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Introduction

Predicting an active region’s (AR) tendency to produce major flares, 
coronal mass ejections (CMEs), and solar energetic particle events 
(SEPs) is essential for ensuring astronaut safety. MagPy predictions are 
derived from free-energy proxies from HMI vector magnetograms. Due to 
projection effects, we show magnetic measures in JSOC deprojected 
cylindrical magnetograms are over-estimated as a function of distance 
from disk center. To better forecast eruptions from regions far from disk 
center, most notably the west limb, we want to accurately predict 
free-energy proxies several days into the future. Figure 1 illustrates how 
measuring far from disk center gives rise to measurement challenges. 
We determine that a correction must be applied to more accurately 
predict AR free-energy proxies west of central meridian. With the 
corrected data, we investigate multiple methods of using observations of 
eastern longitudes to predict the west for a variety of lead times. 
Because of the similarity we found between the free-energy proxies we 
investigated, the results shown are for the gradient weighted neutral line 
measure defined as WLSG1 = ∫ |∇Bz|

1 dl.

There are significant projection errors in JSOC deprojected cylindrical magnetograms for several 
free-energy proxies that need to be corrected. The even 6th degree Chebyshev fit effectively removes the 
artificial radial distance dependence. Whether there are other dependencies that need to be corrected for 
should be investigated.

Of the methods we analyzed, persistence seems to overall give us the best predictions for short lead 
times (24 and 48 hours). Other techniques gave slightly better results for lead times longer than 48 hours, 
but with large uncertainties, we cannot conclude that these models are better predictors. Testing more 
advanced function fitting techniques possibly with machine learning could prove to be fruitful.

Similar analysis should be performed on a MagPy output with thresholds optimized for flare forecasting. 
Determining these thresholds is currently ongoing. With optimized corrected data, further analysis into 
determining which free-energy proxy is the best predictor of flares, CMEs, and SEPs should be done.
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magnetograms. The Astrophysical Journal. 833. 10.3847/2041-8213/833/2/L31.
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Figure 1. Full disk magnetogram 
(nso.edu/data/nisp-data/magnetogram
s/). Yellow circles are overlaid to depict 
how the area of an AR becomes 
increasingly distorted the farther it is 
from disk center.

Table 1. Table of the second order fit terms to ratio histogram for the various methods we investigated. The 
prediction fit functions were applied in linear space. The minimum value for a lead time is highlighted in yellow. 
Rows are empty if there were too few data points for the prediction function to be fit. 
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● Figure 3 shows that for WLSG1 there is a strong dependence on 
degree distance from disk center. To characterize this behavior, we fit 
the data with even degree Chebyshev fits. Using even degree 
polynomials gave similar fits.

● After correcting the data with an even 6th degree Chebyshev function, 
this effect was effectively removed as seen in Figure 4. Because of 
the lack of data near disk center, we overcorrect in that region. 
Investigating other weighted neutral line measures show a similar 
dependence on radial distance. In the following figures and analysis, 
corrected data is in reference to this even 6th degree Chebyshift 
applied.

● Figures 5 and 6 show ratio histograms of WLSG1 for a persistence 
prediction model for two lead times: 24 and 72 hours. We expect the 
ratio distributions to be roughly centered about zero as AR should, on 
average, be growing and and decaying by similar amounts. 

● These histograms were made for all lead times of interest (24, 48, 72, 
and 96 hours) and for other free-energy proxies. Other lead times 
show a similar trend in the uncorrected data as the two shown—the 
longer the lead time, the farther the fit peak moves from zero.

Figure 5. Ratio histograms of WLSG1 for a 24 hour lead time for the 
uncorrected data (top) and the corrected data (bottom). The 3rd order 
Gaussian fit (dashed red) and peak location (vertical red) are shown. For 
this lead time, both the uncorrected and corrected data show a very similar 
distribution.

Figure 6. Ratio histograms of WLSG1 for a 72 hour lead time for the 
uncorrected data (top) and the corrected data (bottom). The 3rd order 
Gaussian fit (dashed red) and peak location (vertical red) are shown. The 
uncorrected data shows that, on average, AR grow by roughly a factor of 3 
in 72 hours. The corrected data shows a distribution peaking close to zero.

Figure 2. WLSG1
 corrected by 6th degree Chebyshev 

fit (see Figure 3) as a function of time for AR 11746. 
Graphical representations of linear fit predictions for a 
variety of prediction times are overlaid: a persistence 
model—only using central meridian as predictor 
(orange), using central meridian and up to one day 
before (green), using central meridian and up to two 
days before (blue), using central meridian and up to 3 
days before (purple). These lines are overlaid for 
visualization and are not true depictions of the actual 
models used.

● Because we want to find a prediction method that best fits the majority of AR, the best method should minimize the second 
order term of the Gaussian fit. A summary of this fit term for the various method we used is shown in Table 1.

● The persistence model dominates for 24 and 48 hour lead times. For lead times longer than 48 hours, we see linear and 
quadratic models giving smaller second order terms than the persistence model. Yet these come with great uncertainty, and 
thus we cannot confidently say these prediction functions give the best estimates for those lead times.

Figure 4. Normalized WLSG1 detrended with the even 6th degree Chebyshev fit 
(orange line in Figure 3). Means and standard deviation of the corrected data are 
shown in cyan.

Figure 3. Normalized WLSG1 as a function of degree distance from disk center. 
Means of each 5 degree bins are shown (cyan) along with the bin’s standard 
deviation (vertical cyan lines). Even 2nd, 4th, 6th, and 8th degree Chebyshev fits are 
applied to characterize radial dependence.

Prediction Fit 
Function

Time used for 
prediction

24 Hour Lead 
Time

48 Hour Lead 
Time

72 Hour Lead 
Time

96 hour Lead 
Time

Persistent - 0.22 ± 0.02 0.44 ± 0.04 0.61 ± 0.03 0.61 ± 0.03

Linear
(y = a + bx)

24 hour 0.43 ± 0.05 0.64 ± 0.06 0.82 ± 0.04 0.85 ± 0.10

48 hour 0.42 ± 0.05 0.60 ± 0.07 0.49 ± 0.20 0.55 ± 0.10

72 hour 0.38 ± 0.04 0.60 ± 0.06 0.54 ± 0.10 0.79 ± 0.07

96 hour 0.35 ± 0.02 0.58 ± 0.05 0.68 ± 0.07 0.77 ± 0.07

Quadratic
(y = a + bx + cx2)

24 hour - - - -

48 hour 0.60 ± 0.04 0.49 ± 0.06 0.53 ± 0.10 0.50 ± 0.20

72 hour 0.56 ± 0.04 0.69 ± 0.05 0.68 ± 0.05 0.60 ± 0.09

96 hour 0.46 ± 0.04 0.46 ± 20 0.67 ± 0.30 0.70 ± 0.20

Cubic
(y = a + bx + cx2 + 

dx3)

24 hour - - - -

48 hour 0.64 ± 0.05 0.55 ± 0.05 0.62 ± 0.06 0.64 ± 0.06

72 hour 0.50 ± 0.07 0.48 ± 0.10 0.63 ± 0.03 0.54 ± 0.05

96 hour 0.59 ± 0.05 0.70 ± 0.05 0.58 ± 0.04 0.64 ± 0.07

Code was developed in Python and we used a hour cadence MagPy output spanning from May 2010 to 
June 2020 (sharp_cea_720s).

We worked with only large AR which we defined as AR with total magnetic flux greater than 1022 Mx at 
closest approach to central meridian. This gave us a population of 606 AR. The following procedure was 
performed on various free-energy proxies: 

● Normalized data by dividing all of an AR’s measures by the AR’s measure value when closest to central 
meridian.

● Plotted normalized measures as a function of degree distance from disk center. We notice a 
pronounced dependence on radial distance. Because distance from disk center is simply a product of 
Earth’s perspective of the Sun, we deduce this dependence must be an artifact.

● To correct for this projection error, we fit the data with Chebyshev fits4. We are interested in the 
measure’s time evolution from east to west, so we used only even degree Chebyshev fits to preserve 
east-west symmetry.

● After applying the corrections, we investigate the 
free-energy proxies’ time evolutions for multiple time 
steps (24, 48, 72, 96 hours) using a variety of 
methods. We varied the following parameters:

○ Time before central meridian used for 
prediction (24, 48, 72, and 96 hours)

○ Prediction function (persistence, linear, 
quadratic, and cubic)

For a persistence model, the measure value at the 
time of closest to central meridian approach is used as 
a prediction for all future times. For linear, quadratic, 
and cubic models, the function is fit to the central 
meridian measure value and all values before that are 
within the time used for prediction. All prediction 
functions are fit in linear space. A graphical depiction of 
linear prediction functions using different prediction 
times is shown in Figure 2.

● To determine how well a method predicts, we construct 
histograms of the ratios of observed values to values 
the model gives. We fit third order Gaussians to the 
histograms and conclude that the most accurate 
method should minimize the second order term 
(standard deviation).

Second Order Terms for Various Prediction Methods



Prediction Fit Function Time used for 
prediction

24 Hour Lead Time 48 Hour Lead Time 72 Hour Lead Time 96 hour Lead Time

Persistent - 0.22 ± 0.02 0.44 ± 0.04 0.61 ± 0.03 0.61 ± 0.03

Linear
(y = a + bx)

24 hour 0.43 ± 0.05 0.64 ± 0.06 0.82 ± 0.04 0.85 ± 0.10

48 hour 0.42 ± 0.05 0.60 ± 0.07 0.49 ± 0.20 0.55 ± 0.10

72 hour 0.38 ± 0.04 0.60 ± 0.06 0.54 ± 0.10 0.79 ± 0.07

96 hour 0.35 ± 0.02 0.58 ± 0.05 0.68 ± 0.07 0.77 ± 0.07

Quadratic
(y = a + bx + cx2)

24 hour - - - -

48 hour 0.60 ± 0.04 0.49 ± 0.06 0.53 ± 0.10 0.50 ± 0.20

72 hour 0.56 ± 0.04 0.69 ± 0.05 0.68 ± 0.05 0.60 ± 0.09

96 hour 0.46 ± 0.04 0.46 ± 20 0.67 ± 0.30 0.70 ± 0.20

Cubic
(y = a + bx + cx2 + dx3)

24 hour - - - -

48 hour 0.64 ± 0.05 0.55 ± 0.05 0.62 ± 0.06 0.64 ± 0.06

72 hour 0.50 ± 0.07 0.48 ± 0.10 0.63 ± 0.03 0.54 ± 0.05

96 hour 0.59 ± 0.05 0.70 ± 0.05 0.58 ± 0.04 0.64 ± 0.07

Prediction Fit Function Time used for 
prediction

24 Hour Lead Time 48 Hour Lead Time 72 Hour Lead Time 96 hour Lead Time

Persistent 0 0.22 ± 0.02 0.44 ± 0.04 0.61 ± 0.03 0.61 ± 0.03

Linear
(y = a + bx)

24 hour 0.45 ± 0.20 0.38 ± 0.05 0.31 ± 0.02 0.33 ± 0.03

48 hour 0.53 ± 0.10 0.42 ± 0.04 0.29 ± 0.05 0.24 ± 4

72 hour 0.49 ± 0.10 0.32 ± 7 0.25 ± 10 0.31 ± 0.03

96 hour 0.50 ± 0.10 0.35 ± 0.06 0.23 ± 2 0.37 ± 0.02

Quadratic
(y = a + bx + cx2)

24 hour - - - -

48 hour 0.56 ± 0.07 0.44 ± 0.07 0.34 ± 4 0.50 ± 0.08

72 hour 0.54 ± 0.09 0.46 ± 0.06 0.39 ± 0.04 0.38 ± 0.04

96 hour 0.54 ± 0.09 0.43 ± 0.04 0.36 ± 0.07 0.50 ± 0.05

Cubic
(y = a + bx + cx2 + dx3)

24 hour - - - -

48 hour 0.63 ± 0.05 0.63 ± 0.10 0.70 ± 0.10 0.60 ± 0.20

72 hour 0.56 ± 0.08 0.55 ± 0.04 0.60 ± 0.08 0.67 ± 0.10

96 hour 0.62 ± 0.05 0.56 ± 0.03 0.59 ± 0.05 0.63 ± 0.07

Prediction Functions Fit in Linear Space Prediction Functions Fit in log10 Space


