

IEEE Aerospace and Electronic Systems Society July 29 2013, Huntsville AL

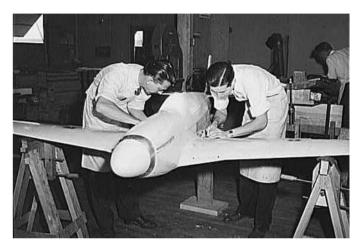
Simulation Based Approaches for Systems Engineering

Mikel D. Petty, Ph.D.
Center for Modeling, Simulation, and Analysis
University of Alabama in Huntsville

Presentation outline

- Motivation and definitions
- Methodologies and tools
- Challenges to MBSE from M&S
 - Complex systems
 - Model composition
- Summary

Motivation and definitions


Models in engineering

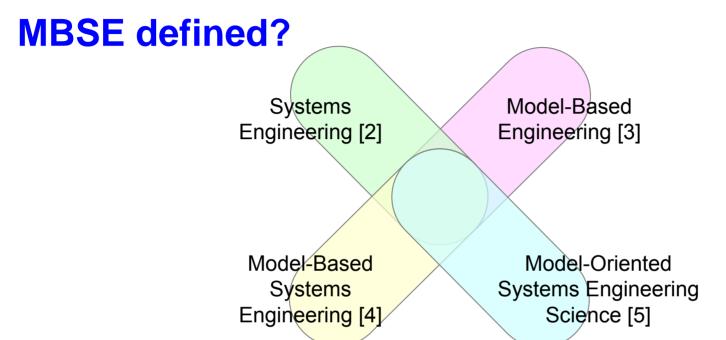
Using models in engineering is not new

$$h_s = \int_{T_1}^{T_2} c_P dt = \overline{c}_P (T_2 - T_1)$$

Mathematical model ~1895

Enthalpy or total heat of superheated steam [1]

Physical model ~1942 Wind tunnel model for P-51 Mustang


What is new?

- Complexity, scope, pervasiveness of models
- Computerization of models: "complex digital entities" [0]
- Integration of models into engineering process

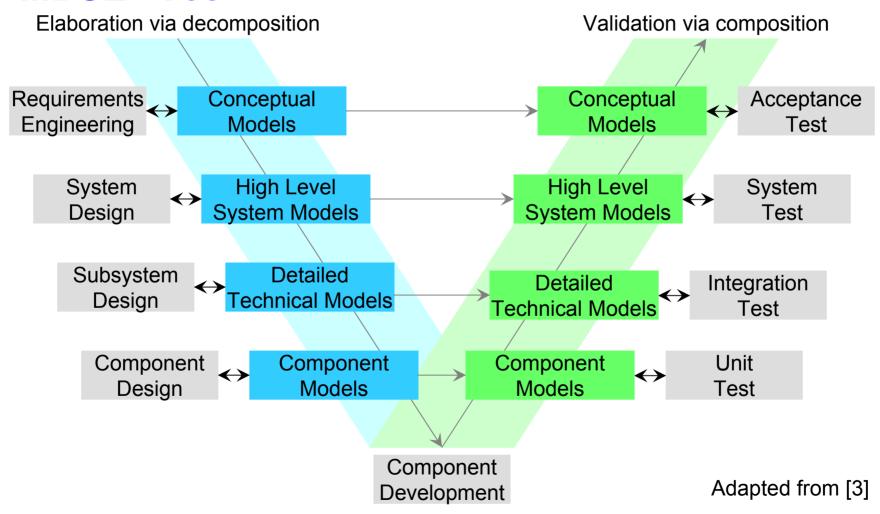
^[0] L. Murphy and P. Collopy, "A work-centered perspective on research needs for systems engineering with models", *Procedia Computer Science*, Vol. 8, 2012, pp. 315-320.

^[1] R. T. Kent, Kent's Mechanical Engineers' Handbook: Power, Eleventh Edition, John Wiley & Sons, New York NY, 1937.

"Model-based systems engineering (MBSE) is the formalized application of modeling to support system requirements, design, analysis, verification and validation activities beginning in the conceptual design phase and continuing throughout development and later life cycle phases." [6]

^[2] B. S. Blanchard and W. J. Fabrycky, Systems Engineering and Analysis, Third Edition, Prentice Hall, Upper Saddle River NJ, 1998.

^[3] NDIA, Final Report of the Model Based Engineering (MBE) Subcommittee, NDIA Systems Engineering Division, M&S Committee, 2011.


^[4] A. W. Wymore, Model-Based Systems Engineering, CRC Press, Boca Raton FL, 1993.

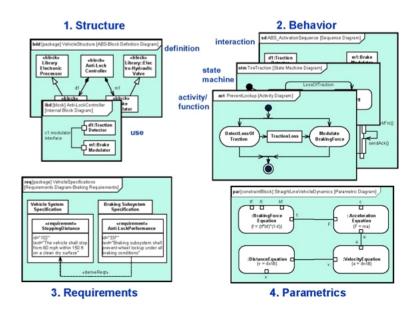
^[5] D. W. Hybertson, Model-Oriented Systems Engineering Science, CRC Press, Boca Raton FL, 2009.

^[6] INCOSE, Systems Engineering Vision 2020, INCOSE-TP-2004-004-02, Version 2.03, 2007.

MBSE "Vee"

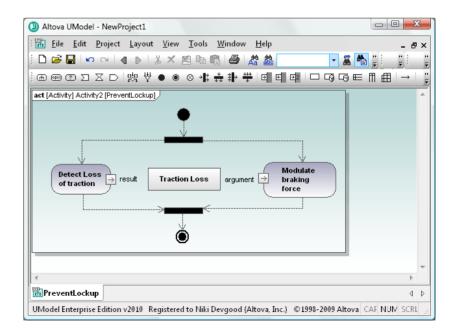
MBSE research needs (adapted from [0])

Work activity	Research area	Representative research topics	
Planning	Planning & estimating	Cost & resource planningProgress reportingRisk & recovery	
	Selection & application	Goals & objectivesProduct life stageAcquisition strategy	
Creating	Methods & tools	MethodologiesNotations & languagesStandards and guidance	
	Combining, comparing, & integrating	Comparing modelsFrameworksModel reuse	
Managing			
Using	•••		
Assessing	Model quality	Auditing & ground truthRevisions, errors, & gapsTransforms merging & transitivity	
	System-level perspectives	 Systems of systems Complex systems Technology maturity, integration, and change 	
Representation			
Cross-cutting			

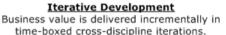


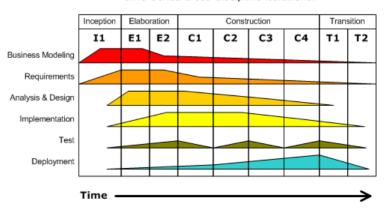
Methodologies and tools [7]

IBM Telelogic Harmony-SE


- Description
 - Systems and software engineering process
 - Process similar to "vee"
 - Repositories for requirements, models, test data
- Models and tools
 - OMG SysML models
 - Telelogic Rhapsody development environment
 - Telelogic Tau UML and SysML modeling tool

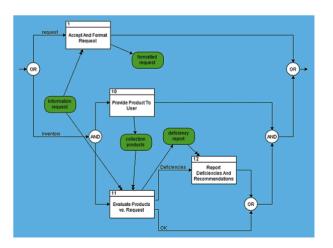
INCOSE Object-Oriented Systems Engineering Method


- Description
 - Top-down, model-driven process
 - Combines object-oriented concepts and classic SE process activities
- Models and tools
 - OMG SysML models
 - COTS SysML editors

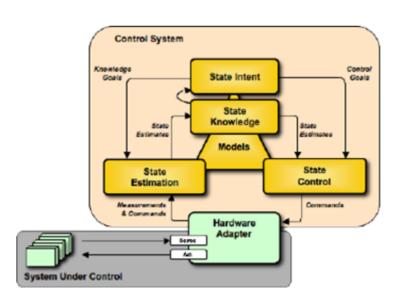


IBM Rational Unified Process for Systems Engineering

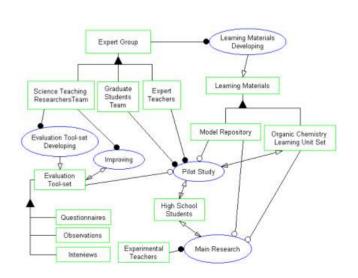
- Description
 - Process framework
 - RUP SE (systems) adapted for RUP (software)
 - Model viewpoints and levels define views
- Models and tools
 - OMG UML and SysML models
 - SE process framework tool as RUP SE plug in to Rational Method Composer



Vitech Model-Based System Engineering Methodology


- Description
 - Based on four conventional SE activities
 - Textual System Design Language expresses artifacts
 - Incremental SE process "onion model"
- Models and tools
 - Graphical system model diagrams
 - Integrated Vitech CORE tool set

JPL State Analysis


- Description
 - System models describe system states over time
 - State: all system aspects of interest
 - Iterative process of state discovery and modeling
- Models and tools
 - State database, relational with SQL

Dori Object-Process Methodology

- Description
 - System function expressed with simple visual models
 - Basic concepts: object, process, state
 - Constrained natural language descriptions
- Models and tools
 - Object-Process Diagrams
 - Object-Process Language
 - OPCAT tool set

Challenges MBSE from M&S: Complex systems

Complex systems

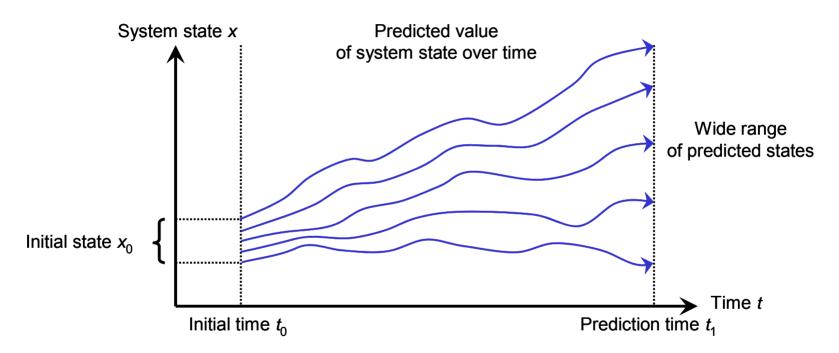
"A system comprised of a (usually large) number of (usually strongly) interacting entities, processes, or agents, the understanding of which requires the development, or the use of, new scientific tools, nonlinear models, out-of equilibrium descriptions and computer simulations." [8]

"A complex system is one whose evolution is very sensitive to initial conditions or to small perturbations, one in which the number of independent interacting components is large, or one in which there are multiple pathways by which the system can evolve." [9]

Air traffic

Weather

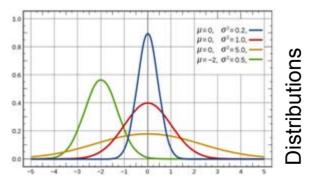
Stock market

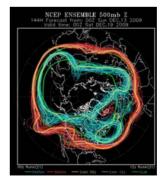


Characteristics and challenges

- Defining characteristics
 - Sensitivity to initial conditions
 - Emergent behavior
 - Composition of components
 - Uncertain boundaries
 - Nesting
 - State memory
 - Non-linear
 - Feedback loops
- Challenges
 - Complex systems difficult to model
 - Models of complex systems difficult to validate

Sensitivity to initial conditions

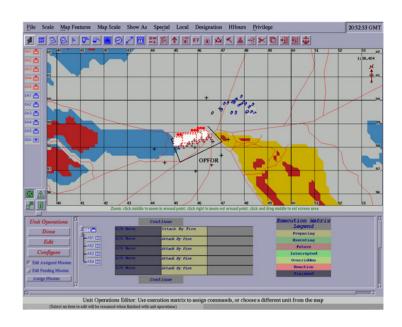



Complex systems evolution highly sensitive to initial state. Small differences in state become magnified over time. [10]

Sensitivity to initial conditions

	Challenges	Mitigation
Modeling	Implementation side effectsSensitivity consistencyInput data precision	Ensemble forecasting [10]
Validation	Broad results distributions [11]Input data precision	Increased trialsSensitivity analysis [12]Precision compensation

Ensemble forecasting


^[11] C. H. Brase and C. P. Brase, *Understandable Statistics: Concepts and Methods*, Houghton Mifflin, Boston MA, 2009.

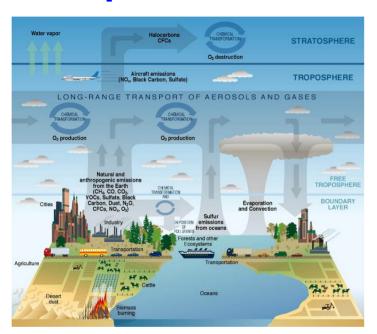
^[12] O. Balci, "Verification, Validation, and Testing", in J. Banks (Ed.), *Handbook of Simulation: Principles, Methodology, Advances, Applications, and Practice*, John Wiley & Sons, New York NY, 1998, pp. 335-393.

Emergent behavior

Behavior not explicitly encoded in agents or components emerges from interaction of agents or components with each other and environment. [13]

Emergent behavior

	Challenges	Mitigation
Modeling	Incomplete observationIndirect representationOverabstraction	Increased observationExplicit modeling focus
Validation	Face validation unreliabilityTest case design	Structured face validation [14]Scenario space search
		• •


Face validation unreliability

[14] G. Rowe and G. Wright, "Expert Opinions in Forecasting: Role of the Delphi Technique", in J. Armstrong (Ed.), *Principles of Forecasting: A Handbook for Researchers and Practitioners*, Kluwer, Boston MA, 2001.

Composition of components

Complex systems composed of interacting components. Models of complex systems composed of submodels.

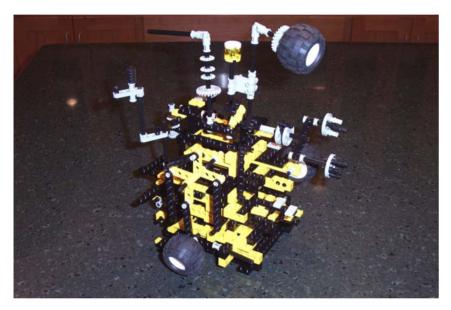
Composition of components

	Challenges	Mitigation
Modeling	Interface complianceArchitecture selection [15]Model correlation [16]	Interface analysis [17]Conceptual model comparisonKnown problems [18]
Validation	Weakest link validityError locationStatistical method unsuitabilityValidity under composition [19]	Uncertainty estimation [20]Multivariate statistics [21]Composition validation

- [15] M. Shaw and D. Garlan, Software Architecture, Perspectives on an Emerging Discipline, Prentice Hall, Upper Saddle River NJ, 1996.
- [16] M. Spiegel, P. F. Reynolds, D. C. Brogan, "A Case Study of Model Context for Simulation Composability and Reusability", *Proceedings of the 2005 Winter Simulation Conference*, Orlando FL, December 4-7 2005, pp. 437-444.
- [17] O. Balci, "Verification, Validation, and Testing", in J. Banks (Ed.), *Handbook of Simulation: Principles, Methodology, Advances, Applications, and Practice*, John Wiley & Sons, New York NY, 1998, pp. 335-393.
- [18] D. Gross and W. V. Tucker, "A Foundation for Semantic Interoperability", *Proceedings of the Fall 2007 Simulation Interoperability Workshop*, Orlando FL, September 16-21 2007.
- [19] E. W. Weisel, R. R. Mielke, and M. D. Petty, "Validity of Models and Classes of Models in Semantic Composability", *Proceedings of the Fall 2003 Simulation Interoperability Workshop*, Orlando FL, September 14-19 2003, pp. 526-536.
- [20] W. L. Oberkampf, S. M. DeLand, B. M. Rutherford, K. V. Diegart, and K. F. Alvin, *Estimation of Total Uncertainty in Modeling and Simulation*, Sandia National Laboratories, SAND2000-0824, April 2000.
- [21] O. Balci and R. Sargent, "Validation of simulation models via simultaneous confidence intervals", *American Journal of Mathematical and Management Science*, Vol. 4, No. 3-4, 1984, pp. 375-406.



Challenges to MBSE from M&S: Model composition


Composability

Composability. The capability to select and assemble simulation components in various combinations into simulation systems to satisfy specific user requirements. [22]

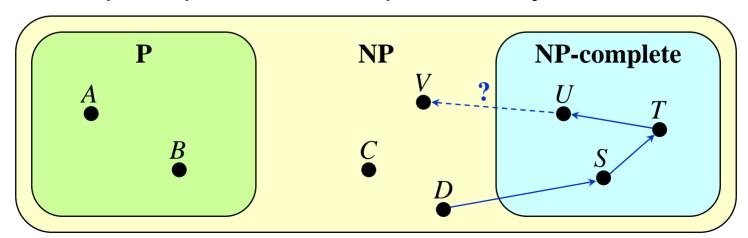
Syntactic and semantic composability

Semantic composability
The components fit together
in a meaningful way.

Validity under composition [23]

- Compositions of valid models considered for classes of models and validity relations
- Classes of models
 - Linear
 - Affine
 - Algebraic
 - Elementary
 - Computable
- Classes of validity relations
 - Equivalence
 - Step metric
 - Trajectory metric

Given two models, separately valid under some validity relation, is their composition necessarily valid under the same validity relation?


Validity	Model				
relation	Linear	Affine	Algebraic	Elementary	Computable
Equivalence	Yes	Yes	Yes	Yes	Yes
Step metric	Yes	Yes	No	No	No
Trajectory metric	Conditional	Conditional	No	No	No

Most useful models here

NP-completeness theory, in a nutshell

- Classes of problems
 - P: solvable in polynomial time
 - NP: not solvable in polynomial time?
 - NP-complete: as hard as every NP problem
- To prove a problem is NP-complete, show that solving it solves a known NP-complete problem
- NP-complete problems computationally intractable

Selecting models to compose is NP-complete

Variants of Component Selection	Non- emergent	Emergent	Anti- emergent	
Bounded	NP-complete [24]	NP-complete	NP-complete	
Unbounded	NP _t hard	NP-hard	NP-hard	
General Component Selection				
		NP-hard, NP-complete with oracle [25]	

^[24] E. H. Page and J. M. Opper, "Observations on the Complexity of Composable Simulation", *Proceedings of the 1999 Winter Simulation Conference*, Phoenix AZ, December 5-8 1999, pp. 553-560.

^[25] M. D. Petty, E. W. Weisel, and R. R. Mielke, "Computational Complexity of Selecting Models for Composition", *Proceedings of the Fall 2003 Simulation Interoperability Workshop*, Orlando FL, September 14-19 2003, pp. 517-525.

Summary

Summary

- Systems engineering depends on models
 - Models have always been used in engineering
 - MBSE is applied modeling
- MBSE methodologies and tools
- Challenges from M&S may impact MBSE
 - Modeling complex systems
 - Model composition for reuse

End notes

- More information
 - Mikel D. Petty, Ph.D.
 - UAHuntsville Center for Modeling, Simulation, and Analysis
 - 256-824-4368, pettym@uah.edu
- Slides: http://www.uah.edu/cmsa/downloads
- Questions?

