
Physics-Based Modeling:
Principles, Methods and Examples

Wesley N. Colley
Leslie A. Litten

Center for Modeling, Simulation and Analysis
University of Alabama in Huntsville



Purpose of Tutorial
• Motivate need for good physics in M&S
• Motivate idea that good physics can often be 

carried out efficiently
– Familiarize audience with numerical techniques 

that radically enhance computational efficiency
– Present physics-based examples that benefit from 

such techniques
– Present an example where difficult physics has a 

simple mathematical solution



Quick Acknowledgements
• Much of this material can be found in 

Numerical Recipes
– in C++, C and FORTRAN
– Press, Teukolsky, Vetterling, Flannery

• Charts and much analysis prepared for this 
talk carried out in IDL 
– Interactive Data Language
– see www.itt-vis.com
– otherwise C++

http://www.itt-vis.com/


Outline
• Intro to physics in M&S
• Quadrature (Integration of Functions)
• Integration of Differential Equations

– orbits and trajectories
• Radiative Processes

– atmospheric effects on visibility
• Fourier methods

– image processing



How does physics play a role in M&S?
• Physics and M&S share a similar goal

– Model the world around us
• Physics started when

– Computers didn’t exist
– Questions were simple, like “why do arrows fly?”

• M&S and Physics meet when
– Modeler: Accurate models of natural behavior are 

needed in my simulation
– Physicist: Computers are necessary to handle the 

math in my physics problem



Strengths of Physics
• Physics (at some level) describes 

everything in the Universe
– Sub-atomic interactions

• Binding of quarks in proton

– Cosmological scale interactions
• Expansion and acceleration of the Universe

– Everything in between
• Atoms, molecules, baseballs, mountains, 

planets, stars, galaxies

What about a 
human thought?

Okay, smarty, no. The
electrons in the neurons, 

though…



Macroscopic Stuff
• Basic mechanics

– Flight of baseballs, pendula, springs, orbits
• Thermo-/Hydro-dynamics

– Airframe modeling, mixing of airborne agents, 
dam engineering, rockets, explosives, heat pump

• Materials
– Heat resistance, tensile strength, conductive 

properties, lightness
• Electricity and Magnetism

– Optics, radar, compasses, electrical engineering
• Quantum Physics

– Lasers, microchips, nuclear



The Weakness of Physics
• Physics tends to break down when very large 

numbers of physical entities are involved
– Cannot compute bridge properties through quantum 

interactions (~1035 atoms in a bridge!)
• Chemistry, Chem E:  rule sets approximating 

quantum mechanics
• Biology, Materials Science: rule sets 

approximating Chemistry and quantum
• Astrophysics: rule set approximating gravity, 

hydro and quantum
• Engineering: (often) use of physical properties 

of materials, gases, etc. for large systems



So physics is (often) useful…
• How do we model it?
• MATH
• Physics is very often a means of mapping  

reality into mathematics
– Almost all macroscopic interactions are governed 

by a second-order partial differential equation
• Just math?  Then is knowledge of Nature’s 

apparent rules “deep?” Does F = ma
– Tell us something fundamental about Nature 
– Or just provide a synopsis of our observations?



Math…
• The math physics generates is typically 

complicated
– Very few realistic problems can be solved 

analyitically

• Answer:  Computer
– Use numerical mathematics
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This equation governs a single electron in a Hydrogen atom!



The strategy

• When faced with a problem, identify the 
type of physics at its root

• Make approximations that simplify the 
problem
– Air resistance is negligible on a falling coin

• Not true from Empire State building

– Moon is a point mass
• Not true if concerned about tides on moon



The Strategy (cont.)

• Once you are working at the right level, 
begin looking at the physics involved

• Identify the mathematical issues the 
physics presents

• Choose the correct numerical methods 
for handling that math

• Model away!
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Quadrature Segue
• First things first
• Introduce a powerful mathematical 

technique that can be generalized into 
physics applications

• Simple math question:
– How do I find the area under the function 

f(x)?



Riemann Sum:  Simple Question
What is Area Under Curve f (x)?
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Riemann Sum Example
• y = sin(x)
• a = 0
• b = π/2
• n = 8

• Estimate: 
0.89861040
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Improving

• Examine 
errors made

• Basically look 
like triangles

• Can we 
correct for 
that?



Trapezoid Rule

a b x
ha+ih

Fixing the triangle 
error turns
the rectangle into 
a trapezoid

error is a triangle
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simplify: same as
Riemann, except 
endpoints… hmmm



Trapezoid Rule
• Return to sine 

curve
• Much better 

looking
• Estimate: 

0.99678517
• Much better!
• Same number 

of calls to 
derivative 
function!

Note:  Need continous first derivative for it to work right…



Trapezoid Errors
• Now errors
• are much 

smaller
• They look like 

parabolas
• What next?



Simpson’s Rule

• Fit parabolas to every three points
– find area under each parabola

• Sounds complicated, but the area under 
the parabola is given by a simple linear 
formula
– not quadratic as one might guess
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Simpson’s Rule
• Find area under 

parabolas in 
every interval 
of 2h.

• Estimate: 
1.0000083

• Very good, and 
still same 
number of 
calls.

no visible error at all

Note:  Need continous second derivative for it to work right…



Simpson Errors
• Errors are 

now quite 
small

• Cubic in 
nautre

• Curiously, 
cubic terms 
cancel, 
leaving 
quartic errors



Bode’s Rule
• Okay, fit quartics

to each interval of 
4h

• Just different 
weights in sum 
again

• Estimate: 
0.99999988

• Still better, still 
same number of 
calls

Note:  Need continous fourth derivative for it to work right…



Convergence

• One can also improve estimate by 
“brute force”
– Simply carry out more iterations

• How much do estimates improve as a 
function of number of iterations?



Convergence

10x

Bode: 106

Simpson: 104

Trap: 100

Riemann: 10



Convergence

• Riemann sum improves linearly with 
increased iterations

• Trapezoid: quadratically
• Simpson’s Rule:  quartically
• Bode’s Rule:  6th order

– a million times better with ten times the 
iterations!

• Why not keep going?



Getting silly
• One could keep fitting higher-order 

polynomials to improve the fit
– and maintain computational load

• However, these high-order rules require 
increasingly well-behaved functions
– Namely, functions must be continuously 

differentiable at the order of the 
polynomial

– Not likely in real world too often
• If it is, the integral is probably analytic or semi-

analytic… Just look up the answer!



One Counter-Example

• Continuous first-
derivative

• discontinuous 
2nd derivative

• Trapezoid and 
Riemann 
shouldn’t notice

• Simpson and 
Bode should 
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The derivative rules really do matter



Convergence for baddish function

• Riemann and 
trapezoid 
behave 
normally

• Simpson and 
Bode do not
– improvement 

is essentially 
2nd order, 
same as 
trapezoid



Quadrature Summary
• Several different methods use the exact same 

calls to the derivative function with vastly 
different results
– higher order means better estimates AND
– better convergence with more iterations

• But, beware the caveats of higher order 
methods

• My advice:  try Simpson’s Rule
• Advanced methods use extrapolation from 

results of different iteration numbers
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Diff Eq Segue
• Similar methods to those of numerical 

integration carry over into ordinary 
differential equations

• A great many physical systems are governed 
by such equations
– orbits
– ballistics
– analog circuits
– springs, dampers
– pendula



Tangential Integration
• Consider

• One could integrate the solution:
– start with an initial value
– compute derivative
– find next value
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Graphically

• Slope at t0 ,x0 = f (t0,x0)

x
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Called “Tangential”
because slope is 
tangent to the curve
at the point of evaluation.



Graphically

• Slope at x1, t1 = f (t1, x1)

x
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tΔ Derivative is now
incorrect, because
x1 is not exactly
x(t0 + Δt).  The error
is equivalent to having
started with different
initial conditions.



Errors Mount

tangential
exact, x = exp(0.3t)

x
dt
dx 3.0=

• Errors are worse than 
in integration of 
functions
– With functions, 

derivative estimate is 
always correct

– With diff eq’s, 
derivative estimate 
becomes invetiably
poorer as errors are 
made

– Errors are 
compounded



Midpoint Method
• Find x1/2 by using slope at x0 but only 

moving half a time-step
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Midpoint

• Use slope at (t1/2, x1/2) to propagate full 
step from (t0, x0)
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Midpoint Formula

• Mitigates 
compounding 
errors 
significantly

• Allows for 
curvature 
during 
timestep

tangential
midpoint
exact, x = exp(0.3t)

Note: 16 calls to derivative function for each



Runge-Kutta
• Similar idea to midpoint, but four points
• use slope at start to go to 1st midpoint
• use slope at 1st midpoint from start back to a 2nd midpoint
• use slope at 2nd midpoint to go to endpoint and obtain slope
• Add up slopes thus
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Runge-Kutta

tangential
midpoint
Runge-Kutta
exact, x = exp(0.3t)

• Four-point method
– same principle as 

midpoint
– somewhat more 

complicated
• two different 

midpoint 
evaluations

• one endpoint 
evaluation

– still straight-forward to 
code and use

• Much better behavior
Note: 16 calls to derivative function for each



Real World Example: Orbits
• Planetary orbits

– Earthlike orbit (circular at earth distance from 
sun)

– Elliptical orbit around sun

• Ballistic Missile trajectory
– Siberian launch at Los Angeles

• just Newtonian (Keplerian) gravity
• no earth-rotation

ra 3r
GM

−= (only)



Simple Orbit Code

const double GM = 1.33e23;
derivs(double* xv, double* dxvdt) {

double r=sqrt(xv[0]*xv[0]+xv[1]*xv[1]+xv[2]*xv[2]);
double r3=r*r*r;
for (int i=0,i<3;i++) {

dxvdt[i] = xv[i+3];
dxvdt[i+3] = -GM*xv[i]/r3;

}
}

int main()
…
for (int i=0,i<niter;i++) {

rk4(xv,dt,xvnew,derivs);
xv = xvnew;

}

ra 3r
GM

−=

create 6-element state vector: x,y,z,vx,vy,vz

use canned RK integrator 



Orbit Integration
• Earthlike orbit

– circular, 1 AU radius

• Runge-Kutta vs. 
Tangential 
(Eulerian)
– 400 calls each to 

derivatives function

• Errors after one 
orbit

tangential
Runge-Kutta

RK Tangential

Energy 0.000002% 14%

Position 0.00003% 82%



Orbit Integration
• Eccentric orbit

– 1 AU radius
– eccentricity = 0.5
– b/a = 0.866

• Errors after one 
orbit

tangential
Runge-Kutta

RK Tangential

Energy 0.003% 34%

Position 0.001% 70%



Ballistic Missile Flight

• Simple Keplerian
gravity, no earth 
rotation

• Siberian launch, 
target Los 
Angeles

• Tangential vs. 
Runge-Kutta

(Google)



Ballistic Missile Flight

tangential
Runge-Kutta Runge-Kutta: direct hit

Tangential: not close



Main Error is Height

tangential
Runge-Kutta

RK Tangential

Energy 7×10–7% 2%

Position 3 km 660 km

• Again, tangential 
overshoots
– no curvature

• Error budget:



Convergence

10x

10x

100x

10000x

tang

midp

RK

~ n–4 

~ n–2 

~ n–1 

How rapidly does estimate improve with more iterations (CPU cycles)?



Convergence

• For same number of function calls
– Tangential method improves linearly with 

increased iterations
– Midpoint method improves quadratically

with increased iterations
– Runge-Kutta improves quartically with 

increased iterations

• Beware of choppy derivative functions 
that could screw this up



Problem with Even Stepsize
• Often the derivative 

function is highly 
variable
– A high eccentricity orbit 

has much greater 
acceleration near the 
sun

• Even stepsize methods
– far too little effor near 

sun (where planet zips 
around)

– too much effort far from 
the sun (where planet 
moves slowly)

• Results
– DISASTROUS

tangential
Runge-Kutta

eccentricity = 0.9

400 calls to derivative function

RK Tangential

Energy 102% 540%

Position 350% 480%

Errors:



Adaptive Stepsize
• Errors can be estimated 

along the way
– estimates of different 

order with same 
derivative calls

• If error too large, 
stepsize shrinks

• If error too small, 
stepsize grows

• Results
– Fine stepping near sun
– Coarse stepping far from 

sun
– Efficient use of CPU!

Adaptive Runge-Kutta

383 calls to derivative function

eccentricity = 0.9

Adaptive RK

Energy 0.001%

Position 0.002%

Errors:

fewer calls!



Differential Equations Summary
• Canned packages exist for Runge-Kutta

– it’s a good place to start
– usually doesn’t get you into too much trouble

• Consider adaptive stepsize
– if derivative is known to vary a lot or suddenly

• Other methods:  Bulirsch-Stoer, etc.
– may offer radically fast performance, if derivatives 

are reasonably stable
– often very similar calls can be made to multiple 

integrators, so play around!
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Radiative Processes Segue

• Now an example of seemingly 
complicated physics

• But an extremely simple mathematical 
solution
– can’t get more efficient than that!



Radiative Processes

• Optical/IR detection depends not only 
on an obstruction-free line-of-sight, but 
also on atmospheric effects

• The atmosphere can basically do two 
things to light
– absorb
– scatter

• Fortunately, the math for these is 
straight-forward



Absorption
• Absoprtion attenuates light exponentially with 

distance.
– If half of light is absorbed in the first meter, half of 

the remaining light is absorbed in the second

• Exponent proportional to density

n = density of absorbers
Half of light absorbed Half of light absorbed



Absorption Math
• Absorption is quantified in terms of an 

opacity κ, in units of m–1

• Opacity is the product of the number 
density, n, and the cross-section, σ, of the 
absorbing particle

σκ n=

=

high n, low σ low n, high σ



Absorption Math

• Optical Depth, τ, is the product of κ and 
the distance to the object of interest
– or integral over the distance

• The light received is simply

∫∫ ==
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Note that σ depends on quantum interaction probabilities, but
tables are well-established for countless species.



Scattering
• Scattering features particles that bounce light in a 

random direction
– light isn’t attenuated by made more uniform in medium

• smoke, fog, snow, rain

• Effect is again proportional to density

n = density of absorbers
Half of light scattered Half of light scattered

multiple scatter



Intuitive Fog Example
• Demonstrate fog 

mathematics
• Problem, need 3-D
• Photograph selected for 

easy 3-D model
– green pixels aren’t Parris
– ground is a simple plane
– background trees treated 

as a plane

Parris



3-D Toy Model
• Dark = far
• light = close

• some minor 
errors 



Toy Fog Model

• Fairly convincing to the eye
no fog, κ = 0 thin fog, κ = 0.01 thicker fog, κ = 0.05

strictly notional,
but math is right



Real Scattering
Wavelength-dependent scattering
(blue more scattered than red) =
reddened sun, blue sky

simple scattering by fog
around streetlight

more blue scattering



Toy Absorption
• Very fine coal dust?

κ = 0 κ = 0.01 κ = 0.05



Real Absorption
Dark interstellar dustBlack smoke from Iraqi oil fire



Infrared Absorption
• Water vapor (among other molecules) 

very effectively absorbs infrared radiation



Water Vapor and IR

Mike Skrutskie
(UVa)

• Spectral dependence is quite complex
– water densities given in terms of mm

• if I took all the water vapor in line of sight and 
made it liquid, how much water would I have?



In practice

• Integrate the absorption spectra against 
the bandpass of your detector to get a 
simple function of total absoprtion vs. 
water column.
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Fourier Transform Segue

• The purpose here is to present a very 
advanced computational technique with 
a great many applications



Intro
• The Fourier Transform

– facilitates solution of partial differential equations
– has applications in

• compression
• image processing
• signal analysis
• statistics

• The big advantage:
– Allows many N2 processes to be carried out in 

NlogN time.
• First, the MATH



Basis Vectors
• Consider 3-vectors
• 3 coordinates are really projections of the 

vector onto the independent axes

x
y

z

• Each coordinate can be formed by taking the 
dot product of the vector with the axis’s basis
vector:
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Different Basis Sets
• Example: rotated coordinate axes

yx

z

y’

x’

z’

(1,3,2) =
(2.019, 2.777, 1.487)’

1.486739ˆ'

2.777474ˆ'
2.018725ˆ'

'

'

'

=⋅=

=⋅=
=⋅=

fe

fe
fe

z

y

x

z

y
x

Same f, different representation.
Still find components by
taking dot-product with

basis vectors

f
( )∑

′
′′ ⋅=

m
mm efef ˆˆ



A different way to see it

• Regard x,y,z components as heights on 
a 3-bar histogram
– exactly same information contained
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Now basis vectors 
are just unit 
columns

x y z
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Cartesian Bases
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Rotated Basis as 
a Histogram

x y z

1

3

2

2.019×

2.777×

1.487×

= Σ
also!

Rotated Bases
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n -vectors
• Bar graph simply grows, with dimension 

along horizontal axis
)6,5,1,3,0,4,2,3,1,3,3,2,5,3,1( −−−−=f

j1 2

fe ⋅= jjf ˆ

)0,0,0,0,0,0,1,0,0,0,0,0,0,0(ˆ8 =e



Rule for basis vectors

• Vectors must remain orthonormal

• Simple enough
• lots of possibilities

– we’ll focus on one shortly

⎩
⎨
⎧

≠
=

=⋅
ji
ji

ji  if 0
 if 1

ˆˆ ee



Increase N, approach continuous function

Adding more dimensions…

• With enough dimensions, the vector 
starts to look like a function

j

)( 0 tjtxx j Δ+=
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N
Tt =Δ



Basis of interest

• Discrete Fourier Transform, for a 
vector of length N

( )
( )

∑

∑

=

=⋅=

⎟
⎠
⎞

⎜
⎝
⎛=

m
mm

j
jmjmm

jm

C
N

fC

j
N
im

φ

φφ

πφ

ˆ1

ˆˆ

2expˆ

**

f

f Asterisk is for complex conjugate

⎟
⎠
⎞

⎜
⎝
⎛+⎟

⎠
⎞

⎜
⎝
⎛=⎟

⎠
⎞

⎜
⎝
⎛ j

N
mij

N
mj

N
im πππ 2sin2cos2exp

Note:

1−=i



• In IDL, for vector f

• Using Numerical Recipes in C++

Don’t Panic! Tedious Math is Hidden…

IDL> C = fft(f)
IDL> fsame = fft(C,/inverse)

int main() {
…
NR::four1(a,1)
NR::four1(b,-1)
…

}
(NR uses in-place storage)



Okay, what does this look like?

0̂φ

For N = 16

real component imaginary component

1̂φ

2̂φ

8̂φ



Example:  fj = j, N = 128
• Building up the sum ∑=
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Example:  f = j, N = 128
• Building up the sum

Recovers exactly
the right answer
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Fourier
Transform
Yields the
Spectrum

• Spectrum of 
Light

• Spectrum of 
Sound

Why do this?!



Why?
• Each Fourier Basis vector is a waveform 

of a different frequency
• Finding the components of frequency 

that make up a function is, by 
definition, taking its spectrum

1̂φ



• Musical notes are 
really Fourier 
components

F+A+C

F only



Fourier Derivative

• Reconsider
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Fourier Differentiation of a Gaussian

actual derivative
Fourier derivative
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Fourier and Partial Diff Eqs

• A wave is a traveling function

 wave theof velocity  theis 
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v
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Fourier Wave propagation

• Consider coefficients as time-dependent
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Gaussian wave, FFT propagation

That’s 106

t = 0 t = 70 t = 140• speed is 1
• Use RK4 steps 

(with FFT 
spatial 
derivatives)

• 200 iterations 
with Δt = 
0.7sec



Gaussian wave, Finite Difference

t = 0 t = 70 t = 140• Use finite-
difference 
steps
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MUCH better
performance by
Fourier method



Cooler example
• Water waves

– wave propagation speed proportional to square-
root of wavelength = 2π/k

– all wave propagation in Fourier space
– fancy shadows and reflections from basic 

geometry in real-space

movie runs about 3× calculation speed on PC…
FFTs are FAST!



Combined Wave and Diffusion

• Terms in first and second order spatial 
derivatives

• In real media, waves typically diffuse 
due to friction or viscosity
– Gaussian solution
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Simulation results, v=0.1, D=0.2

t = 0
1000

2000

Fourier methods109! Finite Differencing



Fourier in PDEs

• Often much more accurate that finite 
differencing
– uses information from all points, not just 

two

• Still very fast
– NlogN operation



Convolution

• Convolution is usually a method of 
smoothing
– can be used for filtering and unsmoothing

• Convolving f(x) with g(x) is 
accomplished thus
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Typical Example

• Smooth with a Gaussian Function

• This smooths over features smaller than 
sigma, leaving only the long 
wavelength, smoother components
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Typical Example
• Smooth with a Gaussian Function

σ = 10



Discrete Convolution

• By definition, an N2 process
– each of N elements of the convolution 

requires a sum over N terms 
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g(x) is the “convolution kernel”



Fourier Convolution

• Continuous limit: N becomes very large
– Vectors become continuous functions
– Dot products become integrals
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Fourier Convolution

• Convolution is simply multiplication in 
Fourier space, STILL N logN!
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• Fourier Transform 
of a Gaussian is a 
Gaussian with    
σk = 1/σ

(complete the square)



Fourier Convolution



Again, Advantage Fourier

• Fourier Convolution happens in N logN
time, not N2 time.

• Becomes very important at large N.



2-D Convolution: Boxcar Smoothing

• Average all pixels in an n x n box

n = 15



2-D Gaussian Smoothing

• Same math as in 1-D

σ = 10



Edge Detection

• Edges have large gradients
– cliffs are steep

• Search for gradients by taking 
advantage of Fourier derivative = 
multiplication
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Fourier Derivative in continuous space: ikm→ik



Edge Detection

• Can look for gradients at any angle yx



Edge Detection
• 60o gradient edge, and some of squares 

of x & y edges



Matched Filtering

• Some applications require enhancement 
of modes only in a particular band = 
(attenuation of other bands)
– high- and low- pass filter, like one column 

on a spectrum analyzer

• In image processing, source location is 
a biggie



Fake astronomical image
• Fairly typical 

galaxy in fairly 
typical star-field

• realistic noise 
added



Want to find stars
• Use matched filter – select frequencies 

that correspond to the stars’ “point 
spread function”
– p.s.f. arises from blurring by atmosphere
– remove high-frequency noise
– remove low-frequency galaxy



Power Spectrum of image

• The power spectrum show what needs 
to happen

useless noise
at high k

stellar p.s.f.
at moderate k



First smoothing
• Removes high-k

noise
– greatly enhances 

large, smooth 
galaxy

– remember higher k
modes are shorter 
waves = smaller, 
choppier structures

• enhances stars by 
removing noise, 
but not relative to 
galaxy
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Matched filter
• Filter out very 

low k bands as 
well
– low k is long 

wavelength = 
large, smooth 
structures

– galaxy now 
largely removed

– stars greatly 
enhanced
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To find sources, use a threshold

• Look at pixels 
only above a 
certain value
– stars pop right 

out



What we did, in Fourier Space
• Removed high k noise by multiplying by 

Gaussian
• Removed low k structure by subtracting 

smaller Gaussian

Fourier Filter

high k noise
removal

low k galaxy
removal

Filtered
Power Spectrum



Fourier Image Compression

• Frequently real life images have very 
little power in most of the Fourier 
modes
– Throw those modes out entirely, and use 

only the important ones

• Compute power spectrum
– sort power spectrum; keep only some 

fraction of the most important modes



Fourier Compression



Fourier Compression – 40% acceptable



Fourier Compression – 20% marginal



Fourier Compression – 5% blurry



Fourier Compression
• Large compression factors can be used with 

acceptable maintenance of image quality
– 20% is probably acceptable if not zoomed in so 

tightly
• Caveat

– storage of WHICH Fourier modes to be used is a 
factor

– For a 512x512 image, need at least 18 bits to 
locate the mode, plus the original 8 bits to give 
the coefficient of the mode

– could play other games:
• a one-bit image of which modes to use
• run-length encoding of that (ZIP)



JPEG Compression

• JPEG is a localized Fourier compression
• 8 x 8 squares are carved out of the 

image, and Fourier compression is 
carried out within
– For boring parts of the image, often only 

one mode is used (the constant mode)
– In interesting areas, most modes are used



JPEG-like Compression



JPEG-like Compression



JPEG-like Compression



JPEG-like Compression



Fourier vs. JPEG



Fourier vs. JPEG
• JPEG preserves more locally sharp features, 

though pesky square edges start showing up
• Fourier compression loses sharp information, 

but essentially looks like a smoothed version 
of original

• Both have some granularity, though JPEG’s is 
confined to particular squares
– advantage JPEG:  annoying behavior confined 

locally
• Take your pick!



Conclusions
• Physics-based modeling has countless applications in 

DoD M&S
– Saw today:  missile trajectories, atmospheric effects on 

sensors
• Using efficient mathematical techniques dramatically 

enhances compute power
– Efficient integration algorithms
– Analytical results
– Fourier techniques (with spillover into compression and 

image processing)
• Bottom Line:

– THINK about the physics
– Take the time to use appropriate efficient algorithms, and 

your computer will thank you!
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