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Abstract:  A confidence interval is an interval (i.e., a range of values) estimate of a parameter of a population (e.g., a 
mean) calculated from a sample drawn from the population.  A confidence interval has an associated confidence level, 
which is frequency with which a calculated confidence interval is expected to contain the population parameter.  
Confidence intervals are of interest in modeling and simulation because they are often used in model validation.  
Typically, a set of executions of the model to be validated, which is a sample from the population of all possible 
executions of the model, are run and from their results a confidence interval is calculated as an estimate of the 
population parameter (e.g., mean model output value) that would result if all possible model executions had been run.  
Then, if the corresponding known or observed value for the simuland is within the confidence interval calculated from 
the model executions, or within some acceptable tolerance of the confidence interval’s endpoints, the model is 
considered to be valid for the parameter in question.  This paper is an introductory tutorial and survey on confidence 
intervals in model validation.  Confidence intervals are introduced in a statistical context, their interpretation and use 
in model validation is explained, and examples of the application of confidence intervals in validation are presented. 

1. Introduction 
Conceptually, a confidence interval is a range of values 
which is expected, with some quantifiable degree of 
confidence, to contain the value of an unknown value of 
interest.  For example, suppose a random sample of 100 
boxes of cereal is selected from among all of the boxes 
filled by an automatic filling machine during a work shift.  
The mean weight of the 100 boxes in the sample is found 
to be 12.05 ounces and the standard deviation to be 0.1 
ounces.  Using the procedures to be described in the next 
section, we can calculate an interval [12.0304, 12.0696] 
for the mean weight of all boxes filled at the station and 
associate a confidence level of 0.95 (95%) with that 
interval.1  We call the calculated interval [12.0304, 
12.0696], together with its associated confidence level, a 
confidence interval. 

In modeling and simulation, confidence intervals are 
frequently used as a quantitative method of validation [1] 
[2].  Essentially, a confidence interval is calculated for 
one of the model’s response variables2, and if that 
confidence interval contains the known or observed value 

                                                 

                                                

1 This example is from [6]. 
2 A response variable, also known as a dependent or 
output variable, is a value of interest produced by running 
a simulation.  Examples include mean queue length in a 
bank lobby simulation or Red losses in a combat 
simulation. 

for the simuland3 for the same response variable, the 
model is considered valid for that response variable. 

This paper is a tutorial and survey on model validation 
using this method.  In this paper, the statistical 
mathematics and their application methods are presented 
at a pragmatic level suitable for simulation practitioners, 
following the similar expository approach of [3], [4], [5], 
[6] and especially [7].  For readers with different interests, 
the same material is covered in a more conceptual and 
intuitive manner in [8] and [9], and with considerably 
more mathematical formality in [10], [11], and [12]. 

Following this introductory section, sections 2 and 3 of 
this paper constitute the tutorial material.  Section 2 
provides essential statistical background on point and 
interval estimates, the concept of a confidence interval, 
and procedures for calculating them, all from a statistical 
(i.e., non-validation) perspective.  Section 3 explains the 
use of confidence intervals in model validation; it 
provides a procedure for calculating and using confidence 
intervals for validation, explains the conventional 
interpretation of confidence interval in the context of 
validation, and identifies when the confidence interval 
method is appropriate.  Section 4 is the survey portion of 
the paper; it briefly surveys a sample of practical 
applications of confidence intervals in validation drawn 
from the simulation literature.  Finally, section 5 discusses 
some issues associated with model validation using 
confidence intervals. 

 
3 A simuland is the subject of a model; it is the object, 
process, or phenomenon to be simulated [2]. 



2. Statistical background 
This section provides brief but essential statistical 
background.4  Topics covered include the concepts of 
point and interval estimates and confidence intervals and 
standard procedures for calculating confidence intervals.  
This section is entirely statistical in content; the validation 
interpretation and uses of confidence intervals are covered 
in later sections.5

2.1 Confidence interval concept 

Often we are interested in estimating the value of some 
parameter of a population, e.g., the mean income of all 
households in a metropolitan area.  Although calculating 
the mean of a set of values is a simple matter, actually 
collecting the data for every member of a population is 
often impractical or infeasible.  Instead, data values from 
a subset or sample of the population are collected, the 
mean of the sample values is calculated, and the sample 
mean statistic is interpreted as an estimate of the 
population mean parameter.6  Similarly, the variability in 
a population parameter can be estimated by calculating 
the variance or standard deviation of a sample from that 
population. 

A single valued estimate such as a sample mean is 
referred to as a point estimate.  However, it is generally 
unlikely that the value of a point estimate will be 
precisely equal to the population parameter it estimates.  
In contrast, an interval estimate is a range, or interval, of 
values which is expected to include the population 
parameter value.  Because the value of the population 
parameter is unknown, it can not be said with certainty 
whether a given interval includes the parameter value.  A 
confidence interval is an interval estimate of an unknown 
population parameter, calculated from a sample drawn 
from that population, and for which there is a known and 
statistically justified level of confidence that the unknown 
population parameter falls within that interval.  It is 
important that the confidence level be statistically 
justifiable; this justification will arise from the method 
used to calculate the confidence interval. 

2.2 Calculating confidence intervals 

Here we will confine our attention to calculating 
confidence intervals for the population mean μ, although 
the same principles apply to other population parameters.7  
Given a population X and a sample x1, x2, …, xn drawn 
from X, the sample mean x  is easily calculated as 
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Intervals will be written [L, U], where L is the lower 
bound and U is the upper bound of the interval.  The 
general conceptual form of a confidence interval is point 
estimate ± margin of error, or in interval form [L, U] = 
[point estimate – margin of error, point estimate + margin 
of error].  For a confidence interval for the population 
mean μ, the point estimate is the sample mean x .  The 
procedure for calculating the margin of error depends on 
the characteristics of the population from which the 
sample is drawn and of the sample. 

To begin, we make the simple but unrealistic assumptions 
that the population from which the sample was drawn is 
known to be normally distributed and that the standard 
deviation σ of the population is known.  Then the 
confidence interval for the population mean μ is 
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where zc is the critical value for the normal distribution 
for confidence level c.  The values for zc can be found in 
statistical tables or generated by software or statistical 
calculators.  Table 1 shows some of most commonly used 
critical values.8

                                                 
4 Because of length limits, this section can not provide 
complete details regarding confidence intervals from a 
statistical perspective; this section is meant only as a brief 
introduction (for readers unfamiliar with the topic) or a 
refresher (for readers familiar with the topic).  For 
complete details, see [5] or [7]. 

                                                5  Readers with a strong statistical background may safely 
skip this section. 

 
7 Confidence intervals for population means are most 
often used in validation. 6 A numerical value or measure, such as a mean, is termed 

a parameter when it applies to a population, and a 
statistic when it applies to a sample [3]. 

8 The Student t distribution and the meaning of the 
degrees of freedom (d.f.) entries will be explained later. 



 
Student t Confidence level c Normal z d.f. = 5 d.f. = 10 d.f. = 20 d.f. = 30 

0.80 1.282 1.476 1.372 1.325 1.310 
0.90 1.645 2.015 1.812 1.725 1.697 
0.95 1.960 2.571 2.228 2.086 2.042 
0.99 2.576 4.032 3.169 2.845 2.750 

Table 1.  Common critical values for confidence intervals. 

Example 1.9  A jogger runs the same 2 mile route every 
day.  Suppose a random sample of 90 of her times (in 
minutes) is taken.  The population of all of her times is 
known or assumed to be normally distributed with a 
known standard deviation σ = 1.80.  The sample mean x  
of the 90 times in the sample is found to be 15.60.  Then a 
95% confidence interval for the population mean μ is 

[ ]97.15,23.15
90
80.1960.160.15,
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80.1960.160.15
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A more realistic assumption is that the population 
standard deviation σ is not known.  In this situation, the 
population standard deviation σ is estimated using the 
sample standard deviation s and the Student t distribution 
is used in place of the normal z distribution when 
calculating the confidence interval.  The confidence 
interval for the population mean μ is 
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where tc is the critical value for the Student t distribution 
for confidence level c.10  The values for tc, which can be 
found in statistical tables or generated by software or 
statistical calculators, depend not only on the confidence 

level c as with the z distribution, but also on the quantity n 
– 1, also known as the degrees of freedom (commonly 
abbreviated d.f.).  Table 1 shows some of the most 
commonly used critical values for the Student t 
distribution.  Note that for a given confidence level c, the 
critical values for the Student t distribution are larger than 
the values for the normal z distribution (although the 
difference decreases as d.f. increases).  Consequently, for 
a given c using the t distribution will produce a larger 
interval than using the z distribution. 

Example 2.11  Using seismograph readings, a scientist 
estimates the yield (in kilotons) of 6 underground tests of 
a covert nuclear weapon by a hostile nation.  The 6 
sample values (45.3, 47.1, 44.2, 46.8, 46.5, 45.5) are 
taken from a population known or assumed to be 
normally distributed.  The population standard deviation σ 
is unknown.  The sample mean x  = 45.9 and the sample 
standard deviation s ≈ 1.10.  Because the sample size n = 
6, the degrees of freedom n – 1 = 5, and the critical value 
for the t distribution for confidence level c = 0.99 and d.f. 
= 5 is tc = 4.032.  Then a 99% confidence interval for the 
population mean μ is 

[ ]71.47,09.44
6
10.1032.459.4,

6
10.1032.49.45

,

≈⎥⎦
⎤

⎢⎣
⎡ +−

=⎥⎦
⎤

⎢⎣
⎡ +−

n
stx

n
stx cc

 

In both of the examples, it has been assumed that the 
population is either known or assumed to be normally 
distributed, and the decision to use the z distribution or 
the t distribution to calculate the confidence interval was 
based solely on whether the population standard deviation 
σ was known or unknown.  In fact, the question of which 
distribution to use is somewhat more complicated. 

                                                 
9 The example is from [7]. 
10 Confusingly, the tc notation for the critical value of the 
Student t distribution, and the earlier zc notation for the 
critical value of the normal z distribution, are only one of 
several notations used for critical values in the literature.  
For example, for the t distribution notations used to 
denote the critical value include t [3], tc [7] [8], tα/2 [5] 
[10] [11], tn–1,1–α/2 [23], and t(1–γ)/ 2(n–1) [12].  (Notations 
for the z distribution are similar.)  The different notations 
all refer to the same value.  The confidence level c = (1 – 
α), where α is the level of significance.  The subscript α/2 
denotes the area under the distribution’s probability 
density curve in one of the two “tails” when c = (1 – α) 
area is in the center. 

                                                 
11 The example is from [7], with modifications. 



When choosing the distribution, three considerations are 
involved: 
1. Population distribution:  normal, approximately 

normal,12 unknown. 
2. Population standard deviation σ:  known, unknown. 
3. Sample size n:  ≥ 30, < 30. 

With these considerations in mind, these guidelines are 
used to select the distribution: 13

If ((the population distribution is normal or 
 approximately normal) or (the population 
 distribution is unknown and the sample size 
 n ≥ 30)) and (the population standard deviation σ 
 is known), 
then calculate the confidence interval using z and σ, 
 as shown in Example 1. 

If ((the population distribution is normal or 
 approximately normal) or (the population 
 distribution is unknown and the sample size 
 n ≥ 30)) and (the population standard deviation σ 
 is unknown), 
then calculate the confidence interval using t and s, 
 as shown in Example 2. 

If (the population distribution is unknown and the 
 sample size is < 30), 
then a confidence interval can not be calculated. 

2.3 Statistical interpretation of a confidence interval 

It is tempting to assume that a given confidence interval 
[L, U] with confidence level c has a probability c of 
containing the population mean μ.  While this is intuitive, 
it is imprecise.  In fact, for any given confidence interval 
[L, U], the population mean μ and the confidence 
interval’s lower and upper bounds L and U are all 
constants, so the confidence interval either does, or does 
not, contain μ; in other words, the probability that the 
confidence interval contains the population mean is either 
1 or 0, not c [7].  The correct interpretation of confidence 
level c is that if many samples were taken from the 

population, and a confidence interval calculated from 
each of them at confidence level c, then (100 · c)% of 
those confidence intervals would contain the true 
population mean μ.  Thus, once a particular confidence 
interval has been calculated, we may be (100 · c)% 
confident that it is one of the intervals that does contain μ. 

3. Confidence intervals in validation 
This section explains the use of confidence intervals in 
model validation.  It presents a simple procedure for the 
confidence interval validation method, discusses the 
conventional interpretation of confidence interval in the 
context of validation, and identifies when the method is 
appropriate. 

3.1 Validation method procedure 

Because it involves executing the model, the confidence 
interval validation method is considered a dynamic 
method in the categorization scheme given in [1].  As 
with all verification and validation methods, the method 
involves a comparison [2]; here a given or observed value 
for the behavior or performance of the simuland is 
compared to a confidence interval for that value 
calculated from data obtained by executing the model. 

In its simplest form, the confidence interval validation 
method is as follows: 
1. Based on model outputs and available simuland data, 

select a model response variable x to use for 
validation. 

2. Based on model execution time and statistical 
considerations, select a number of model executions, 
i.e., the sample size n. 

3. Execute the model n times, recording the response 
variable xi from each execution i, to produce the 
sample x1, x2, …, xn. 

4. Calculate the sample mean x and sample standard 
deviation s for the model response variable from the 
sample x1, x2, …, xn. 

5. Based on the available knowledge of the distribution 
of the model response variable, the availability of the 
population standard deviation, and the sample size, 
select a distribution to use (z or t) to calculate the 
confidence interval. 

                                                 
12 In [7], “approximately normal” is defined as 
“reasonably symmetrical and mound-shaped”.  One way 
to check this is by plotting and visually examining a 
histogram of the sample.  Larger samples make this 
method more reliable.  See [18] for a discussion of the 
subtleties of setting the proper bin size when plotting 
histograms for data from an unknown distribution. 

6. Select the desired confidence level c. 
7. Using the selected distribution, confidence level c, 

and the sample statistics x and s, calculate a 
confidence interval [L, U] for the model’s mean 
response variable value. 13 Every statistics textbook provides guidelines for 

selecting either z or t for constructing the confidence 
interval.  Dismayingly, they often disagree with each 
other.  In fact, a few even disagree with themselves, 
giving contradictory guidelines at different places in the 
same textbook.  Here we present the guidelines as given 
in [7], although the statement of them in the form of an if-
then statement is new and is not taken from [7]. 

8. Determine if the known simuland value y for the 
response variable is within the confidence interval [L, 
U], i.e., if L ≤ y ≤ U; if it is, declare the model valid 
(or not invalid) for the response variable x. 



Several comments regarding the simple procedure are 
needed.  In step 2, if model execution time does not 
preclude it, it is recommended that at least 30 model 
executions be run (sample size n ≥ 30), as this improves 
the statistical reliability of the calculations.  In step 5, be 
cautious about assuming that the distribution of the model 
response variable is normal; even if the simuland’s values 
for that response variable are thought to be normally 
distributed, assuming the same is true for the model is 
effectively assuming an unproven degree of validity in the 
model.  The population distribution should be examined 
before making such an assumption.  In step 6, there are no 
firm guidelines for selecting the confidence level.  A 
confidence level of c = 0.95 is most frequently used in 
practice, and using it will likely raise no methodological 
objections.  On the other hand, some simulation experts 
recommend a confidence level of c = 0.80 for validation 
[13] [14] [15], and that value is also used in practice, e.g., 
[16] [17].  In step 8, the simple inclusion test as described 
is common in practice, but it is not the only way to use the 
confidence interval; a more sophisticated approach is 
described in [18]. 

Example 3.14  A discrete event simulation model of a 
bank drive up window is used to study customer delays, 
defined as the time (in minutes) a customer spends 
waiting in line before service begins.  The model is 
executed 6 times, producing a sample of mean customer 
waiting times (2.79, 1.12, 2.24, 3.45, 3.13, 2.38).  For this 
sample, the sample mean x  = 2.51 and the sample 
standard deviation s = 0.82.  The population distribution 
is known or assumed to be normal, but the population 
standard deviation σ is unknown, so the t distribution will 
be used.  Because the sample size n = 6, the degrees of 
freedom n – 1 = 5, and the critical value for the t 
distribution for confidence level c = 0.95 and d.f. = 5 is tc 
= 2.571.  Then a 95% confidence interval for the 
population mean μ is 

[ ]37.3,65.1
6
82.0571.251.2,

6
82.0571.251.2

,

≈⎥⎦
⎤

⎢⎣
⎡ +−

=⎥⎦
⎤

⎢⎣
⎡ +−

n
stx

n
stx cc

 

However, a value of 4.3 was previously obtained for the 
actual simuland mean delay time by observing customers 
waiting in line at the drive up window.  Because 4.3 is 
outside the calculated confidence interval [1.65, 3.37], the 
model is not considered valid for customer delay. 

Note that the confidence interval validation procedure as 
written is for a single response variable; this was for 
explanatory simplicity only.  In practice it is more 

common to record multiple response variables from each 
model execution and calculate separate confidence 
intervals for each response variable.  Then the model’s 
overall validity is assessed based on whether or not a 
predetermined number of the confidence intervals include 
the corresponding simuland value, e.g., “three out of four” 
simuland values must be within the model confidence 
intervals.  When using multiple response variables, 
practitioners often treat multiple response variables and 
confidence intervals as if they were independent of each 
other and consider each one separately.  However, the 
independence of a model’s response variables is not a 
given; for example, in a combat model, low Blue losses 
may be expected to correlate to high Red losses, and vice 
versa.  More sophisticated approaches that consider 
multiple confidence intervals simultaneously have been 
developed [1] [13]; a simple method is shown in [16] and 
[17]. 

3.2 Validation method interpretation 

For any non-trivial model executed on a digital computer, 
there are an extremely large but finite number of possible 
simulations, i.e., executions of the model.15  The set of all 
possible executions of a given model may be regarded as 
a population, and any subset of those possible executions 
as a sample.  As discussed earlier, a sample of values for 
one of the model response variables drawn from the 
population of all possible executions of the model can be 
obtained by executing the model and recording the values, 
and the sample mean x  and standard deviation s can be 
calculated from the sample values.  From the sample 
statistics and a confirmed assumption about the 
distribution of the population’s response variable values, 
it is possible to calculate a confidence interval for the 
mean value of the response variable for the population, 
i.e., for all possible executions of the model.  But note 
carefully that such a confidence interval is for the model 
(the population of all possible model executions), not for 
the simuland. 

Nevertheless, the conventional validation interpretation of 
the confidence interval is that if the observed simuland 
value for the response variable is included in the model 
confidence interval, then the model is considered valid (or 
not invalid) for that response variable.  There is no 

                                                 
15 The number of possible simulations is finite, not 
infinite, because any real computer has a finite memory 
capacity and thus there are a finite number of possible 
inputs (including the random number seed) to the model.  
Once the input is fixed, the output is also fixed, because 
programs executing on digital computers are 
deterministic.  The apparent run-to-run variability in most 
simulations is usually due to run-to-run changes in the 
random number seed, of which there are a large but finite 
number of possible values. 

                                                 
14 The example is from [18]. 



mean time (in minutes) patients spent waiting for each 
type of appointment.18  The model was complex and had 
a long run time,19 so only 10 model executions were 
performed.  Confidence intervals were calculated for each 
of the appointment types’ waiting times as generated by 
the model and compared to the mean waiting times for 
those appointment types as observed at the actual clinic. 

statistical justification or refutation for this interpretation.  
Statistically, the calculated confidence interval relates to 
the population of possible model executions and has 
nothing to do with the simuland.  Relating the model 
confidence interval to the simuland is a non-statistical 
application and interpretation.  However, it is an 
interpretation that has been widely accepted and 
frequently used by knowledgeable modeling and 
simulation researchers and practitioners. Table 2 shows the results.  For each of the five 

appointment types, the table lists the observed simuland 
mean wait time, the sample mean x  and sample standard 
deviation s for the wait time in the model executions, and 
the lower and upper bounds for the calculated confidence 
interval.20  The confidence intervals were calculated using 
the t distribution, the sample standard deviation s as an 
estimate for the population standard deviation σ, 
confidence level c = 0.95, and degrees of freedom d.f. 10 
– 1 = 9.  The critical value tc for c = 0.95 and d.f. = 9 is 
2.262. 

3.3 Using this validation method 

As suggested in the procedure and the example, this 
method is most appropriate when a single value is 
available for the simuland for the response variable (or 
each of the response variables) of interest.  That single 
value is then tested for inclusion in the confidence 
interval calculated from the sample of model executions.  
This situation may arise in validating a combat model by 
retrodiction, i.e., comparing the model’s output to the 
outcome of an actual historical battle [19].  In that 
application, typically only one historical outcome is 
available.  However, comparing a single historical value 
to a model’s confidence interval is assuming that the 
observed historical value is the mean of the underlying 
distribution of historical outcomes, an assumption that can 
be “quite tenuous” [17].  The historical outcome could 
have been anomalous, and if the same battle had been 
fought multiple times16 the mean outcome may be 
significantly different from the actual historical outcome.  
If instead there are multiple values (i.e., a sample) 
available for the simuland response variable of sufficient 
number to determine a distribution and its parameters, 
additional statistical validation methods are available, 
such as a hypothesis test comparing the simuland means 
and the model mean.17

Inspection of Table 2 reveals that the observed simuland 
mean wait time is within the confidence interval for the 
model mean wait time for only one of the five 
appointment types (MRI).  In spite of this, the model 
developers considered the discrepancies to be small and 
considered the model to be “valid” [20]. 

Example 5.  In [21], alternative improvements to a 
seaport’s infrastructure were studied using a discrete 
event simulation model of the port.  The port has four 
quays (areas where ships may be berthed, unloaded, and 
loaded).  Ships using the port can be grouped into three 
categories:  G1, < 60 meters in length; G2, 60-120 meters 
in length; and G3, > 120 meters in length.  The different 
quays are able to process different types of ships at 
different speeds.  The response variables of interest were 
the number of ships of each type berthed, unloaded, and 
reloaded over the course of one year.  A large sample of 
45 model executions was run.  Confidence intervals were 
calculated for each of the ship type counts as generated by 
the model and compared to the ship type counts as 
observed at the actual port over a one year period. 

4. Confidence interval validation in practice 
This section is a survey of examples of actual uses of 
confidence intervals in validation.  Selected representative 
and illustrative examples drawn from the literature are 
presented. 

Example 4.  In [20], workflow management in a medical 
clinic was studied using a discrete event simulation model 
of the clinic.  The medical clinic offers five different 
types of appointments:  first visit (FV), magnetic 
resonance imaging (MRI), computed tomography (CT), 
surgery pre-assessment (PRE), and surgery under 
anesthetic (SU).  Patients at the clinic often progress 
through a series of appointments of different types, e.g., 
FV, MRI, SU.  The response variables of interest were the 

                                                 
18 Although waiting times were measured in minutes, 
successive appointments for a patient were usually days 
apart, so the time values are large. 
19 Each execution required 15 hours [20]. 

                                                 20 Three of the confidence interval bounds in the table are 
slightly different from those in [20].  This paper’s author 
recalculated the confidence intervals using the sample 
statistics given in [20] and the recalculated values are 
reported here. 

16 This is not an experiment anyone would like to conduct. 
17 See [18] for an example of a hypothesis test comparing 
two means applied to the bank drive up window example 
in Example 3. 



 
Model Confidence interval Appointment Simuland 

Type mean xMean  Std dev s Lower bound L Upper bound U 
FV 11,333 11,070 182.5 10,939 11,201 
MRI 7,489 7,534 451.5 7,211 7,857 
CT 8,853 9,064 173.2 8,940 9,188 
PRE 4,030 3,761 90.7 3,696 3,826 
SU 13,733 13,069 169.3 12,948 13,190 

Table 2.  Confidence interval values for a medical clinic model [20]. 

Model Confidence interval Ship Simuland 
Type count xMean  Std dev s Lower bound L Upper bound U 

G1 109 111.14 14.45 106.8 115.5 
G2 169 174.42 16.07 169.6 179.2 
G3 19 17.28 5.26 15.7 18.8 
Total 297 303.68 35.89 292.9 314.5 

Table 3.  Confidence interval values for a port model [21]. 

Model Confidence interval Vehicle Simuland 
Type count xMean  Std dev s Lower bound L Upper bound U 

Firefly 4 1.6 0.502 1.365 1.835 
Cromwell 10 5.3 1.695 4.510 6.093 
Halftrack 10 9.2 2.745 7.915 10.485 

Table 4.  Confidence interval values for a combat model [22]. 

War II combat.  The modified model was validated using 
retrodiction, i.e., comparing the results of the model for a 
specific historical event with the actual historical 
outcome.  The historical Battle of Villers-Bocage, which 
took place in the Normandy region of France on June 13 
1944, was a small tank battle between British and German 
forces.  Three different types of British vehicles were lost 
during the battle:  Firefly, a U. S. Sherman tank modified 
to carry a British 17-pounder gun; Cromwell, a British 
tank armed with a 75 mm gun; and Halftrack, a lightly 
armored vehicle for transporting troops, weapons, and 
supplies.  The response variables of interest were the 
number of British vehicles of each type destroyed during 
the battle.  A sample of 20 model executions was run.  
Confidence intervals were calculated for the destroyed 
counts for each of the British vehicle types as generated 
by the model and compared to the historical destroyed 
counts. 

Table 3 shows the results.  For each of the three ship 
types and for the total of all types, the table lists the 
observed simuland ship count, the sample mean x  and 
sample standard deviation s for the ship count in the 
model executions, and the lower and upper bounds for the 
calculated confidence interval.21  The confidence intervals 
were calculated using the t distribution, the sample 
standard deviation s as an estimate for the population 
standard deviation σ, confidence level c = 0.95, and 
degrees of freedom d.f. 45 – 1 = 44.  The critical value tc 
for c = 0.95 and d.f. = 44 is 2.015. 

Inspection of Table 3 reveals that the observed simuland 
ship count is within the confidence interval for the model 
ship count for one of the three ship types (G1) as well as 
the total of all three types.  For ship types G2 and G3, the 
simuland count was outside the confidence interval, but 
by a very small amount.  The model was considered to be 
valid [21]. 

Table 4 shows the results.  For each of the three vehicle 
types, the table lists the historical destroyed count, the 
sample mean 

Example 6.  In [22], an entity-level constructive model of 
modern combat (OneSAF) was modified to model World x  and sample standard deviation s for the 

destroyed count in the model executions, and the lower 
and upper bounds for the calculated confidence interval.

                                                 22  21 One of the confidence interval bounds in the table is 
slightly different from those in [21].  This paper’s author 
recalculated the confidence intervals using the sample 
statistics given in [21] and the recalculated values are 
reported here. 

                                                 
22 [22] does not report the sample standard deviation s.  
However, using the other information given in [22] 
(sample mean, sample size, confidence level, and 



The confidence intervals were calculated using the t 
distribution, the sample standard deviation s as an 
estimate for the population standard deviation σ, 
confidence level c = 0.95, and degrees of freedom d.f. 20 
– 1 = 19.  The critical value tc for c = 0.95 and d.f. = 19 is 
2.093. 

Inspection of Table 4 reveals that the historical destroyed 
count is within the confidence interval for the model 
destroyed count for one of the three vehicle types 
(Halftrack).  For vehicle types Firefly and Cromwell, the 
historical count was outside the confidence interval.  
Nevertheless, the model was considered by the developers 
to be “historically reasonable” [22]. 

5. Discussion 
Although the confidence interval validation method is 
reassuringly quantitative, and as a validation method it is 
certainly more reliable than the too-frequently used “that 
looks about right” method, there nevertheless remain 
aspects of the method that call for subjective judgment by 
the analyst, model developer, model user, or accrediting 
authority.23  Four are mentioned here. 

First, in all three of the examples of the method in 
practice (Examples 4, 5, and 6), the simuland response 
variable values were outside the model confidence 
intervals for at least half of the response variables.  In 
spite of those apparent problems, the models were 
considered “valid” or “reasonable” in every case.  A 
decision of this sort is a judgment call that is outside the 
technical scope of the validation method.24  The method 
provides objective quantitative input (the simuland values 
are inside, or outside, or the model confidence intervals) 
to a subjective qualitative decision (the model is valid 
enough, or not valid enough, for the intended application). 

Second, all else being equal, a larger value for the 
confidence level c produces a larger interval, because the 
critical values of z and t are larger for larger values of c 
(see Table 1 to confirm), and the critical value is a 
multiplier in the confidence interval calculations.  For 
example, a confidence level of c = 0.95 will produce a 
larger interval than a confidence level of c = 0.80.  
Consequently, larger confidence levels make it more 
likely that the simuland response variable will be inside 
the model confidence interval for that variable, and thus 
result in a less rigorous validation test.  When choosing a 

                                                                               

                                                

confidence interval lower and upper bounds), it was 
possible to solve the confidence interval equation to find 
the sample standard deviation. 
23 The contrast between the empirical and the social 
processes involved in validation is pointed out in [24]. 
24 A formalization of the notion of “close enough” is 
described in [18]. 

confidence level c, be aware of the consequences of a 
Type II error (using an invalid model).25

Similarly, for a given confidence level c using the Student 
t distribution rather than the normal z distribution 
produces a larger confidence interval, as noted earlier.  
This again makes it more likely that the simuland 
response variable will be inside the model confidence 
interval for that variable.  However, the analyst may have 
no choice but to use the t distribution if the population 
standard deviation is unknown. 

Finally, all else being equal, a larger sample size n 
produces a smaller interval, because n is in the 
denominator of the margin of error term in the confidence 
interval calculations.  Consequently, larger samples (i.e., 
more model executions) make it less likely that the 
simuland response variable will be inside the model 
confidence interval for that variable, and thus result in a 
more rigorous validation test.  When choosing a sample 
size n, be aware of the consequences of a Type I error 
(not using a valid model).26
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