
Advanced Topics in Calculating and Using Confidence Intervals 
for Model Validation 

 
Mikel D. Petty 

University of Alabama in Huntsville 
301 Sparkman Drive, Shelby Center 144, Huntsville, AL 35899 USA 

pettym@uah.edu  256-824-4368 
 

Keywords 
Confidence interval, Validation, Bonferroni correction, Difference of means 

 
Abstract 

A confidence interval is an interval estimate of a parameter of a population, such as a mean, calculated from a sample 
drawn from the population.  In addition to its endpoints, a confidence interval has an associated confidence level, which 
is a statistically justified degree of confidence that the interval actually contains the population parameter.  Confidence 
intervals are often used in model validation.  The model to be validated is executed multiple times; those executions 
compose a sample from the population of all possible executions of the model.  A confidence interval is calculated from 
the results of the model executions as an estimate of the model’s response variable that would be found if all possible 
model executions had been run.  If the known or observed value for the simuland corresponding to the response variable 
is within the confidence interval, or within some acceptable tolerance of its endpoints, the model is considered to be 
valid for the variable in question. 

This paper is a continuation of a Fall 2012 Simulation Interoperability Workshop paper; that earlier paper was an 
introductory tutorial and survey on the calculation and use of confidence intervals for model validation.  This paper 
covers three advanced topics in the same area.  The first is a useful quantification of the notion of “close enough” with 
respect to confidence interval inclusion.  The second is a confidence interval adjustment applicable when multiple 
potentially non-independent model response variables are being validated.  The third is the calculation of confidence 
intervals for the difference of two means.  For all three of these topics, the explanations are motivated and illustrated 
with examples from the literature of their practical application in model validation. 

1. Introduction 
A confidence interval is an interval estimate of a 
parameter of a population, such as a mean, calculated 
from a sample drawn from the population [1].  In addition 
to its endpoints, a confidence interval has an associated 
confidence level, which is a statistically justified level of 
confidence that the interval contains the population 
parameter.  Confidence intervals are frequently used as a 
quantitative method of validation [2] [3].  Essentially, a 
confidence interval is calculated for one of the model’s 
response variables1, and if the confidence interval 
contains the known or observed value for the simuland2 
for the same response variable, the model is considered to 
be valid for the response variable. 

                                                 
1 A response variable, also known as an output variable, a 
dependent variable, a measure of interest, or a 
performance measure, is a variable produced by running a 
simulation that is of interest to the model user.  Examples 
include mean queue length in a bank lobby simulation or 
Red losses in a combat simulation. 
2 A simuland is the subject of a model; it is the object, 
process, or phenomenon to be simulated [3]. 

This paper is a continuation of an earlier Simulation 
Interoperability Workshop paper on the use of confidence 
intervals in validation [4].  The earlier paper provided 
essential statistical background on confidence intervals 
and how to calculate them, specified a procedure for using 
confidence intervals for model validation, explained the 
conventional validation interpretation of confidence 
intervals, stated when the use of confidence intervals in 
validation is appropriate, surveyed several practical 
applications of confidence intervals in validation, and 
discussed some issues associated with model validation 
using confidence intervals.  In the earlier paper, the 
statistical mathematics and their means of application 
were presented at a pragmatic level suitable for simulation 
practitioners. 

This paper is similarly pragmatic in its presentation; as 
before, the simulation practitioner is the target reader.  
However, this paper covers three more advanced topics in 
using confidence intervals in validation.  Throughout this 
paper, familiarity with the earlier paper and its content 
will be assumed and no attempt will be made herein to re-
explain the introductory material. 



Following this introductory section, each of the three 
advanced confidence interval topics is covered in a 
separate section.  Section 2 covers the quantification of 
the notion of “close enough”, section 3 covers the 
Bonferroni correction for non-independent response 
variables, and section 4 covers the calculation of 
confidence intervals for the difference of two means.  
Each of the sections includes practical examples of model 
validation. 

2. Quantifying “close enough” in confidence 
interval inclusion 

Three examples of actual uses of confidence intervals for 
validation were surveyed in the earlier confidence interval 
paper [4]:  validation of a discrete event simulation model 
of workflow in a medical clinic [5], validation of a 
discrete event simulation model of ship loading and 
unloading in a seaport [6], and validation of a real-time 
constructive model of entity-level combat [7].  In each of 
the applications confidence intervals were calculated for 
several model response variables, and in each case, at 
least one of the simuland values was outside the 
corresponding model confidence interval.  Nevertheless, 
in each case the model was judged to be “close enough” 
to be useful.  Clearly, the simple rule stated in [4] that the 
simuland value should be within the model confidence 
interval for the model to be considered valid is applied 
flexibly in practice. 

As far as could be determined from the sources, these 
practical assessments of “close enough” were subjective 
and qualitative.  However, an objective and quantitative 
means of assessing whether a simuland value is “close 
enough” to a calculated confidence interval is available 
[8].  Not only does the method enable increased 
consistency in assessing whether a simuland value is 
“close enough” to a confidence interval, it also provides 
objective and quantitative guidance as to whether a 
confidence interval is narrow enough to be suitable for 
validation; if the interval is found to be too wide, 
performing additional model executions (i.e., larger n) 
will narrow it [4]. 

To explain the method, we begin by introducing essential 
notation:3

 X Population of all possible model executions 
 xi Model response variable value for execution i 
 n Number of model executions, i.e., sample size 
 ̅x Model response variable mean for sample, 
  (n executions) 

                                                 
3 All of this notation is consistent with the earlier paper 
[4], except the following:  model response variable mean 
μ was y in that paper and simuland response variable 
value μ0 and error tolerance ε are new to this paper. 

 s Model response variable standard deviation 
  for sample (n executions) 
 [L, U] Confidence interval; L is lower bound, 
  U is upper bound 
 μ Model response variable mean for all model 
  executions; unknown 
 μ0 Simuland value for response variable; known 
 ε Error tolerance for “close enough” 

Of particular interest in this method is the error tolerance 
value ε.  This value is selected by the person performing 
the validation based on the model’s intended application.  
For some applications, e.g., a model of the area damaged 
by a nuclear explosion, a larger error tolerance might be 
acceptable; for other applications, e.g., a model of the 
spatial position of a scalpel wielded by a robotic surgery 
device, a smaller error tolerance might be preferred.  In 
any case, the value of ε should be set based on the 
application before the validation calculations are 
performed so as to preserve objectivity. 

The quantity of interest in validation is the difference |μ0 – 
μ| between the simuland value μ0 and the model response 
variable mean μ.  We would like to know if the difference 
is less than the error tolerance, i.e., if |μ0 – μ| ≤ ε.  
Unfortunately, the model response variable mean μ for all 
model executions is unknown; consequently, we estimate 
its value with a confidence interval [L, U] calculated from 
a sample of n executions of the model.  Therefore the 
calculated confidence interval [L, U] for μ will be used to 
determine if |μ0 – μ| ≤ ε. 

To apply the method, first the confidence interval [L, U] 
for μ is calculated in the usual way from sample mean ̅x 
and sample standard deviation s found by executing the 
model n times.  Two additional quantities, “best case 
error” b and “worst case error” w, are calculated as b = 
min(|μ0 – L|, | μ0 – U|) and w = max(|μ0 – L|, | μ0 – U|).  
Then the following rules and sub-rules are applied: 

(1) if μ0 < L or μ0 > U then 
 (1a) if b > ε then model not valid 
 (1b) if w < ε then model valid 
 (1c) if b ≤ ε and w > ε then more executions needed 

(2) if μ0 ≥ L and μ0 ≤ U then 
 (2a) if w ≤ ε then model valid 
 (2b) if w > ε then more executions needed 

These rules can be explained through reference to Figure 
1.  The two cases labeled (1) in the figure are those where 
μ0 is outside the confidence interval [L, U]; the difference 
between the cases in the figure is whether μ0 is > U or < 
L, but rule (1) applies to both.  In either case, without an 
error tolerance, this situation might normally be 
interpreted as the model being not valid for the response 
variable. 
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Figure 1.  Cases for the “close enough” rules. 

 
Figure 2.  Example Monte Carlo bomb impact points [8]. 

With the error tolerance, the interpretation is as follows.  
In sub-rule (1a), μ0 is outside the interval and outside the 
error tolerance ε, i.e., not “close enough”, and the model 
is not valid.  In sub-rule (1b) μ0 is outside the interval but 
inside the error tolerance ε, i.e., “close enough”, and the 
model is valid.  In sub-rule (1c) the confidence interval is 
too wide with respect to the error tolerance ε and 
additional executions are needed to narrow the interval 
before an assessment can be made. 

The two cases labeled (2) in the figure are those where μ0 
is inside the confidence interval [L, U]; the difference 
between the cases in the figure is whether μ0 is closer to U 
or to L, but rule (2) applies to both.  In either case, 
without an error tolerance, this situation might normally 
be interpreted as the model being valid for the response 
variable.  With the error tolerance, the interpretation is as 
follows.  In sub-rule (2a) μ0 is inside the interval and the 
model is valid.  In sub-rule (2b), μ0 is inside the interval 

but the confidence interval is too wide with respect to the 
error tolerance ε and additional executions are needed to 
narrow the interval before an assessment can be made. 

Example 1.  In [8], a Monte Carlo model of bombing 
accuracy is presented.  The model calculates the number 
of conventional (unguided) bombs that hit within a 
prescribed target perimeter out of a planeload of 10 
bombs.  For each bomb, the model stochastically 
generates random variates for the x and y errors based on 
probability distributions modeling the bomb aiming 
system’s accuracy and then uses those x and y errors to 
deterministically determine whether the bomb impacts 
within the target’s perimeter.  Figure 2 illustrates the 
impact points generated by the model for a single 
planeload of 10 bombs and a typical target perimeter.4

                                                 
4 Only nine bomb impact points are visible in the figure; 
the tenth is outside the area represented by the figure. 



i xi i xi 
1 6.48 11 5.38 
2 5.27 12 5.73 
3 7.24 13 6.67 
4 8.73 14 7.48 
5 7.70 15 6.04 
6 8.59 16 9.62 
7 9.37 17 7.77 
8 7.08 18 8.75 
9 7.65 19 9.10 

10 5.23 20 7.09 

Table 1.  Response variable results from version 1 
of the bombing accuracy model. 

i xi i xi i xi 
1 7.15 11 6.58 21 5.28 
2 7.67 12 7.72 22 7.37 
3 4.32 13 6.85 23 6.27 
4 5.93 14 4.22 24 6.81 
5 4.00 15 5.66 25 6.99 
6 5.03 16 3.90 26 5.85 
7 6.82 17 5.51 27 6.05 
8 6.68 18 5.16 28 5.54 
9 4.59 19 5.86 29 7.49 

10 4.55 20 6.50 30 6.25 

Table 2.  Response variable results from version 2 
of  the bombing accuracy model. 

n d.f. ̅x s tc [L, U] U - L b w Rule Outcome 
5 4 7.08 1.30 2.776 [5.47, 8.70] 3.23 0.53 2.70 (2b) More runs 

10 9 7.33 1.39 2.262 [6.34, 8.33] 1.99 0.34 2.33 (1c) More runs 
20 19 7.35 1.39 2.093 [6.70, 8.00] 1.30 0.70 2.00 (1a) Not valid 

Table 3.  “Close enough” results for bombing accuracy model version 1. 

n d.f. ̅x s tc [L, U] U - L b w Rule Outcome 
5 4 5.81 1.64 2.776 [3.78, 7.85] 4.07 1.85 2.22 (2b) More runs 

10 9 5.67 1.34 2.262 [4.72, 6.63] 1.91 0.63 1.28 (2b) More runs 
20 19 5.74 1.23 2.093 [5.16, 6.31] 1.15 0.31 0.84 (2b) More runs 
30 29 5.95 1.12 2.045 [5.53, 6.37] 0.84 0.37 0.47 (2a) Valid 

Table 4.  “Close enough” results for bombing accuracy model version 2. 

For the sake of this example, we assume that through 
some means, such as live testing or data collection from 
operational experience, the simuland value μ0 for the 
expected number of bomb hits is known to be 6 out of 10.  
Two versions of the bombing accuracy model will be 
validated using the confidence interval “close enough” 
method.  Version 1 of the model is moderately biased 
with respect to the simuland; whereas the simuland value 
μ0 = 6, for the population of all possible model executions 
the model response variable mean μ = 6.8 and the 
standard deviation σ = 1.50.  It is important to recall that 
these values for μ and σ for the population of all possible 
model executions are not available to the validation 
analyst; he or she estimates them based on a sample of n 
model executions.  The unknown values are given in this 
example for expositional clarity. 

Based on the intended uses for the bombing accuracy 
model, the validation analyst selects an error tolerance ε = 
0.5.  He or she then executes the model.  Each execution 
of the model performs 400 Monte Carlo trials of 10-bomb 
planeloads.  Table 1 lists the values returned for 20 

executions of version 1 of the model; the values in the 
table are the mean number of hits xi over the 400 trials in 
execution i for each of the 20 executions.5  Table 2 shows 
data from 30 executions of version 2 of the bombing 
accuracy model, which will be discussed later. 

Table 3 shows the results of applying the “close enough” 
method to the results of model version 1 in Table 1.  In 
the table, n is the number of model executions (i.e., the 
sample size), d.f. is the degrees of freedom to use when 
calculating the confidence interval (d.f. = n – 1), ̅x is the 
mean number of hits from executions 1 to n, s is the 
standard deviation in the number of hits for the n 
executions, tc is the critical value for the Student t 
distribution for confidence level c = 0.95 and degrees of 
freedom d. f., [L, U] is the confidence interval calculated 
                                                 
5 The xi values in the tables were generated by an actual 
implementation of the bombing accuracy model as 
described briefly in this example and in more detail in [8].  
The values in the table are rounded to two digits after the 
decimal point. 



for μ from the n executions, U – L is the width of the 
interval, b and w the best and worst case errors calculated 
as described earlier, Rule identifies the rule that fits the 
values in the row, and Outcome is the assessment of 
model validity corresponding to the Rule.  The first row 
in the table, with sample size n = 5, shows the outcome 
after the validation analyst performs 5 model executions, 
generating results x1, x2, …, x5 in Table 1; for n = 5, μ0 = 6 
is inside the confidence interval [5.47, 8.70] but the best 
case error b is larger than the error tolerance ε, leading to 
an assessment via sub-rule (2b) that more executions are 
required to narrow the interval. 

Based on that assessment, the validation analyst performs 
5 additional executions of the model; combined with the 
five already performed, the model has been executed 10 
times, generating results x1, x2, …, x10 in Table 1.  The 
second row in the table, with sample size n = 10, shows 
the outcome.  The additional executions reduced the 
width of the confidence interval from 3.23 to 1.99.  Now 
μ0 is outside the interval, but quite close to it; in fact, the 
best case error b is less than the error tolerance ε.  
However, the confidence interval is still too wide with 
respect to ε, again leading to an assessment that more 
executions are required, this time via sub-rule (1c).  
Finally, the analyst performs 10 additional executions of 
the model, giving a total of 20 executions, and analyzes 
results x1, x2, …, x20.  This time μ0 is again outside the 
confidence interval and the best case error b is larger than 
the error tolerance ε, leading to an assessment via sub-rule 
(1a) that the model is not valid.  Recall that simuland 
value μ0 = 6, the unknown model response variable mean 
μ = 6.8, and the error tolerance was set at ε = 0.5, so this 
conclusion regarding the model is correct. 

Motivated by the assessment that the model is not valid, 
the model is improved.  Version 2 of the model is slightly 
biased with respect to the simuland; for the population of 
all possible model executions the model response variable 
mean μ = 6.3 and the standard deviation σ = 1.30.  Again, 
these values for μ and σ are not available to the validation 
analyst.  Table 2, on the left, lists the values returned for 
30 executions of version 2 of the model. 

As with version 1 of the model, the validation analyst 
performs an iteratively sequence of model executions and 
analyses using the “close enough” rules.  The results are 
shown in Table 4.  For n = 5, n = 10, and n = 20, sub-rule 
(2b) is selected and more executions are required.  
Finally, for n = 30, μ0 is inside the confidence interval and 
the worst case error w is less than the error tolerance ε, 
leading to an assessment via sub-rule (2a) that the model 
is valid.  Recall that simuland value μ0 = 6, the unknown 
model response variable mean μ = 6.3, and the error 
tolerance was set at ε = 0.5, so this conclusion regarding 
the model is correct. 

This method has both advantages and disadvantages.  
Most importantly, it allows the notion of “close enough” 
to be applied in a quantitative and objective way, which is 
clearly an improvement over the flexible and informal 
way it is often applied in practice.  It also enables, in 
situations where an execution of the model may be 
expensive or time consuming, an incremental approach to 
determining the number of model executions required 
with respect to the error tolerance ε.  On the other hand, 
the method depends on the validation analyst making a 
reasonable selection of the value for ε. 

Finally, note that if the error tolerance ε = 0, these rules 
do not simplify to the simple interval inclusion condition 
for model validity given in [4].  If ε = 0 and μ0 is outside 
the confidence interval, sub-rule (1a) will assess the 
model as not valid as expected, but if μ0 is inside the 
confidence interval, sub-rule (2b) will assess any 
confidence interval with non-zero width, i.e., with L ≠ U, 
as too wide.  Therefore, care should be exercised in 
applying this method with very small values for error 
tolerance ε. 

3. Applying the Bonferroni correction for 
multiple confidence intervals 

It is often the case that multiple response variables are 
analyzed from a single model execution.  For example, 
from an execution of a bank lobby model, both mean 
queue length and server utilization may be studied, or 
from an execution of a combat model, both Red and Blue 
losses may be studied.  In these situations, it is potentially 
a mistake to apply analysis methods intended for single 
response variables (i.e., univariate methods), such as the 
calculation of confidence intervals, to each of the 
response variables individually.  In doing so, the 
validation analyst is implicitly assuming that the response 
variables are independent.  It is easily seen at an intuitive 
level that the response variables may in fact not be 
independent; for example, in a bank lobby model, mean 
queue length is likely to be positively correlated with 
server utilization (if the teller is busy, more customers 
will have to wait), and in a combat model, Red losses are 
likely to be negatively correlated with Blue losses (if Blue 
inflicts many losses on Red, Red will be less able to 
inflict losses on Blue).6  The likelihood of non-
independence has been recognized in the literature; e.g., 
“when two or more confidence intervals are computed 
from data generated on the same simulation run, they are 
rarely independent” [9] and “multiple parameter estimates 
from the same system are likely to be dependent” [8].  In 
                                                 
6 In [10], correlation between response variables is termed 
cross-correlation, so as to distinguish it from correlation 
of a response variable with itself, which is 
autocorrelation.  See [8] for a useful discussion of 
autocorrelation. 



[10], the use of univariate methods to analyze multiple 
response variables without being aware of the limits of 
doing so is characterized as “naïve”. 

Nevertheless, the application of univariate procedures for 
confidence interval calculation to multiple response 
variables is often performed in practice; indeed, this was 
done in all three examples studied in the earlier 
confidence interval paper [4].  In [5], confidence intervals 
were calculated using univariate methods for waiting 
times for five different types of medical appointments, but 
the waiting times may not be independent if the same 
resources (e.g., physicians) are required for different types 
of appointments.  In [6], confidence intervals were 
calculated using univariate methods for the number of 
ships processed by the port for three different ship types, 
but the counts may not be independent if the same 
resources (e.g., quays or cranes) could service different 
types.  Finally, in [7], confidence intervals are calculated 
using univariate methods for vehicles lost in combat for 
three different British vehicle types, but the counts may 
not be independent if the German forces had to make 
target selection decisions between the different British 
vehicle types. 

However, analysis methods intended for multiple 
response variables (i.e., multivariate methods) are 
available.  For confidence interval calculation for multiple 
model response variables that can not be shown or 
assumed to be independent, a simple multivariate method 
is available.  The method, which is variously referred to 
as Bonferroni intervals [10], the Bonferroni adjustment 
[11], or the Bonferroni correction [12], is mathematically 
justified by a mathematical result known as the 
Bonferroni Inequality, which characterizes the probability 
of multiple confidence intervals  simultaneously 
containing their true population parameters.7  Here we are 
not concerned with the theory of the inequality, but with 
how to apply the correction in practice.  It requires only a 
small adjustment to the univariate method for calculating 
confidence intervals.  In this situation, the multiple 
intervals are referred to as joint or simultaneous intervals. 

Recall from the earlier confidence interval paper [4] that a 
(univariate) confidence interval for a population mean 
may be calculated using the Student t distribution as 

⎥⎦
⎤

⎢⎣
⎡ +−

n
stx

n
stx cc , , 

                                                 

                                                

7  Recall that here the population parameter is the mean 
value for the model response variable over all possible 
execution of the model.  For more mathematically 
detailed discussions of the Bonferroni Inequality and its 
implications for multivariate analysis of simulation 
output, see [10] or [18]. 

where  ̅x is the sample mean, s is the sample standard 
deviation, n is the sample size, and tc is the critical value 
for the Student t distribution for confidence level c.  The 
critical value notation tc used in [4], which follows [1] and 
[13], is simple but not the only notation used in the 
literature for the critical value.8  To explain the 
calculation of Bonferroni intervals, we will switch to the 
alternative but equivalent notation tα/2,n–1 for the critical 
value, where α is the level of significance and the 
subscript α/2 denotes the area under the distribution’s 
probability density curve in one of the two “tails” when 
confidence level c = (1 – α) area is in the center.  Thus, if 
c = 0.95 (95% confidence), α = 0.05 and α/2 = 0.025, and 
the critical value is chosen so that the area in each “tail” 
of the distribution is 0.025.9  For example, suppose c = 
0.80, α = 0.20, and n = 30; then tα/2,n–1 = t0.01,29 = 1.311 
[1].10

To apply the Bonferroni correction, simply use critical 
value tα/2k,n–1, rather than tα/2,n–1, where k is the number of 
joint confidence intervals, to calculate each of the 
intervals.11,12  This adjustment reduces the area in each of 
the tails, thus increasing the critical value and widening 
the confidence interval.  For example, suppose c = 0.80, α 
= 0.20, and n = 30 as before, but k = 2; then tα/2k,n–1 = 
t0.005,29 = 1.699 [1], compared with tα/2,n–1 = t0.01,29 = 1.311.  
The effect of the Bonferroni correction is that we may be 
at least (c ⋅ 100)% confident that each of the confidence 
intervals  simultaneously contains the population mean for 
its response variable. 

 
8 Alternatives include t [22], tc [1] [13], tα/2 [11] [23] [24], 
tn–1,1–α/2 [25], t α/2,n–1 [15], and t(1–γ)/ 2(n–1) [26].  The 
different notations all refer to the same value. 
9  In many conventional statistical tables of values for the 
t distribution, α/2 is cross-referenced with the degrees of 
freedom n – 1 to look up the critical value. 
10 A confidence level of c = 0.80 for model validation is 
recommended by some simulation experts [21] [27] [28].  
However, while it is sometimes used in practice, e.g., [14] 
[15], the conventional value of c = 0.95 is more common, 
e.g., [5] [6] [7]. 
11 The Bonferroni correction as stated here is found in [8], 
[9], [10], [11], [12], [14], [15], [17], and [18].  
Unfortunately, not all sources agree, e.g., for k joint 
confidence intervals, the critical value is given as tα/2k,n–k 
in [29].  Using the latter form will produce wider 
intervals. 
12 It is not strictly required that all of the intervals be 
adjusted by the same amount, as shown here.  For details, 
see [8] or [18]. 



i xi i xi 
1 108 11 102 
2 129 12 159 
3 129 13 107 
4 150 14 116 
5 128 15 131 
6 143 16 120 
7 147 17 120 
8 130 18 149 
9 184 19 156 

10 168 20 130 

Table 5.  Simulated U-boat sightings in the Bay of Biscay, 
October 1942–March 1943 [15]. 

i xi i xi 
1 2 11 4 
2 5 12 3 
3 3 13 2 
4 3 14 2 
5 4 15 4 
6 2 16 4 
7 5 17 3 
8 3 18 5 
9 5 19 5 

10 6 20 4 

Table 6.  Simulated U-boat sinkings in the Bay of Biscay, 
October 1942–March 1943 [15]. 

Variable n d.f. ̅x s t0.01,19 [L, U] Historical Outcome 
Sightings 20 19 135.3  21.44 1.729 [127.01, 143.59] 135 Valid 
Sinkings 20 19 3.7  1.22 1.729 [3.23, 4.17] 3 Not valid 

Table 7.  Confidence intervals for U-boat sightings and sinkings calculated using the Bonferroni correction. 

Example 2.  In [14] and [15], an agent-based model is 
used simulate Allied aircraft operations against German 
U-boats in the Bay of Biscay.  Two historical periods 
were simulated (October 1942–March 1943 and April 
1943–September 1943); historically the technologies and 
procedures used by the Allies differed during these two 
periods [15].  For this example we will examine only the 
first period.  The model calculates U-boat sightings and 
U-boat sinkings for each month during a model execution; 
the total sightings and sinkings for the execution are the 
response variables.  Clearly, the two response variables 
should not be assumed to be independent, because a U-
boat must be sighted before it can be sunk.  Table 5 shows 
the U-boat sightings generated by the model, and Table 6 
shows the U-boat sinkings generated by the model, for of 
20 model executions.  The historical (simuland) values for 
October 1942–March 1943 were 135 sightings and 3 
sinkings [16]. 

Confidence intervals were calculated using the Bonferroni 
correction for the mean values of each of the two model 
response variables from the results shown in the tables.  
As described in [15], c = 0.80 (80% confidence), α = 0.20, 
and k = 2 were used, thus the critical value was tα/2k,n–1 = 
t0.05,19 = 1.729 [1].  Table 7 summarizes the calculations 
and outcomes.13  By way of comparison, if the Bonferroni 

                                                 
13 The confidence interval bounds in the table are slightly 
different from those in [14] and [15], the sources of the 
example.  This paper’s author recalculated the confidence 
intervals using the sample statistics given in [14] and [15] 
and the recalculated values are reported here. 

correction had not been used, then the critical value would 
have been tα/2,n–1 = t0.01,19 = 1.328 [1] and the confidence 
intervals would have been [128.93, 141.67] (sightings) 
and [3.34, 4.06] (sinkings). 

The Bonferroni correction allows the calculation of joint 
confidence intervals for potentially non-independent 
response variables, is quite easy to use, and applies in 
“very general circumstances” [17].  Note also that for a 
single interval, i.e., k = 1, then the correction formula 
gives the univariate critical value, as expected.  However, 
applying the Bonferroni correction widens the confidence 
intervals, thus weakening the stringency of the resulting 
validation test.  Care should be exercised in applying this 
method for large numbers of intervals.  As a rule of 
thumb, maximum value of k = 10 has been recommended 
[18]. 

4. Calculating confidence intervals for the 
difference of two means 

As discussed in the earlier paper [4], confidence intervals 
are often used in validation when a single value or 
observation for the simuland is available for comparison 
with the results of multiple executions of the model.  This 
is often the case when validating combat models; 
typically we have only a single occurrence of a historical 
battle for comparison with multiple simulations of the 
event [4] [15].  However, in some validation applications 
sufficient simuland values or observations are available to 
allow calculating means for the response variables to be 
used for validation for both the simuland and the model.  
A range of statistical hypothesis tests for comparing two 



means are available for use in these situations; for 
example, the Student t test for comparing two means is 
used in [8] to validate a discrete event model of a bank 
drive-up window.  A discussion of hypothesis tests for 
validation is outside the scope of this paper.  However, 
confidence intervals, and in particular confidence 
intervals for the difference between two means, may also 
be used for validation in this situation.  A confidence 
interval for the difference between two means can in 
general provide an estimate of how different the means 
may be, and in particular may indicate, if the interval 
includes 0, that the two means could be the same.  The 
model may be interpreted as valid if the confidence 
interval shows that the difference between the means is 0 
or acceptably small. 

Our presentation of the method follows [1].  For clarity, 
we will explain it in terms of a single response variable.  
There are two populations of possible values for the 
response variable, the simuland and the model, and a 
sample has been taken from each, presumably by 
observations of the simuland and executions of the model.  
We begin by introducing essential notation: 

 ̅x1 Simuland response variable mean for sample 
 ̅x2 Model response variable mean for sample 
 s1 Simuland response variable standard deviation 
 s2 Model response variable standard deviation 
 n1 Number of simuland observations, 
  i.e., sample size 
 n2 Number of model executions, 
  i.e., sample size 
 μ1 Simuland response variable mean for 
  all simuland observations; unknown 
 μ2 Model response variable mean for all 
  model executions; unknown 
 [L, U] Confidence interval for μ1 – μ2; 
  L is lower bound, U is upper bound 

The two population means μ1 and μ2 are unknown; 
however, from the two samples a (c ⋅ 100)% confidence 
interval for the difference μ1 – μ2 between them may be 
calculated using the Student t distribution as 
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where tc is the critical value for the Student t distribution 
for confidence level c. 

Finding the critical value requires the degrees of freedom.  
In the case of a single sample of size n, we have seen that 
the degrees of freedom d.f. = n – 1.  Here there are two 
samples, thus d.f. = min(n1 – 1, n2 – 1).14  For example, 
suppose c = 0.90, α = 0.10, and n1 = 20 and n2 = 14; then 
tc = 1.771 [1].  Using the t distribution to calculate a 
confidence interval in this way requires that either (1) 
both populations are normal or approximately normal 
(“mound-shaped and symmetric” [1]), or (2) both n1 ≥ 30 
and n2 ≥ 30. 

Example 3.  In [19], three constructive combat models are 
compared:  OneSAF, VR-Forces, and Alt Agg.  All three 
are constructive combat models.  OneSAF and VR-Forces 
are entity-level models, whereas Alt Agg is a unit-level 
model based on entity-level data and procedures.15  
Comparing the results of multiple models, a method 
referred to as comparison testing in the validation 
literature [2], is a validation method when at least one of 
the models is assumed a priori to be valid; even if no 
model is assumed to be valid, the differences between the 
models’ results can signal validity issues [19].  For the 
comparison of the three models, the 1991 Battle of 73 
Easting was simulated in each model and the Blue and 
Red losses were compared.16  In [19], these response 
variables were compared using a statistical hypothesis 
test.  In this example the results are reanalyzed using 
confidence intervals for the difference between two 
means. 

Table 8 summarizes the results of the model executions.17  
In the table, ̅x is the mean and s is the standard deviation 
for the losses, Blue or Red, for n executions of the model.  
The loss counts are in vehicles destroyed. 

                                                 
14 A slightly more complicated and less conservative 
means of calculating d.f. in the two sample case, known 
as Satterthwaite’s approximation, is available and is 
implemented in most statistical software; see [1] for more 
details. 
15 OneSAF is the U. S. Army’s standard entity-level 
constructive model.  VR-Forces is a commercial product 
of VT MAK.  Alt Agg was developed by a collaboration 
of Gnosys Systems, Science Applications International 
Corporation, and the University of Alabama in Huntsville 
under the sponsorship of the Defense Advanced Research 
Projects Agency.  For more information on the models, 
see [19]. 
16 In addition to [19], see [30] for a detailed discussion of 
the difficulties of recreating the Battle of 73 Easting in a 
constructive combat model. 
17 In [19] multiple versions of OneSAF and Alt Agg were 
compared.  For this example, we report and compare only 
the results of the “standard” versions of the models. 



Model Side ̅x s n 
Blue 27.04 6.20 25 

OneSAF 
Red 47.28 8.35 25 
Blue 32.08 4.07 25 

VR-Forces 
Red 48.00 3.67 25 
Blue 23.40 7.93 25 

Alt Agg 
Red 50.68 5.32 25 

Table 8.  Red and Blue losses for the Battle of 73 Easting as generated by three constructive models [19]. 

Model 1 Model 2 Side ̅x1 – ̅x2 tc E [L, U] L ≤ 0 ≤ U? 
Blue -5.04 2.064 1.483 [-8.10, -1.98] No 

OneSAF VR-Forces 
Red -0.72 2.064 1.824 [-4.49, 3.05] Yes 
Blue 8.68 2.064 1.783 [5.00, 12.36] No 

VR-Forces Alt Agg 
Red -2.68 2.064 1.293 [-5.35, -0.01] No 
Blue -3.64 2.064 2.013 [-7.80, 0.52] Yes 

Alt Agg OneSAF 
Red 3.40 2.064 1.980 [-0.69, 7.49] Yes 

Table 9.  Confidence intervals for the differences between mean Blue and Red losses. 

Table 9 summarizes the calculation of the confidence 
intervals for the differences between the means.  The table 
shows six confidence intervals calculated for the 
difference of means:  there are three possible pairs of 
models, and for each pair of models an interval is 
calculated for difference of mean Blue and mean Red 
losses.  In the table, ̅x1 – ̅x2 is the difference between the 
sample means, tc is the critical value for c = 0.95 and d.f. 
= 24, E is the error term in the confidence interval 
formula (see below), and [L, U] is the calculated 
confidence interval. 
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Note that three of the six confidence intervals contain 0.  
Because in this example models are being compared, an 
interval containing 0 is interpreted as supporting the 
conclusion that the models are statistically equivalent for 
the response variable in question.  If one of the models 
was assumed a priori to be valid, or if the comparison 
was between a model and the simuland rather than two 
models, the conventional validation interpretation is that 
if the interval for the difference of means contains 0, the 
model is valid for that response variable.  In either case, 
the (model compared to model or model compared to 
simuland), the mathematics of the comparison process are 
the same. 

5. Additional topics 
Even together, the introductory paper [4] and this paper 
do not exhaust the topics related to the use of confidence 
intervals in model validation.  Additional relevant topics 
include: 
1. Analyzing multiple potentially non-independent 

output variables from a single model execution [10] 
2. Scheffé confidence intervals as an alternative to the 

Bonferroni correction [10] 
3. Steady-state analysis of non-terminating discrete 

event models using confidence intervals [10] 
4. Discussion of the limitations applying confidence 

intervals to historical events [15] 
5. Validation methods using joint or simultaneous 

confidence intervals or regions [2] [20] [21] 
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