctunating fields,

V== VvV = 4w
B == B = +&
Where v is fluctuation on mean velocity = ¥V = and b is Auctuation on mean magnetic

field = I3 =
Elsisser variables (Elsdisser 1950 ),
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Where >t and 2 describe wave propagating outward and inward with respect to sun.

The transport eguation of evolution of fluctuations of u and b from their mean veloc-
ity and magnetic field in terms of elsasser variables (Fhou and Matthaeus, 1990a, )
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Where I is the identity matrix, WL, are the non-linear terms, .S% is the source termm.
Transport equations of MNMormalized energy density of magnetic Aluctuation( £,) and
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7 — 1 in the namerical solution.

Where I —
5400 ke =232 ). 1T have put ID=3.9,



Background
-The spectrum of magnetic/velocity
fluctuation is kolmogorov.
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Undriven Models

- MNo source to drive the tuarbulence
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& The discretization of £ and A based on explicit finite difference method,
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Where Af{— 0.045) is the step size, Af(— 0.036) is the time step and 1 — U2 = 0O
- Steady state solution
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Stream Interaction Driven Models

g = cﬂh%Eb where cgon represents the strength of the stream shear interasction

- There is a Source to drive tarbulence
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Pickup lon Driven Models

» The source to drive turbulence is Pickup Ion

correlation lemgih (A0}
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Normalized Energy Density

UNDRIVEN MODELS
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Undriven Models (Strong Mixing)
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Normalized Energy Density

Stream Interaction Driven Models
(No Mixing)
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Normalized Energy Density
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Normalized Energy Density

Pickup lon Driven Models
(No Mixing)

0.1

PICK UP ION DRIVEN MODELS PICK UP ION DRIVEN MODELS
— Steady State — Steady State
---- Time steps~0.1 ---- Time steps~0.1
— Time steps~1 — Time steps~1
- Time steps~1.5 ---- Time steps~1.5
— Time steps~20 — Time steps~20
---- Time steps~50 ---- Time steps~50

Normalized Correlation Length

—_—
T
<

10
AU

100

10
AU



Normalized Energy Density
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Summary

-Generally, the fluctuation of magnetic energy
decreases with the increase of radial distance. On
the other hand the correlation length increases
which we can see in undriven models.

-There is a slight increase of magnetic energy
density in driven model which is because of the
source term.

-The correlation length in the case of pickup ion
driven models decreases with increase of radial
distance which is different than other two models.

- Most of the systems are in unsteady state first
and as the time passes it is getting to steady state
which we can see in the result.



