Turbulence Transport Model Applied Space Physics And Astrophysics

Laxman Adhikari Computational Physics

Background

- -Magnetohydrodynamics (MHD)Turbulence:
 - Magneto magnetic fluid
 - hydro Liquid
 - dynamics movement
 - -MHD deals with dynamics of electrically conducting fluids.
- -MHD Turbulence is observed when the Reynolds number of magnetofluid is large.

Background

- Sun source of solar wind which is highly inhomogeneous magnetofluid expanding radially outward from it.
- The velocity and magnetic field in terms of fluctuating fields,

$$V = < V > +v$$

$$B = < B > +b$$

Where v is fluctuation on mean velocity < V > and b is fluctuation on mean magnetic field < B >

Elsässer variables (Elsässer 1950),

$$z^{\pm} = u \pm \frac{b}{\sqrt{4\pi\rho}}$$

Where z^+ and z^- describe wave propagating outward and inward with respect to sun.

The transport equation of evolution of fluctuations of u and b from their mean velocity and magnetic field in terms of elsässer variables (Zhou and Matthaeus, 1990a,b)

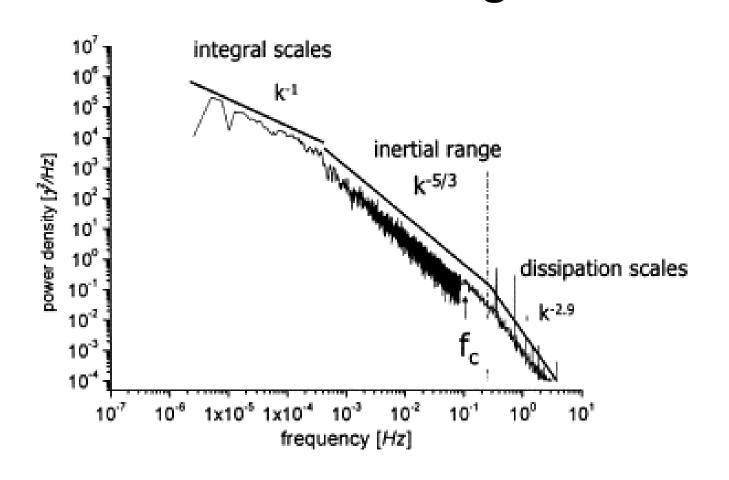
$$\frac{\partial z^{\pm}}{\partial t} + (U \mp V_A) \cdot \bigtriangledown z^{\pm} + \frac{1}{2} \bigtriangledown \cdot (U/2 \pm V_A) z^{\pm} + z^{\mp} \cdot \left[\bigtriangledown U \pm \frac{\bigtriangledown B}{\sqrt{4\pi\rho}} - \frac{1}{2} I \bigtriangledown \cdot (U/2 \pm V_A) \right] = NL_{\pm} + S^{\pm}$$

- Where I is the identity matrix, NL_{\pm} are the non-linear terms, S^{\pm} is the source term. • Transport equations of Normalized energy density of magnetic fluctuation(\bar{E}_b) and correlation length($\bar{\lambda}$)
 - $\frac{\partial \bar{E}_b}{\partial \bar{t}} + \bar{U} \frac{\partial \bar{E}_b}{\partial \bar{r}} + (1 \Gamma) \frac{\bar{U}}{\bar{r}} \bar{E}_b = -\frac{D \bar{E}_b^{\frac{3}{2}}}{\lambda} + S \frac{r_0}{v_0 E_b}$

$$\frac{\partial \bar{\lambda}}{\partial \bar{t}} + \bar{U} \frac{\partial \bar{\lambda}}{\partial \bar{r}} + \Gamma \frac{\bar{U}}{\bar{r}} \bar{\lambda} = \frac{D \bar{E}_b^{\frac{1}{2}}}{2} - \frac{\bar{l}}{2 \bar{E}_b} \frac{l_0 r_0}{E_{bo} u_0} S$$

Where $D = \frac{r_0}{l_0} \frac{\sqrt{E_{bo}}}{u_0}$ is a constant $(r_0 = 1AU, l_0 = 0.01AU, u_0 = 350km/s, E_{b0} = 540(km/s)^2)$. I have put D=3.9, $\bar{U} = 1$ in the numerical solution.

Background -The spectrum of magnetic/velocity fluctuation is kolmogorov.



Undriven Models

No source to drive the turbulence

$$\frac{\partial \bar{E}_b}{\partial \bar{t}} + \bar{U} \frac{\partial \bar{E}_b}{\partial \bar{r}} + (1 - \Gamma) \frac{\bar{U}}{\bar{r}} \bar{E}_b = -\frac{D \bar{E}_b^{\frac{3}{2}}}{\bar{\lambda}}$$

$$\frac{\partial \bar{\lambda}}{\partial \bar{t}} + \bar{U} \frac{\partial \bar{\lambda}}{\partial \bar{r}} + \Gamma \frac{\bar{U}}{\bar{r}} \bar{\lambda} = \frac{D \bar{E}_b^{\frac{1}{2}}}{2}$$

The discretization of \(\bar{E}_b\) and \(\bar{\lambda}\) based on explicit finite difference method,

$$\bar{E}_{bi}^{(n+1)} = \bar{E}_{bi}^{n} - \nu \left[\bar{E}_{bi}^{n} - \bar{E}_{(i-1)}^{n} \right] + \left[-D \frac{\bar{E}_{i}^{\frac{3n}{2}}}{\bar{\lambda}_{i}^{n}} - (1 - \Gamma) \bar{U} \frac{\bar{E}_{i}^{n}}{\bar{r}_{i}^{n}} \right] \Delta \bar{t}$$

$$\bar{\lambda}_i^{(n+1)} = \bar{\lambda}_i^n - \nu \left[\bar{\lambda}_i^n - \bar{\lambda}_{(i-1)}^n \right] + \left[D \frac{\bar{E}_i^{\frac{n}{2}}}{2} - \Gamma \frac{\bar{U}}{\bar{r}_i^n} \bar{\lambda}_i^n \right] \Delta \bar{t}$$

Where $\Delta \bar{r} (= 0.045)$ is the step size, $\Delta \bar{t} (= 0.036)$ is the time step and $\nu = \bar{U} \frac{\Delta \bar{t}}{\Delta \bar{r}} > 0$

Steady state solution

$$\bar{E}_b = \frac{\left(\frac{1}{\bar{r}}\right)^{1-\Gamma}}{\left(\bar{r}_0\right)^{2\Gamma} \bar{l}_0^2 + \frac{2D}{(1+3\Gamma)} \left[\bar{r}^{\frac{1+3\Gamma}{2}} - \bar{r}_0^{\frac{1+3\Gamma}{2}}\right]}$$

$$\bar{\lambda} = \left(\frac{1}{\bar{r}}\right)^{\Gamma} \left[(\bar{r}_0)^{2\Gamma} \, \bar{l}_0^2 + \frac{2D}{(1+3\Gamma)} \left\{ \bar{r}^{\frac{1+3\Gamma}{2}} - \bar{r}_0^{\frac{1+3\Gamma}{2}} \right\} \right]^{\frac{1}{2}}$$

I have assumed $\bar{r}_0 = 1 = \frac{r_0}{r_0}$, and $\bar{l}_0 = 1 = \frac{l_0}{l_0}$ in the numerical solution.

• Initial and boundary condition $\bar{E}_b = \left(\frac{1}{\bar{r}}\right)^{\left(\frac{3}{2}\right)}$, $\bar{l} = (\bar{r})^{\left(\frac{1}{4}\right)}$ for $\Gamma = 0$ and $\bar{E}_b = \left(\frac{1}{\bar{r}}\right)^2$, $\bar{l} = 1$ for $\Gamma = 1$. And B.C $\bar{E}_b = 1$, $\bar{\lambda} = 1$

Stream Interaction Driven Models

 There is a Source to drive turbulence $S = c_{sh} \frac{U}{L} E_b$ where c_{sh} represents the strength of the stream shear interaction

$$\frac{\partial \bar{E}_b}{\partial \bar{t}} + \ \bar{U} \frac{\partial \bar{E}_b}{\partial \bar{r}} + (1 - \Gamma) \frac{\bar{U}}{\bar{r}} \bar{E}_b = -\frac{D \bar{E}_b^{\frac{3}{2}}}{\bar{\lambda}} + C_{sh} \frac{\bar{U}}{\bar{r}} \bar{E}_b$$

$$\frac{\partial \bar{\lambda}}{\partial \bar{t}} + \ \bar{U} \frac{\partial \bar{\lambda}}{\partial \bar{r}} + \Gamma \frac{\bar{U}}{\bar{r}} \bar{\lambda} = \frac{D \bar{E}_b^{\frac{1}{2}}}{2} - C_{sh} \frac{\bar{U}}{2r} \bar{\lambda}$$

 $C_{sh} \sim 10$ for typical solar wind particle and $D = \frac{r_0}{l_0} \frac{\sqrt{E_{bo}}}{u_0}$ • The discretization of \bar{E}_b and $\bar{\lambda}$ based on explicit finite difference method,

$$\bar{E}_{bi}^{(n+1)} = \bar{E}_{bi}^{n} - \nu \left[\bar{E}_{bi}^{n} - \bar{E}_{b(i-1)}^{n} \right] + \left[-D \frac{\bar{E}_{bi}^{\frac{3n}{2}}}{\lambda_{i}^{n}} - (1 - \Gamma) \bar{u}_{r} \frac{\bar{E}_{bi}^{n}}{\bar{r}_{i}^{n}} + C_{sh} \bar{u}_{r} \frac{\bar{E}_{bi}^{n}}{\bar{r}_{i}^{n}} \right] \Delta \bar{t}$$

$$\bar{\lambda}_i^{(n+1)} = \bar{\lambda}_i^n - \nu \left[l_i^n - l_{(i-1)}^n \right] + \left[D \frac{\bar{E}_{bi}^{\frac{n}{2}}}{2} - \Gamma \frac{\bar{u}_r}{\bar{r}_i^n} \bar{\lambda}_i^n - C_{sh} \bar{u}_r \frac{\lambda_i^n}{2\bar{r}_i^n} \right] \Delta \bar{t}$$

Steady state solution

$$\bar{E}_b = \frac{\left(\frac{1}{\bar{r}}\right)^{1-\Gamma-C_{sh}}}{1 + DF^{-1}(\bar{r}^F - 1)}$$

$$\bar{\lambda} = \left(\frac{1}{\bar{r}}\right)^{\Gamma + \frac{C_{gh}}{2}} \left[1 + DF^{-1}(\bar{r}^F - 1)\right]^{\frac{1}{2}}$$

Where $F = \frac{1+2C_{sh}+3\Gamma}{2}$

Pickup Ion Driven Models

- The source to drive turbulence is Pickup Ion
- Turbulent Transport of Normalized energy density magnetic fluctuation (\(\bar{E}_b\)) and correlation length $(\bar{\lambda})$

$$\frac{\partial \bar{E}_b}{\partial \bar{t}} + \ \bar{U} \frac{\partial \bar{E}_b}{\partial \bar{r}} + (1 - \Gamma) \frac{\bar{U}}{\bar{r}} \bar{E}_b = -\frac{D \bar{E}_b^{\frac{3}{2}}}{\bar{\lambda}} + G \bar{U} exp(-\frac{H}{\bar{r}})$$

$$\frac{\partial \bar{\lambda}}{\partial \bar{t}} + \ \bar{U} \frac{\partial \bar{\lambda}}{\partial \bar{r}} + \Gamma \frac{\bar{U}}{\bar{r}} \bar{\lambda} = \frac{D \bar{E}_b^{\frac{1}{2}}}{2} - G \bar{U} \frac{\bar{\lambda}}{2 \bar{E}_b} exp(-\frac{H}{\bar{r}})$$

Where $G = \frac{r_0 C_{PI}}{E_{b0}} = 0.4$, $H = \frac{\lambda_I}{r_0} = 8$. Also, $C_{PI} = \frac{V_A n_H^{\infty}}{\tau_{ion} n_{SW}^0}$, $\lambda_I = \frac{\lambda \theta}{sin\theta}$.

• the discretization of \bar{E}_b and $\bar{\lambda}$ based on explicit finite difference method,

$$\bar{E}_{bi}^{(n+1)} = \bar{E}_{bi}^n - \nu \left[\bar{E}_{bi}^n - \bar{E}_{b(i-1)}^n \right] + \left[-D \frac{\bar{E}_{bi}^{\frac{3n}{2}}}{\bar{\lambda}_i^n} - (1 - \Gamma) \bar{u}_r \frac{\bar{E}_{bi}^n}{\bar{r}_i^n} + G \bar{u}_r exp(-\frac{H}{\bar{r}_i^n}) \right] \Delta \bar{t}$$

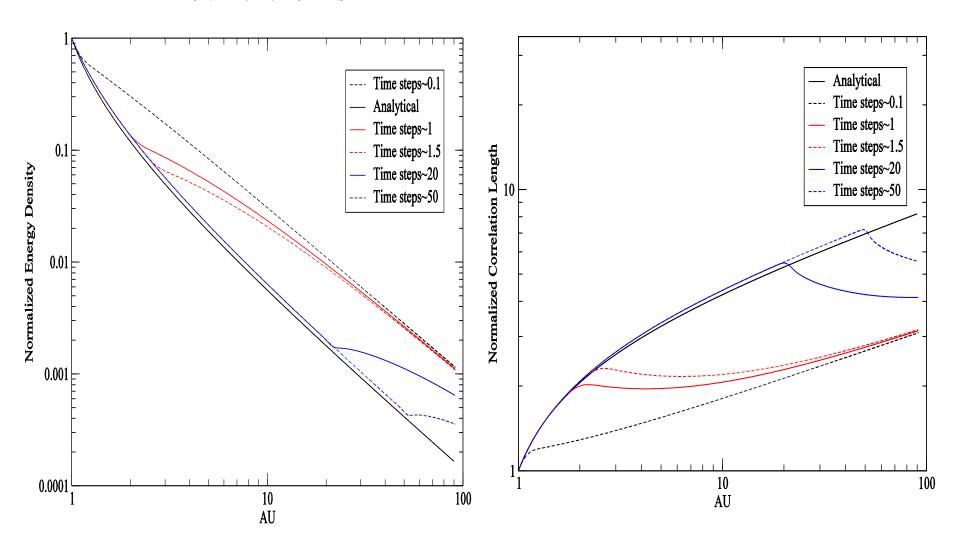
$$\bar{\lambda}_{i}^{(n+1)} = \bar{\lambda}_{i}^{n} - \nu \left[l_{i}^{n} - l_{(i-1)}^{n} \right] + \left[D \frac{\bar{E}_{bi}^{\frac{n}{2}}}{2} - \Gamma \frac{\bar{u}_{r}}{\bar{r}_{i}^{n}} \bar{\lambda}_{i}^{n} - G \bar{u}_{r} \frac{\bar{\lambda}_{i}^{n}}{2\bar{E}_{bi}^{n}} exp(-\frac{H}{\bar{r}_{i}^{n}}) \right] \Delta \bar{t}$$

I have used $\Delta \bar{t} = 0.0001$ and $\Delta \bar{r} = 0.045$

Undriven Models(No Mixing)

UNDRIVEN MODELS

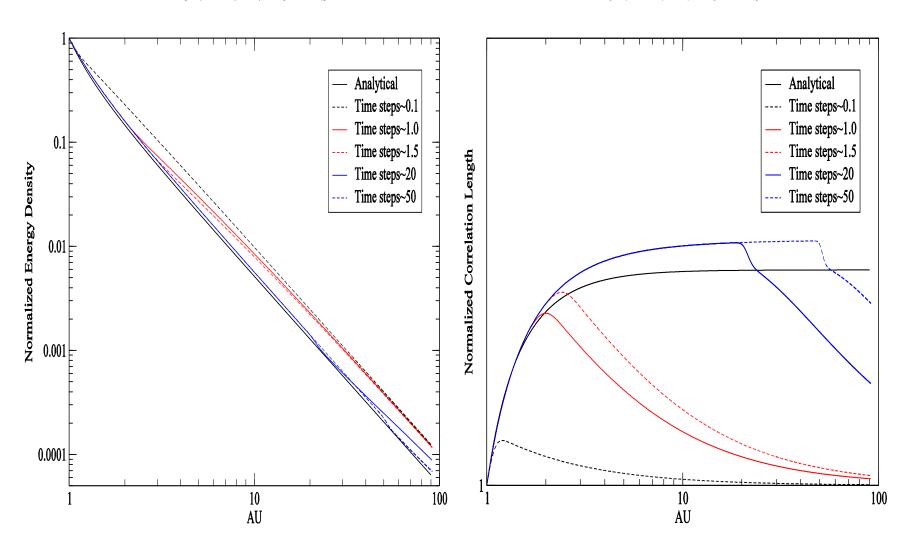
UNDRIVEN MODELS



Undriven Models (Strong Mixing)

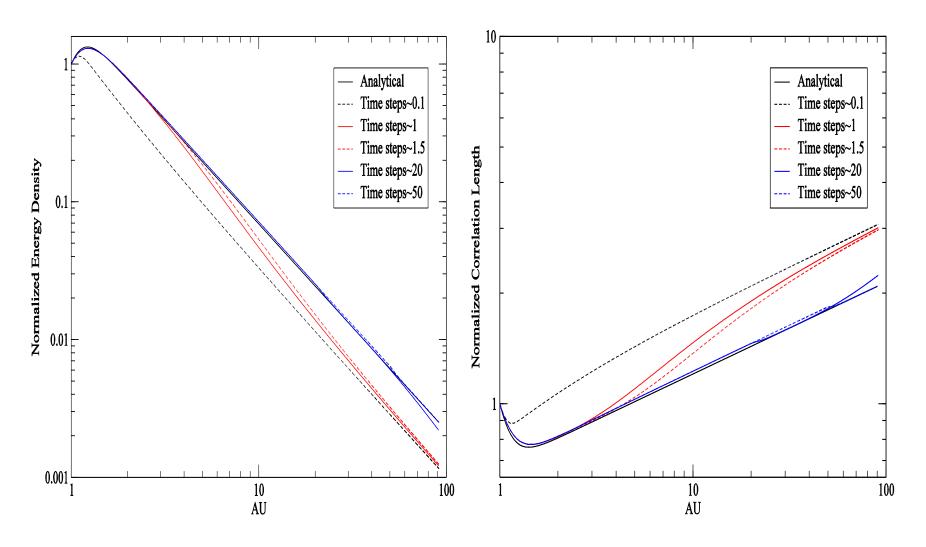
UNDRIVEN MODELS

UNDRIVEN MODELS



Stream Interaction Driven Models (No Mixing) STREAM-INTERACTION DRIVEN MODELS STREAM

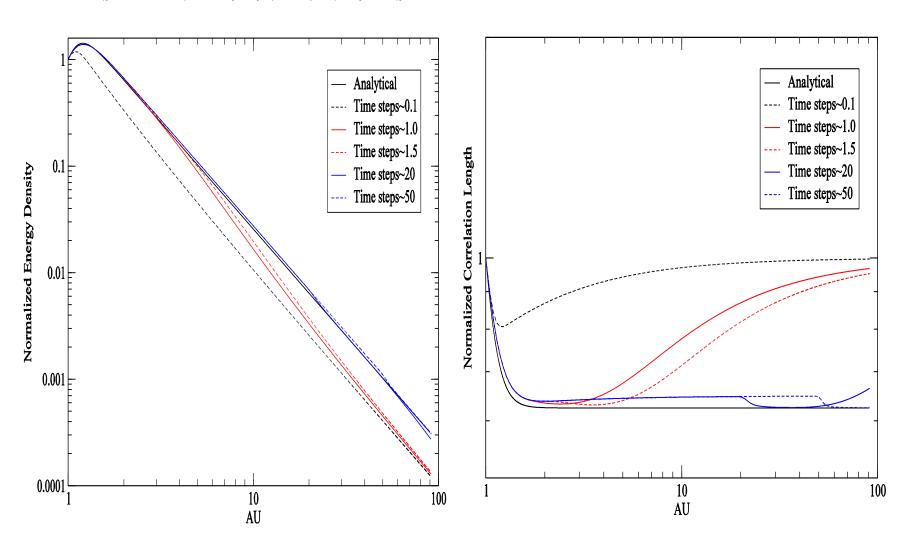
STRÉAM-INTERACTION DRIVEN MODELS



Stream Interaction Driven Models (Strong Mixing)

STREAM-INTERACTION DRIVEN MODELS

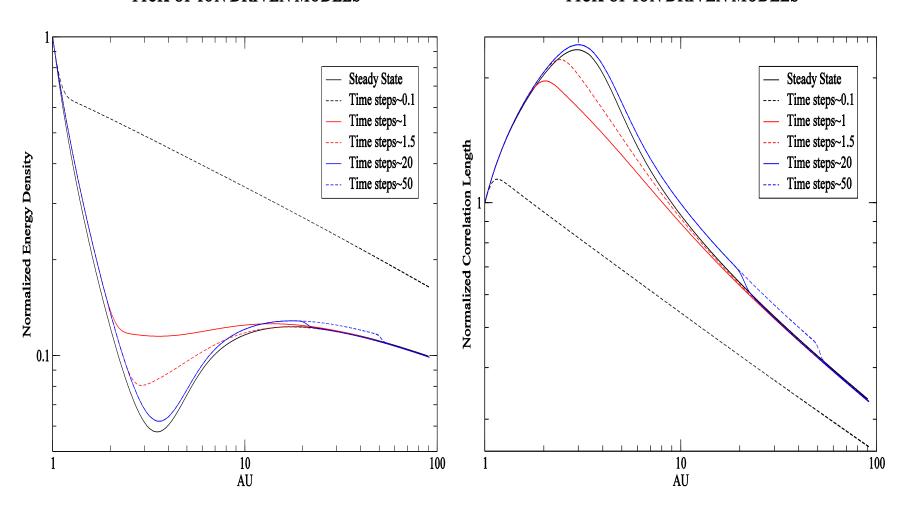
STREAM-INTERACTION DRIVEN MODELS



Pickup Ion Driven Models (No Mixing)

PICK UP ION DRIVEN MODELS

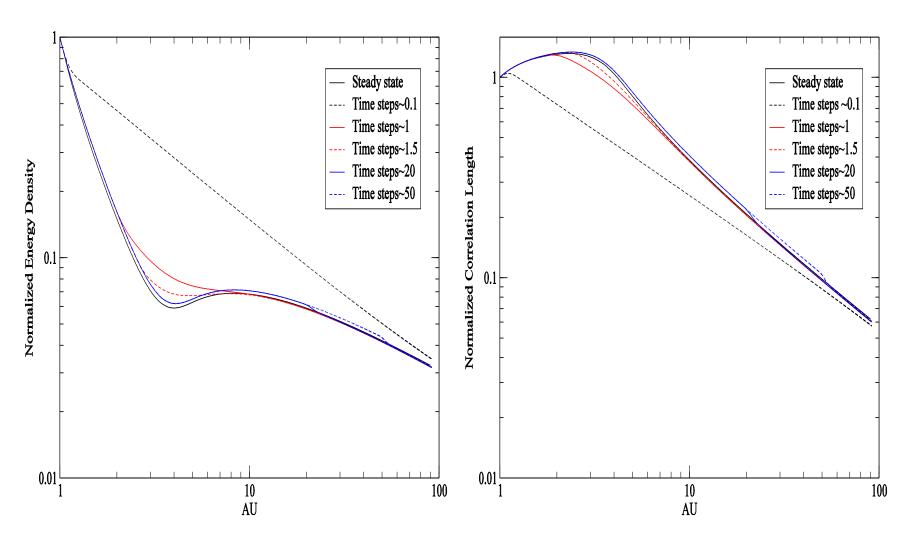
PICK UP ION DRIVEN MODELS



Pickup Ion Driven Model (Strong Mixing)

PICK UP ION DRIVEN MODELS

PICK UP ION DRIVEN MODELS



Summary

- -Generally, the fluctuation of magnetic energy decreases with the increase of radial distance. On the other hand the correlation length increases which we can see in undriven models.
- -There is a slight increase of magnetic energy density in driven model which is because of the source term.
- -The correlation length in the case of pickup ion driven models decreases with increase of radial distance which is different than other two models.
- Most of the systems are in unsteady state first and as the time passes it is getting to steady state which we can see in the result.