
Physics-Based Modeling:
Principles, Methods and Examples

Wesley N. Colley
Leslie A. Litten

Center for Modeling, Simulation and Analysis
University of Alabama in Huntsville

Purpose of Tutorial
• Motivate need for good physics in M&S
• Motivate idea that good physics can often be

carried out efficiently
– Familiarize audience with numerical techniques

that radically enhance computational efficiency
– Present physics-based examples that benefit from

such techniques
– Present an example where difficult physics has a

simple mathematical solution

Quick Acknowledgements
• Much of this material can be found in

Numerical Recipes
– in C++, C and FORTRAN
– Press, Teukolsky, Vetterling, Flannery

• Charts and much analysis prepared for this
talk carried out in IDL
– Interactive Data Language
– see www.itt-vis.com
– otherwise C++

http://www.itt-vis.com/

Outline
• Intro to physics in M&S
• Quadrature (Integration of Functions)
• Integration of Differential Equations

– orbits and trajectories
• Radiative Processes

– atmospheric effects on visibility
• Fourier methods

– image processing

How does physics play a role in M&S?
• Physics and M&S share a similar goal

– Model the world around us
• Physics started when

– Computers didn’t exist
– Questions were simple, like “why do arrows fly?”

• M&S and Physics meet when
– Modeler: Accurate models of natural behavior are

needed in my simulation
– Physicist: Computers are necessary to handle the

math in my physics problem

Strengths of Physics
• Physics (at some level) describes

everything in the Universe
– Sub-atomic interactions

• Binding of quarks in proton

– Cosmological scale interactions
• Expansion and acceleration of the Universe

– Everything in between
• Atoms, molecules, baseballs, mountains,

planets, stars, galaxies

What about a
human thought?

Okay, smarty, no. The
electrons in the neurons,

though…

Macroscopic Stuff
• Basic mechanics

– Flight of baseballs, pendula, springs, orbits
• Thermo-/Hydro-dynamics

– Airframe modeling, mixing of airborne agents,
dam engineering, rockets, explosives, heat pump

• Materials
– Heat resistance, tensile strength, conductive

properties, lightness
• Electricity and Magnetism

– Optics, radar, compasses, electrical engineering
• Quantum Physics

– Lasers, microchips, nuclear

The Weakness of Physics
• Physics tends to break down when very large

numbers of physical entities are involved
– Cannot compute bridge properties through quantum

interactions (~1035 atoms in a bridge!)
• Chemistry, Chem E: rule sets approximating

quantum mechanics
• Biology, Materials Science: rule sets

approximating Chemistry and quantum
• Astrophysics: rule set approximating gravity,

hydro and quantum
• Engineering: (often) use of physical properties

of materials, gases, etc. for large systems

So physics is (often) useful…
• How do we model it?
• MATH
• Physics is very often a means of mapping

reality into mathematics
– Almost all macroscopic interactions are governed

by a second-order partial differential equation
• Just math? Then is knowledge of Nature’s

apparent rules “deep?” Does F = ma
– Tell us something fundamental about Nature
– Or just provide a synopsis of our observations?

Math…
• The math physics generates is typically

complicated
– Very few realistic problems can be solved

analyitically

• Answer: Computer
– Use numerical mathematics

t
i

r
ke

m ∂
∂

=−∇−
)()()(

2

2
2

2 rrr ψψψ h
h

This equation governs a single electron in a Hydrogen atom!

The strategy

• When faced with a problem, identify the
type of physics at its root

• Make approximations that simplify the
problem
– Air resistance is negligible on a falling coin

• Not true from Empire State building

– Moon is a point mass
• Not true if concerned about tides on moon

The Strategy (cont.)

• Once you are working at the right level,
begin looking at the physics involved

• Identify the mathematical issues the
physics presents

• Choose the correct numerical methods
for handling that math

• Model away!

Outline
• Intro to physics in M&S
• Quadrature (Integration of Functions)
• Integration of Differential Equations

– orbits and trajectories
• Radiative Processes

– atmospheric effects on visibility
• Fourier methods

– image processing

Quadrature Segue
• First things first
• Introduce a powerful mathematical

technique that can be generalized into
physics applications

• Simple math question:
– How do I find the area under the function

f(x)?

Riemann Sum: Simple Question
What is Area Under Curve f (x)?

a b x
ha+ih

∑∫
−−

=
→ +==

1/)(

0
0)(lim)(),(

hba

i
h

b

a
hihafdxxfbaF

h

Area of rectangle
base = h
height = f(a+ih)

Riemann Sum Example
• y = sin(x)
• a = 0
• b = π/2
• n = 8

• Estimate:
0.89861040

∫ =
2/

0
1)sin(

π
dxx

so-so
result

Improving

• Examine
errors made

• Basically look
like triangles

• Can we
correct for
that?

Trapezoid Rule

a b x
ha+ih

Fixing the triangle
error turns
the rectangle into
a trapezoid

error is a triangle

() 2/21 bbhA +=

b1 b2
[] 2/)()(hihafihafhA ++++=

[])()(
2

)(

)()(
2

),(

1/)(

1

1/)(

0

bfafhihafh

hihafihafhbaF

hba

i

hba

i

+++=

++++≈

∑

∑
−−

=

−−

=

Area of trapezoid:

Area of this trapezoid:

sum up trapezoids,
not rectangles

simplify: same as
Riemann, except
endpoints… hmmm

Trapezoid Rule
• Return to sine

curve
• Much better

looking
• Estimate:

0.99678517
• Much better!
• Same number

of calls to
derivative
function!

Note: Need continous first derivative for it to work right…

Trapezoid Errors
• Now errors
• are much

smaller
• They look like

parabolas
• What next?

Simpson’s Rule

• Fit parabolas to every three points
– find area under each parabola

• Sounds complicated, but the area under
the parabola is given by a simple linear
formula
– not quadratic as one might guess

()210

201000

4
3

),2(),,(),,(
points thefitting parabola aFor

yyyhA

yhxyhxyx

++=

++

Simply adjust weights in sum!

Simpson’s Rule
• Find area under

parabolas in
every interval
of 2h.

• Estimate:
1.0000083

• Very good, and
still same
number of
calls.

no visible error at all

Note: Need continous second derivative for it to work right…

Simpson Errors
• Errors are

now quite
small

• Cubic in
nautre

• Curiously,
cubic terms
cancel,
leaving
quartic errors

Bode’s Rule
• Okay, fit quartics

to each interval of
4h

• Just different
weights in sum
again

• Estimate:
0.99999988

• Still better, still
same number of
calls

Note: Need continous fourth derivative for it to work right…

Convergence

• One can also improve estimate by
“brute force”
– Simply carry out more iterations

• How much do estimates improve as a
function of number of iterations?

Convergence

10x

Bode: 106

Simpson: 104

Trap: 100

Riemann: 10

Convergence

• Riemann sum improves linearly with
increased iterations

• Trapezoid: quadratically
• Simpson’s Rule: quartically
• Bode’s Rule: 6th order

– a million times better with ten times the
iterations!

• Why not keep going?

Getting silly
• One could keep fitting higher-order

polynomials to improve the fit
– and maintain computational load

• However, these high-order rules require
increasingly well-behaved functions
– Namely, functions must be continuously

differentiable at the order of the
polynomial

– Not likely in real world too often
• If it is, the integral is probably analytic or semi-

analytic… Just look up the answer!

One Counter-Example

• Continuous first-
derivative

• discontinuous
2nd derivative

• Trapezoid and
Riemann
shouldn’t notice

• Simpson and
Bode should

)exp(xy −=

bxay +=)sin(

2=x

The derivative rules really do matter

Convergence for baddish function

• Riemann and
trapezoid
behave
normally

• Simpson and
Bode do not
– improvement

is essentially
2nd order,
same as
trapezoid

Quadrature Summary
• Several different methods use the exact same

calls to the derivative function with vastly
different results
– higher order means better estimates AND
– better convergence with more iterations

• But, beware the caveats of higher order
methods

• My advice: try Simpson’s Rule
• Advanced methods use extrapolation from

results of different iteration numbers

Outline
• Intro to physics in M&S
• Quadrature (Integration of Functions)
• Integration of Differential Equations

– orbits and trajectories
• Radiative Processes

– atmospheric effects on visibility
• Fourier methods

– image processing

Diff Eq Segue
• Similar methods to those of numerical

integration carry over into ordinary
differential equations

• A great many physical systems are governed
by such equations
– orbits
– ballistics
– analog circuits
– springs, dampers
– pendula

Tangential Integration
• Consider

• One could integrate the solution:
– start with an initial value
– compute derivative
– find next value

),(xtf
dt
dx

=

txtftxttx
xtx

Δ+=Δ+
=

),()()(
)(

0000

00

Graphically

• Slope at t0 ,x0 = f (t0,x0)

x

t

txtf Δ),(00

tΔ

Estimate of)(01 ttxx Δ+≈

Called “Tangential”
because slope is
tangent to the curve
at the point of evaluation.

Graphically

• Slope at x1, t1 = f (t1, x1)

x

t

txtf Δ),(11

Estimate of)2(02 ttxx Δ+≈

tΔ Derivative is now
incorrect, because
x1 is not exactly
x(t0 + Δt). The error
is equivalent to having
started with different
initial conditions.

Errors Mount

tangential
exact, x = exp(0.3t)

x
dt
dx 3.0=

• Errors are worse than
in integration of
functions
– With functions,

derivative estimate is
always correct

– With diff eq’s,
derivative estimate
becomes invetiably
poorer as errors are
made

– Errors are
compounded

Midpoint Method
• Find x1/2 by using slope at x0 but only

moving half a time-step

x

t

2/),(00 txtf Δ

tΔ

),(2/12/1 xt

),(11 xtOld
⎟
⎠
⎞

⎜
⎝
⎛ Δ+=

2
),()(0002/1

txtftxx

Midpoint

• Use slope at (t1/2, x1/2) to propagate full
step from (t0, x0)

x

t

tΔ

ttxf Δ),(2/12/1

),(2/12/1 xt Midpoint
Estimate

txtftxx Δ+=),()(2/12/101

Midpoint Formula

• Mitigates
compounding
errors
significantly

• Allows for
curvature
during
timestep

tangential
midpoint
exact, x = exp(0.3t)

Note: 16 calls to derivative function for each

Runge-Kutta
• Similar idea to midpoint, but four points
• use slope at start to go to 1st midpoint
• use slope at 1st midpoint from start back to a 2nd midpoint
• use slope at 2nd midpoint to go to endpoint and obtain slope
• Add up slopes thus

x

t

tΔ

6/)22(43210

1

mmmmtx
x

+++Δ+
=

Runge-Kutta

tangential
midpoint
Runge-Kutta
exact, x = exp(0.3t)

• Four-point method
– same principle as

midpoint
– somewhat more

complicated
• two different

midpoint
evaluations

• one endpoint
evaluation

– still straight-forward to
code and use

• Much better behavior
Note: 16 calls to derivative function for each

Real World Example: Orbits
• Planetary orbits

– Earthlike orbit (circular at earth distance from
sun)

– Elliptical orbit around sun

• Ballistic Missile trajectory
– Siberian launch at Los Angeles

• just Newtonian (Keplerian) gravity
• no earth-rotation

ra 3r
GM

−= (only)

Simple Orbit Code

const double GM = 1.33e23;
derivs(double* xv, double* dxvdt) {

double r=sqrt(xv[0]*xv[0]+xv[1]*xv[1]+xv[2]*xv[2]);
double r3=r*r*r;
for (int i=0,i<3;i++) {

dxvdt[i] = xv[i+3];
dxvdt[i+3] = -GM*xv[i]/r3;

}
}

int main()
…
for (int i=0,i<niter;i++) {

rk4(xv,dt,xvnew,derivs);
xv = xvnew;

}

ra 3r
GM

−=

create 6-element state vector: x,y,z,vx,vy,vz

use canned RK integrator

Orbit Integration
• Earthlike orbit

– circular, 1 AU radius

• Runge-Kutta vs.
Tangential
(Eulerian)
– 400 calls each to

derivatives function

• Errors after one
orbit

tangential
Runge-Kutta

RK Tangential

Energy 0.000002% 14%

Position 0.00003% 82%

Orbit Integration
• Eccentric orbit

– 1 AU radius
– eccentricity = 0.5
– b/a = 0.866

• Errors after one
orbit

tangential
Runge-Kutta

RK Tangential

Energy 0.003% 34%

Position 0.001% 70%

Ballistic Missile Flight

• Simple Keplerian
gravity, no earth
rotation

• Siberian launch,
target Los
Angeles

• Tangential vs.
Runge-Kutta

(Google)

Ballistic Missile Flight

tangential
Runge-Kutta Runge-Kutta: direct hit

Tangential: not close

Main Error is Height

tangential
Runge-Kutta

RK Tangential

Energy 7×10–7% 2%

Position 3 km 660 km

• Again, tangential
overshoots
– no curvature

• Error budget:

Convergence

10x

10x

100x

10000x

tang

midp

RK

~ n–4

~ n–2

~ n–1

How rapidly does estimate improve with more iterations (CPU cycles)?

Convergence

• For same number of function calls
– Tangential method improves linearly with

increased iterations
– Midpoint method improves quadratically

with increased iterations
– Runge-Kutta improves quartically with

increased iterations

• Beware of choppy derivative functions
that could screw this up

Problem with Even Stepsize
• Often the derivative

function is highly
variable
– A high eccentricity orbit

has much greater
acceleration near the
sun

• Even stepsize methods
– far too little effor near

sun (where planet zips
around)

– too much effort far from
the sun (where planet
moves slowly)

• Results
– DISASTROUS

tangential
Runge-Kutta

eccentricity = 0.9

400 calls to derivative function

RK Tangential

Energy 102% 540%

Position 350% 480%

Errors:

Adaptive Stepsize
• Errors can be estimated

along the way
– estimates of different

order with same
derivative calls

• If error too large,
stepsize shrinks

• If error too small,
stepsize grows

• Results
– Fine stepping near sun
– Coarse stepping far from

sun
– Efficient use of CPU!

Adaptive Runge-Kutta

383 calls to derivative function

eccentricity = 0.9

Adaptive RK

Energy 0.001%

Position 0.002%

Errors:

fewer calls!

Differential Equations Summary
• Canned packages exist for Runge-Kutta

– it’s a good place to start
– usually doesn’t get you into too much trouble

• Consider adaptive stepsize
– if derivative is known to vary a lot or suddenly

• Other methods: Bulirsch-Stoer, etc.
– may offer radically fast performance, if derivatives

are reasonably stable
– often very similar calls can be made to multiple

integrators, so play around!

Outline
• Intro to physics in M&S
• Quadrature (Integration of Functions)
• Integration of Differential Equations

– orbits and trajectories
• Radiative Processes

– atmospheric effects on visibility
• Fourier methods

– image processing

Radiative Processes Segue

• Now an example of seemingly
complicated physics

• But an extremely simple mathematical
solution
– can’t get more efficient than that!

Radiative Processes

• Optical/IR detection depends not only
on an obstruction-free line-of-sight, but
also on atmospheric effects

• The atmosphere can basically do two
things to light
– absorb
– scatter

• Fortunately, the math for these is
straight-forward

Absorption
• Absoprtion attenuates light exponentially with

distance.
– If half of light is absorbed in the first meter, half of

the remaining light is absorbed in the second

• Exponent proportional to density

n = density of absorbers
Half of light absorbed Half of light absorbed

Absorption Math
• Absorption is quantified in terms of an

opacity κ, in units of m–1

• Opacity is the product of the number
density, n, and the cross-section, σ, of the
absorbing particle

σκ n=

=

high n, low σ low n, high σ

Absorption Math

• Optical Depth, τ, is the product of κ and
the distance to the object of interest
– or integral over the distance

• The light received is simply

∫∫ ==

−=

dsnds

II

σκτ

τ)exp(0

Note that σ depends on quantum interaction probabilities, but
tables are well-established for countless species.

Scattering
• Scattering features particles that bounce light in a

random direction
– light isn’t attenuated by made more uniform in medium

• smoke, fog, snow, rain

• Effect is again proportional to density

n = density of absorbers
Half of light scattered Half of light scattered

multiple scatter

Intuitive Fog Example
• Demonstrate fog

mathematics
• Problem, need 3-D
• Photograph selected for

easy 3-D model
– green pixels aren’t Parris
– ground is a simple plane
– background trees treated

as a plane

Parris

3-D Toy Model
• Dark = far
• light = close

• some minor
errors

Toy Fog Model

• Fairly convincing to the eye
no fog, κ = 0 thin fog, κ = 0.01 thicker fog, κ = 0.05

strictly notional,
but math is right

Real Scattering
Wavelength-dependent scattering
(blue more scattered than red) =
reddened sun, blue sky

simple scattering by fog
around streetlight

more blue scattering

Toy Absorption
• Very fine coal dust?

κ = 0 κ = 0.01 κ = 0.05

Real Absorption
Dark interstellar dustBlack smoke from Iraqi oil fire

Infrared Absorption
• Water vapor (among other molecules)

very effectively absorbs infrared radiation

Water Vapor and IR

Mike Skrutskie
(UVa)

• Spectral dependence is quite complex
– water densities given in terms of mm

• if I took all the water vapor in line of sight and
made it liquid, how much water would I have?

In practice

• Integrate the absorption spectra against
the bandpass of your detector to get a
simple function of total absoprtion vs.
water column.

Outline
• Intro to physics in M&S
• Quadrature (Integration of Functions)
• Integration of Differential Equations

– orbits and trajectories
• Radiative Processes

– atmospheric effects on visibility
• Fourier methods

– image processing

Fourier Transform Segue

• The purpose here is to present a very
advanced computational technique with
a great many applications

Intro
• The Fourier Transform

– facilitates solution of partial differential equations
– has applications in

• compression
• image processing
• signal analysis
• statistics

• The big advantage:
– Allows many N2 processes to be carried out in

NlogN time.
• First, the MATH

Basis Vectors
• Consider 3-vectors
• 3 coordinates are really projections of the

vector onto the independent axes

x
y

z

• Each coordinate can be formed by taking the
dot product of the vector with the axis’s basis
vector:

2)1,0,0(ˆ
3)0,1,0(ˆ
1)0,0,1(ˆ

=⋅=⋅=

=⋅=⋅=
=⋅=⋅=

ffe

ffe
ffe

z

y

x

z

y
x

(1,3,2)

Find components by taking dot-product with basis vectors

f

()∑
=

⋅=
zyxm

mm
,,

ˆˆ efef

Different Basis Sets
• Example: rotated coordinate axes

yx

z

y’

x’

z’

(1,3,2) =
(2.019, 2.777, 1.487)’

1.486739ˆ'

2.777474ˆ'
2.018725ˆ'

'

'

'

=⋅=

=⋅=
=⋅=

fe

fe
fe

z

y

x

z

y
x

Same f, different representation.
Still find components by
taking dot-product with

basis vectors

f
()∑

′
′′ ⋅=

m
mm efef ˆˆ

A different way to see it

• Regard x,y,z components as heights on
a 3-bar histogram
– exactly same information contained

∑
=

=

=

zyxm
mmC

,,

ˆ

 height

ef

f

x y z

Cm

1

3

2

Now basis vectors
are just unit
columns

x y z

1

3

2

1×

3×

2×

= Σ

Cartesian Bases

xê

yê

zê

Rotated Basis as
a Histogram

x y z

1

3

2

2.019×

2.777×

1.487×

= Σ
also!

Rotated Bases

'ˆ xe

'ˆ ye

'ˆ ze

n -vectors
• Bar graph simply grows, with dimension

along horizontal axis
)6,5,1,3,0,4,2,3,1,3,3,2,5,3,1(−−−−=f

j1 2

fe ⋅= jjf ˆ

)0,0,0,0,0,0,1,0,0,0,0,0,0,0(ˆ8 =e

Rule for basis vectors

• Vectors must remain orthonormal

• Simple enough
• lots of possibilities

– we’ll focus on one shortly

⎩
⎨
⎧

≠
=

=⋅
ji
ji

ji if 0
 if 1

ˆˆ ee

Increase N, approach continuous function

Adding more dimensions…

• With enough dimensions, the vector
starts to look like a function

j

)(0 tjtxx j Δ+=

t0 Δt t0+T

N
Tt =Δ

Basis of interest

• Discrete Fourier Transform, for a
vector of length N

()
()

∑

∑

=

=⋅=

⎟
⎠
⎞

⎜
⎝
⎛=

m
mm

j
jmjmm

jm

C
N

fC

j
N
im

φ

φφ

πφ

ˆ1

ˆˆ

2expˆ

**

f

f Asterisk is for complex conjugate

⎟
⎠
⎞

⎜
⎝
⎛+⎟

⎠
⎞

⎜
⎝
⎛=⎟

⎠
⎞

⎜
⎝
⎛ j

N
mij

N
mj

N
im πππ 2sin2cos2exp

Note:

1−=i

• In IDL, for vector f

• Using Numerical Recipes in C++

Don’t Panic! Tedious Math is Hidden…

IDL> C = fft(f)
IDL> fsame = fft(C,/inverse)

int main() {
…
NR::four1(a,1)
NR::four1(b,-1)
…

}
(NR uses in-place storage)

Okay, what does this look like?

0̂φ

For N = 16

real component imaginary component

1̂φ

2̂φ

8̂φ

Example: fj = j, N = 128
• Building up the sum ∑=

⋅=

m
mm

mm

C
N

C

φ

φ

ˆ1

ˆ*

f

f

Example: f = j, N = 128
• Building up the sum

Recovers exactly
the right answer

∑=

⋅=

m
mm

mm

C
N

C

φ

φ

ˆ1

ˆ*

f

f

Fourier
Transform
Yields the
Spectrum

• Spectrum of
Light

• Spectrum of
Sound

Why do this?!

Why?
• Each Fourier Basis vector is a waveform

of a different frequency
• Finding the components of frequency

that make up a function is, by
definition, taking its spectrum

1̂φ

• Musical notes are
really Fourier
components

F+A+C

F only

Fourier Derivative

• Reconsider

()

()

()∑=

−⋅=

=⎟
⎠
⎞

⎜
⎝
⎛=

=

m
mmj

mm

mm

m

jikC
N

f

jikC

jikj
N
im

N
mk

exp1
exp

exp2expˆ

2let

f

πφ

π

• Let x = j, and
take x derivative

()

()

()∑

∑

∑

=

∂
∂

=

==

m
mmm

m
mm

m
mmj

xikCik
N

xikC
Nxx

xikC
N

fx

exp1

exp1

exp1)

f
∂
∂

f (

()ff
mmm Cik

x
C →⎟

⎠
⎞

⎜
⎝
⎛
∂
∂Derivative has become

simple multiplication!

notational
convenience

Fourier Differentiation of a Gaussian

actual derivative
Fourier derivative

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⋅
−

−= 2

2

202
)127(exp

)20(2
1 xy
π ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⋅
−

−⎟
⎠
⎞

⎜
⎝
⎛−=′ 2

2

2 202
)127(exp

20)20(2
1 xxy
π

Fourier and Partial Diff Eqs

• A wave is a traveling function

 wave theof velocity theis
)(),(

v
vtxftxF −=

xxxxxxxxxx

Fourier Wave propagation

• Consider coefficients as time-dependent

t
F

vx
F

vtxftxF

∂
∂

−=
∂
∂

−=
1

)(),(

()

()

)(

1exp)(1

exp)(1

0

0

tvCik
t

C
t
F

v
xiktCik

Nx
F

xiktC
N

F

mm
m

m
mmm

m
mm

−=
∂
∂

∂
∂

−==
∂
∂

=

∑

∑
∞

=

∞

=

Use ODE integrator
to propagate Cm’s

Gaussian wave, FFT propagation

That’s 106

t = 0 t = 70 t = 140• speed is 1
• Use RK4 steps

(with FFT
spatial
derivatives)

• 200 iterations
with Δt =
0.7sec

Gaussian wave, Finite Difference

t = 0 t = 70 t = 140• Use finite-
difference
steps

x
xfxf

x
f ii

xx i
Δ
−

=
∂
∂ −+

= 2
)()(11

MUCH better
performance by
Fourier method

Cooler example
• Water waves

– wave propagation speed proportional to square-
root of wavelength = 2π/k

– all wave propagation in Fourier space
– fancy shadows and reflections from basic

geometry in real-space

movie runs about 3× calculation speed on PC…
FFTs are FAST!

Combined Wave and Diffusion

• Terms in first and second order spatial
derivatives

• In real media, waves typically diffuse
due to friction or viscosity
– Gaussian solution

x
fv

x
fD

t
f

∂
∂

−
∂
∂

=
∂
∂

2

2

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
−=

Dt
vtx

Dt
f

4
)(exp

4
1 2

π

Simulation results, v=0.1, D=0.2

t = 0
1000

2000

Fourier methods109! Finite Differencing

Fourier in PDEs

• Often much more accurate that finite
differencing
– uses information from all points, not just

two

• Still very fast
– NlogN operation

Convolution

• Convolution is usually a method of
smoothing
– can be used for filtering and unsmoothing

• Convolving f(x) with g(x) is
accomplished thus

∫ −=⊗ 1

0

)()()()(
y

y
dyyxfygxgxf

Typical Example

• Smooth with a Gaussian Function

• This smooths over features smaller than
sigma, leaving only the long
wavelength, smoother components

∫
∞

∞−
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−=⊗ dyyxfyxgxf)(

2
exp

2
1)()(2

2

σσπ

Typical Example
• Smooth with a Gaussian Function

σ = 10

Discrete Convolution

• By definition, an N2 process
– each of N elements of the convolution

requires a sum over N terms

() ∑

∫
−

=
−=⊗

−=⊗

1

0
)(

1

0

)()()()(

N

k
kjkj

y

y

fggf

dyyxfygxgxf

g(x) is the “convolution kernel”

Fourier Convolution

• Continuous limit: N becomes very large
– Vectors become continuous functions
– Dot products become integrals

()

∫

∫
=

−=

=

dkikxkfxf

dxikxxfkf

ikxxk

)exp()(~
2
1)(

)exp()()(~
exp),(

π

φ

xj

kk
N
m

m

→

→=
π2

)(~
)(

kfC

xff

m

j

→

→

Fourier Convolution

• Convolution is simply multiplication in
Fourier space, STILL N logN!

()

()

∫
∫
∫ ∫
∫ ∫
∫

=⊗

=

−=

−=

−=⊗

k

k

k y

y k

y

dkikxkgkfgf

dkkgikxkf

dydkikyygikxkf

dkdyyxikkfyg

dyyxfyggf

)exp()(~)(~
)(~)exp()(~

exp)()exp()(~
)(exp)(~)(

)()(

()

()[]
()[]

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−×=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ +
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−=

−+−=

++−=

+−=−−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−=

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

∫

∫

∫

∞

∞−

∞

∞−

∞

∞−

2
exp constant

2
)(exp

2
exp

)2(
1)(~

22
1

2
1

2
2

1
2

2
exp

)2(
1

)exp(
2

exp
2
1

2
1)(~

2
exp

2
1)(

22

2

2222

2/3

22
22

2

2422
2

22
22

2

2

2

2/3

2

2

2

2

k

dxikxkkg

kikx

kikx

ikxxikxx

dxikxx

dxikxxkg

xxg

σ

σ
σσ

σπ

σσ
σ

σσ
σ

σ
σσ

σσπ

σπσπ

σσπOne Last Trick

• Fourier Transform
of a Gaussian is a
Gaussian with
σk = 1/σ

(complete the square)

Fourier Convolution

Again, Advantage Fourier

• Fourier Convolution happens in N logN
time, not N2 time.

• Becomes very important at large N.

2-D Convolution: Boxcar Smoothing

• Average all pixels in an n x n box

n = 15

2-D Gaussian Smoothing

• Same math as in 1-D

σ = 10

Edge Detection

• Edges have large gradients
– cliffs are steep

• Search for gradients by taking
advantage of Fourier derivative =
multiplication

dkikxkgkfik

dkikxkgkf
dx
dg

dx
df

)exp()(~)(~

)exp()(~)(~

∫
∫

=

=⊗

Fourier Derivative in continuous space: ikm→ik

Edge Detection

• Can look for gradients at any angle yx

Edge Detection
• 60o gradient edge, and some of squares

of x & y edges

Matched Filtering

• Some applications require enhancement
of modes only in a particular band =
(attenuation of other bands)
– high- and low- pass filter, like one column

on a spectrum analyzer

• In image processing, source location is
a biggie

Fake astronomical image
• Fairly typical

galaxy in fairly
typical star-field

• realistic noise
added

Want to find stars
• Use matched filter – select frequencies

that correspond to the stars’ “point
spread function”
– p.s.f. arises from blurring by atmosphere
– remove high-frequency noise
– remove low-frequency galaxy

Power Spectrum of image

• The power spectrum show what needs
to happen

useless noise
at high k

stellar p.s.f.
at moderate k

First smoothing
• Removes high-k

noise
– greatly enhances

large, smooth
galaxy

– remember higher k
modes are shorter
waves = smaller,
choppier structures

• enhances stars by
removing noise,
but not relative to
galaxy

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−=

2
exp)(~

2
psf

2σk
kg

supress high k

Matched filter
• Filter out very

low k bands as
well
– low k is long

wavelength =
large, smooth
structures

– galaxy now
largely removed

– stars greatly
enhanced

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−−⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
−=

2
9

exp
2

exp)(~
2
psf

22
psf

2 σσ kk
kg

supress low ksupress high k

To find sources, use a threshold

• Look at pixels
only above a
certain value
– stars pop right

out

What we did, in Fourier Space
• Removed high k noise by multiplying by

Gaussian
• Removed low k structure by subtracting

smaller Gaussian

Fourier Filter

high k noise
removal

low k galaxy
removal

Filtered
Power Spectrum

Fourier Image Compression

• Frequently real life images have very
little power in most of the Fourier
modes
– Throw those modes out entirely, and use

only the important ones

• Compute power spectrum
– sort power spectrum; keep only some

fraction of the most important modes

Fourier Compression

Fourier Compression – 40% acceptable

Fourier Compression – 20% marginal

Fourier Compression – 5% blurry

Fourier Compression
• Large compression factors can be used with

acceptable maintenance of image quality
– 20% is probably acceptable if not zoomed in so

tightly
• Caveat

– storage of WHICH Fourier modes to be used is a
factor

– For a 512x512 image, need at least 18 bits to
locate the mode, plus the original 8 bits to give
the coefficient of the mode

– could play other games:
• a one-bit image of which modes to use
• run-length encoding of that (ZIP)

JPEG Compression

• JPEG is a localized Fourier compression
• 8 x 8 squares are carved out of the

image, and Fourier compression is
carried out within
– For boring parts of the image, often only

one mode is used (the constant mode)
– In interesting areas, most modes are used

JPEG-like Compression

JPEG-like Compression

JPEG-like Compression

JPEG-like Compression

Fourier vs. JPEG

Fourier vs. JPEG
• JPEG preserves more locally sharp features,

though pesky square edges start showing up
• Fourier compression loses sharp information,

but essentially looks like a smoothed version
of original

• Both have some granularity, though JPEG’s is
confined to particular squares
– advantage JPEG: annoying behavior confined

locally
• Take your pick!

Conclusions
• Physics-based modeling has countless applications in

DoD M&S
– Saw today: missile trajectories, atmospheric effects on

sensors
• Using efficient mathematical techniques dramatically

enhances compute power
– Efficient integration algorithms
– Analytical results
– Fourier techniques (with spillover into compression and

image processing)
• Bottom Line:

– THINK about the physics
– Take the time to use appropriate efficient algorithms, and

your computer will thank you!

	Physics-Based Modeling:� Principles, Methods and Examples
	Purpose of Tutorial
	Quick Acknowledgements
	Outline
	How does physics play a role in M&S?
	Strengths of Physics
	Macroscopic Stuff
	The Weakness of Physics
	So physics is (often) useful…
	Math…
	The strategy
	The Strategy (cont.)
	Outline
	Quadrature Segue
	Riemann Sum: Simple Question�What is Area Under Curve f (x)?
	Riemann Sum Example
	Improving
	Trapezoid Rule
	Trapezoid Rule
	Trapezoid Errors
	Simpson’s Rule
	Simpson’s Rule
	Simpson Errors
	Bode’s Rule
	Convergence
	Convergence
	Convergence
	Getting silly
	One Counter-Example
	Convergence for baddish function
	Quadrature Summary
	Outline
	Diff Eq Segue
	Tangential Integration
	Graphically
	Graphically
	Errors Mount
	Midpoint Method
	Midpoint
	Midpoint Formula
	Runge-Kutta
	Runge-Kutta
	Real World Example: Orbits
	Simple Orbit Code
	Orbit Integration
	Orbit Integration
	Ballistic Missile Flight
	Ballistic Missile Flight
	Main Error is Height
	Convergence
	Convergence
	Problem with Even Stepsize
	Adaptive Stepsize
	Differential Equations Summary
	Outline
	Radiative Processes Segue
	Radiative Processes
	Absorption
	Absorption Math
	Absorption Math
	Scattering
	Intuitive Fog Example
	3-D Toy Model
	Toy Fog Model
	Real Scattering
	Toy Absorption
	Real Absorption
	Infrared Absorption
	Water Vapor and IR
	In practice
	Outline
	Fourier Transform Segue
	Intro
	Basis Vectors
	Different Basis Sets
	A different way to see it
	Now basis vectors are just unit columns
	Rotated Basis as a Histogram
	n -vectors
	Rule for basis vectors
	Adding more dimensions…
	Basis of interest
	Don’t Panic! Tedious Math is Hidden…
	Okay, what does this look like?
	Example: fj = j, N = 128
	Example: f = j, N = 128
	Fourier�Transform�Yields the�Spectrum
	Why?
	Fourier Derivative
	Fourier Differentiation of a Gaussian
	Fourier and Partial Diff Eqs
	Fourier Wave propagation
	Gaussian wave, FFT propagation
	Gaussian wave, Finite Difference
	Cooler example
	Combined Wave and Diffusion
	Simulation results, v=0.1, D=0.2
	Fourier in PDEs
	Convolution
	Typical Example
	Typical Example
	Discrete Convolution
	Fourier Convolution
	Fourier Convolution
	One Last Trick
	Fourier Convolution
	Again, Advantage Fourier
	2-D Convolution: Boxcar Smoothing
	2-D Gaussian Smoothing
	Edge Detection
	Edge Detection
	Edge Detection
	Matched Filtering
	Fake astronomical image
	Want to find stars
	Power Spectrum of image
	First smoothing
	Matched filter
	To find sources, use a threshold
	What we did, in Fourier Space
	Fourier Image Compression
	Fourier Compression
	Fourier Compression – 40% acceptable
	Fourier Compression – 20% marginal
	Fourier Compression – 5% blurry
	Fourier Compression
	JPEG Compression
	JPEG-like Compression
	JPEG-like Compression
	JPEG-like Compression
	JPEG-like Compression
	Fourier vs. JPEG
	Fourier vs. JPEG
	Conclusions

