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Chapter sections and objectives
• 2.1 Proof Techniques
▪ Prove conjectures using direct proof,

proof by contrapositive, and proof by contradiction
• 2.2 Induction
▪ Recognize when a proof by induction is appropriate
▪ Write proofs by induction using either the first

or second principle of induction
• 2.3 More on Proof of Correctness
• 2.4 Number Theory

Not covered
in CS 214
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Sample problem
The nonprofit organization at which you volunteer has 
received donations of 792 bars of soap and 400 bottles
of shampoo.  You want to create packages to distribute
to homeless shelters such that each package contains
the same number of shampoo bottles and each package 
contains the same number of bars of soap.

How many packages can you create?
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2.1  Proof Techniques
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Arguments and theorems
• Formal arguments of Chapter 1
▪ Form P → Q, where P, Q compound wffs
▪ Objective:  show argument is valid
▪ Intrinsically true, based on logical structure

- Propositional logic; truth of P implied truth of Q
- Predicate logic; P → Q true under all interpretations

• Theorems of Chapter 2
▪ Form P → Q, where P, Q compound wffs
▪ Objective:  show conclusion is true
▪ Contextually true, based on domain knowledge

- Propositional logic; P true, therefore Q true
- Predicate logic; P and P → Q true under specific interpretation

▪ Combine formal logic and domain knowledge
▪ Often stated less formally than formal arguments
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Inductive and deductive reasoning
• Inductive reasoning
▪ Observe instances where P → Q
▪ Assume P → Q always true; known as theory
▪ Inductive reasoning in science:  acceptable
▪ Inductive reasoning in math and CS:  not acceptable

• Deductive reasoning
▪ State P → Q as conjecture
▪ Prove using logic and domain knowledge;

P → Q becomes theorem
▪ Disprove by showing instance when not true;

P → Q becomes fallacy
▪ Deductive reasoning in science:  not possible
▪ Deductive reasoning in math and CS:  acceptable
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Inductive and deductive reasoning in math
• Conjecture:  “Fermat’s Last Theorem”
▪ xn + yn = zn has no integer solutions for n > 2, x, y, z ≠ 0
▪ “This margin is too narrow” (1637)

• Inductive reasoning
▪ Shown true by hand for n ≤ 14 (1832) 
▪ Shown true by computer for n ≤ 4 · 106

▪ Conjecture not proven for all n
• Deductive reasoning
▪ Multiple incomplete and incorrect proofs 
▪ Proven true for all n by Wiles (1993)
▪ Proof used methods unknown to Fermat
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Inductive reasoning and mathematical induction

• Inductive reasoning ≠ mathematical induction
• Inductive reasoning; way to learn about world,

develop conjectures, discern patterns
• Mathematical induction; valid proof technique,

a type of deductive reasoning
• Confusingly, both AKA “induction”
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Proof techniques
• Proof techniques 
▪ Disproof by counterexample (§ 2.1)
▪ Exhaustive proof (§ 2.1)
▪ Direct proof (§ 2.1)
▪ Proof by contraposition (§ 2.1) 
▪ Proof by contradiction (§ 2.1)
▪ Mathematical induction (§ 2.2)

• Differences
▪ Process of proving theorem
▪ Underlying logical structure

• Similarities
▪ Prove P → Q
▪ Proofs based on valid argument, domain knowledge

AKA “indirect proof”
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Example disproof by counterexample
Factorial: n! = n · (n – 1) · (n – 2) · … · 1
Example: 3! = 3 · 2 · 1 = 6
Conjecture: For every positive integer n, n! ≤ n2

n n! n2 n! ≤ n2

1 1 1 true

2 2 4 true
3 6 9 true
4 24 16 false counterexample

looks good so far …

Example 1
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Example disproof by counterexample
Conjecture
If a and b are integers and a2 = b2, then a = b.

Counterexample
12 = –12, but 1 ≠ –1.

Example 4.1.4 [Epp, 2011]
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Exhaustive proof
• Goal:  prove P → Q
• Method:  show conjecture holds for each case,

i.e., each object in collection
• Applicable when conjecture P → Q

is about finite collection of objects
• Exhaustive proof vs. “proof by example”
▪ Exhaustive proof covers all possible cases
▪ Exhaustive proof is a valid proof method
▪ “Proof by example” covers a subset of the cases
▪ “Proof by example” is not a valid proof method
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Example exhaustive proof
Conjecture: If an integer between 1 and 20 inclusive

is divisible by 6, then it is also divisible by 3.
Proof: Show true for each x, 1 ≤ x ≤ 20.
Number Divisible by 6 Divisible by 3 Number Divisible by 6 Divisible by 3

1 no 11 no

2 no 12 yes:  12 = 2 x 6 yes:  12 = 4 x 3

3 no 13 no

4 no 14 no

5 no 15 no

6 yes:  6 = 1 x 6 yes:  6 = 2 x 3 16 no

7 no 17 no

8 no 18 yes:  18 = 3 x 6 yes:  18 = 6 x 3

9 no 19 no

10 no 20 no E
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Example exhaustive proof
Problem: Assign colors to regions of a map so that

no two adjacent regions have the same color
Conjecture: 4 colors suffice (1852)
Proof: Exhaustive analysis of 1,476 cases (1976)

//www.math.gatech.edu/~thomas/FC/fourcolor.html [Wilson, 2004]
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Getting proofs started
• Understand statement of theorem
• Restate in if–then form and assign “names”
• Write first and last lines of proof
Theorem
The product of two even integers is even.
If x and y are even integers, then xy is even.

Proof
Let x and y be even integers.
…
Therefore xy is even.  ■
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Theorem
Every complete, bipartite graph is connected.
If G is a complete, bipartite graph, then G is connected.

Proof
Let G be a complete, bipartite graph.
…
Therefore G is connected.  ■

Example 4.1.8, p. 158, [Epp, 2011]
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Direct proof
• Goal:  prove P → Q
• Method:  assume hypothesis P is true,

deduce conclusion Q is true
• Logical form:  prove P → Q
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Example formal direct proof
Theorem
(∀x)(∀y)(x is even integer ∧ y is even integer → product xy is even integer)

Proof
1. x is even integer ∧ y is even integer
2. (∀x)[x is even integer → (∃k)(k is integer ∧ x = 2k)] def of even integer
3. x is even integer → (∃k)(k is integer ∧ x = 2k)] 1, ui
4. y is even integer → (∃k)(k is integer ∧ y = 2k)] 1, ui
5. x is even integer 4, sim
6. (∃k)(k is integer ∧ x = 2k) 2, 5, mp
7. m is integer ∧ x = 2m 6, ei
8. y is even integer 4, sim
9. (∃k)(k is integer ∧ y = 2k) 3, 8, mp

10. n is integer ∧ y = 2n 9, ei
11. x = 2m 7, sim
12. y = 2n 10, sim

Example 4
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13. xy = (2m)(2n) 11, 12, substitution of equals
14. xy = 2(2mn) 13, com and ass
15. m is integer 7, sim
16. n is integer 10, sim
17. 2mn is integer 15, 16, number fact
18. xy = 2(2mn) ∧ 2mn is integer 14, 17, con
19. (∃k)(k an integer ∧ xy = 2k) 18, eg
20. (∀x)(∃k)(k an integer ∧ x = 2k) → x is even integer) def of even integer
21. (∃k)(k an integer ∧ xy = 2k) → xy is even integer) 20, ui
22. xy is even integer 19, 21, mp
23. x is even integer ∧ y is even integer temp hyp discharged

→ xy is even integer
24. (∀x)(∀y)(x is even integer ∧ y is even integer 23, ug twice  ■

→ product xy is even integer)

Even more formal version of conjecture:
(∀x)(∀y)(I(x) ∧ E(x) ∧ I(y) ∧ E(y) → I(xy) ∧ E(xy))
where I(x) is x is integer, E(x) is x is even.

Proofs rarely written this formally; possibility of doing so assumed.

?
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Example direct proof
Theorem
The product of two even integers is even.
If two integers are even, then their product is even.

Proof
Let x and y be even integers.
Then x = 2m and y = 2n, where m and n are integers.
Then xy = (2m)(2n) = 2(2mn), where 2mn is an integer.
Thus xy has the form 2k, where k = 2mn is an integer,
and xy is therefore even.  ■

Example 5

1
2

Rule 4:  In direct proof, assume the hypothesis (antecedent) is true,
then use that information to prove the conclusion (consequent).
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Example direct proof
Notation:  x | y means x divides y, i.e., y is divisible by x.
x | y means y = xk for integer k.

Theorem
If n | m and m | p, then n | p.

Proof
Let n | m; then there is integer a such that m = na.
Let m | p; then there is integer b such that p = mb.
Substitute for m in p = mb to give p = mb = (na)b = n(ab).
Because p = n(ab), where ab is an integer, then n | p.  ■

Exercise 33
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Example direct proof
Theorem
Given any two consecutive integers,
one of them is odd and the other is even.

Theorem 4.4.2, p. 158, [Epp, 2011]

“Live”
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Example direct proof
Notation:  x | y means x divides y, i.e., y is divisible by x.
x | y means y = xk for integer k.

Theorem
If n | m and m | p, then n | p.

Proof
Let n | m; then there is integer a such that m = na.
Let m | p; then there is integer b such that p = mb.
Substitute for m in p = mb to give p = mb = (na)b = n(ab).
Because p = n(ab), where ab is an integer, then n | p.  ■

Exercise 33
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Proof by contraposition
• Goal:  prove P → Q
• Method:  assume negation of conclusion Q'

is true, deduce negation of hypothesis P' is true
• Logical form:  prove Q' → P'
• Valid by tautology:  (Q' → P') ⇔ (P → Q)

tautology
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Example proof by contraposition
Theorem
If the square of an integer is odd, then the integer is odd.

Proof (by contraposition)
Original conjecture restated
If n2 is an odd integer, then n is an odd integer.
Contrapositive
If n is an even integer, then n2 is an even integer.

Suppose n is even.
Then n2 = n · n is even by the theorem of Example 5.
Thus if n2 is an odd integer, then n is an odd integer,
by contraposition.  ■

Example 6
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Example proof by contraposition
Theorem
If n + 1 passwords are issued to n students,
then at least one student received ≥ 2 passwords.

Forming the contrapositive:  P → Q becomes Q′→ P′
Original antecedent P
“n + 1 passwords are issued to n students”
Contrapositive consequent P′
“it is false that n + 1 passwords were issued”
Original consequent Q
“at least one student received ≥ 2 passwords” (∃x)R(x)
Contrapositive antecedent Q′
“every student receives < 2 passwords” (∀x)R(x)′

Example 7
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Theorem
If n + 1 passwords are issued to n students,
then at least one student received ≥ 2 passwords.

Proof (by contraposition)
Contrapositive:  If every student receives < 2 passwords, 
then it is false that n + 1 passwords were issued.

Suppose every student receives < 2 passwords;
then each student receives at most 1 password.
The total number of passwords is at most n · 1 ≠ n + 1.
Thus the theorem is true by contraposition.  ■
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Errors in proof by contrapositive
• P' → Q' (negate but not reverse) AKA inverse
▪ P → Q and P′→ Q′ are not equivalent
▪ Proving P′→ Q′ does not prove P → Q

• Q → P (reverse but not negate) AKA converse
▪ P → Q and Q → P are not equivalent
▪ Proving Q → P does not prove P → Q

Example of converse
Original:  If a > 5, then a > 2. True
Converse:  If a > 2, then a > 5.  False

Example 8
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If and only if
• Theorems may have form P if and only if Q
▪ “if and only if” AKA “iff”

• Parts of “if and only if”
▪ “P if Q” means Q → P
▪ “P only if Q” means P → Q

• To prove P iff Q, prove both Q → P and P → Q
▪ Not a separate proof technique
▪ If and only if requires two proofs
▪ Parts of proof may use same or different techniques
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Example if and only if proof
Theorem
Given integers x and y, product xy is odd if and only if
x and y are odd integers.

Proof
(if)  If x and y are odd integers, then xy is odd.
Suppose x and y are odd.
Then x = 2n + 1 and y = 2m + 1, where m and n are integers.
Then xy = (2n + 1)(2m + 1) = 4nm + 2m + 2n + 1
= 2(2nm + m + n) + 1.
This has the form 2k + 1, where k = (2nm + m + n) is an 
integer, so xy is odd.

Example 9

?
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(only if)  If xy is odd, then x and y are odd.
Contrapositive:  If x is even or y is even, then xy is even.

The antecedent has three cases:
Case 1. x even, y odd:  x = 2m, y = 2n + 1,

Then xy = (2m)(2n + 1) = 2(2mn + m), which is even.
Case 2. x odd, y even:  x = 2m + 1, y = 2n,

Then xy = (2m + 1)(2n) = 2(2mn + n), which is even.
Case 3. x even, y even:  x = 2m + 1, y = 2n,

Then xy = (2m)(2n) = 2(2mn), which is even.  
Alternative:  xy even by Example 5.

Thus xy odd → x and y are odd by contraposition.  ■

?
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Proof by contradiction
• Goal:  prove P → Q
• Method:  assume negation of conclusion Q',

deduce contradiction 0
• Logical form:  prove P ∧ Q' → 0 (contradiction)
• Valid by tautology:  (P ∧ Q' → 0) ⇔ (P → Q)
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Proof by contradiction example
Theorem
If a number added to itself gives itself, then the number is 0.
Restated:  If x + x = x, then x = 0.

Proof (by contradiction)
Assume x + x = x and x ≠ 0.
Then 2x = x.
Because x ≠ 0, divide both sides of 2x = x by x to get 2 = 1,
a contradiction.
Thus x + x = x implies x = 0.  ■

Example 10
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Proof by contradiction example
Theorem
The product of two odd integers is not even.
Restated:  If x and y are odd integers, then xy is odd.

Proof (by contradiction)
Let x = 2m + 1 and y = 2n + 1 where m and n are integers,
so xy = (2m + 1)(2n + 1).
Assume by way of contradiction xy is even.
Then xy = 2k for some integer k.
Thus 2k = (2m + 1)(2n + 1) = 4mn + 2m + 2n + 1.
Rearranging, 1 = 2k – 4mn – 2m – 2n.
Factoring out 2, 1 = 2(k – 2mn – m – n),
with k – 2mn – m – n an integer.
This is a contradiction, because 1 is not even.  ■

Practice 6
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Proof by contradiction example (hard)
Theorem
√2 is not rational.
Restated:  If x = √2, then x can not be written as p/q,
where p and q are integers, q ≠ 0,
and p and q have no common factors.

Proof (by contradiction)
Assume by way of contradiction √2 is rational,
i.e., √2 = p/q for integers p and q, q ≠ 0, with no common factors.
Then 2 = (p/q)2 = p2/q2 and 2q2 = p2.
Then 2 | p2 which means 2 | p,
so 2 is a factor of p and 4 is a factor of p2.
Then 2q2 = p2 can be written 2q2 = 4x, so q2 = 2x.
Then 2 | q2 which means 2|q.
Now we have 2 is a factor of p and q, which contradicts
the statement that p and q have no common factors.  ■ Example 11
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Errors in proof by contradiction
• Inadvertent direct proof
▪ Goal:  prove P → Q
▪ Mistake:  assume P ∧ Q', deduce Q

(rather than contradiction) without using Q′
▪ Incorrectly claim Q ∧ Q′ as contradiction
▪ Actually direct proof P → Q

• Inadvertent proof by contrapositive
▪ Goal:  prove P → Q
▪ Mistake:  assume P ∧ Q', deduce P′

(rather than contradiction) without using P
▪ Incorrectly claim P ∧ P′ as contradiction
▪ Actually proof of Q′→ P′,

proof by contrapositive of P → Q



CS 214 Proofs, Induction, and Number Theory 2.37

© 2014 W. H. Freeman and Company  © 2014 University of Alabama in Huntsville   © 2014 Mikel D. Petty, Ph.D.

Proof technique summary
Goal:  prove P → Q

Table 2.2
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Number theory definitions
• Perfect square:  integer n such that n = k2 for integer k.
• Prime number:  integer n such that n > 1

and n is divisible only by 1 and n.
• Composite number:  integer n that is not prime;

i.e., n = ab where a and b are integers, 1 < a, b < n.
• Less than:  x < y means that y – x > 0.
• Divides:  n | m means that m = kn for integer k.
• Absolute value:  if x ≥ 0, then |x| = x; if x < 0, then |x| = –x.
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Section 2.1 homework assignment

See homework list for specific exercises.
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2.2  Induction
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Induction analogy:  climbing an infinite ladder
• If two things are true …
▪ You can reach the first rung
▪ From any rung, you can reach the next rung

• … then you can reach every rung

//www.smdc.army.mil/SMDCPhoto_Gallery/Eagle/Jun04/
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Induction analogy:  knocking over dominoes
• If two things are true …
▪ You can knock over the first domino
▪ Each domino will knock over the next one

• … then you can knock over all the dominoes

//www.tomgpalmer.com/images/
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Induction concept
• Goal
▪ Notation P(n) means positive integer n has property P
▪ How can it be proven that (∀n)P(n)?

• If two things are true …
▪ P(1)
▪ For any positive integer k, P(k) → P(k + 1)

• … then P(n) holds for every positive integer
• Prove infinitely many statements in two steps
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Definition of induction
First principle of mathematical induction
1. P(1)
2. (∀k)[P(k) → P(k + 1)]

Equivalently  (P(1) ∧ (∀k)[P(k) → P(k + 1)]) → (∀n)P(n)

Mathematical induction is deductive reasoning.

→ P(n) for all positive integers n
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Parts of a proof by induction
• Basis: Prove P(1) true directly
• Inductive hypothesis: Assume P(k) true
• Inductive step: Prove P(k + 1) true

using assumption that P(k) true
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Induction proof step Name(s) for the step

Show P(1) is true

Basis step [Gersting, 2014] [Epp, 2004] [Lewis, 1981]
Basis [Hopcroft, 1979] [Sipser, 2006] [Graham, 1989]
Inductive base [Grassman, 1996]
Basis of induction [Grassman, 1996]

Assume P(k) is true

Inductive hypothesis [Gersting, 2014] [Hopcroft, 1979]
[Epp, 2004] [Grassman, 1996]

Inductive assumption [Gersting, 2014]
Induction hypothesis [Sipser] [Lewis, 1981] [Davis, 1994]

Show P(k) → P(k + 1)

Inductive step [Gersting, 2014] [Hopcroft, 1979]
[Epp, 2004] [Grassman, 1996]

Induction step [Sipser, 2006] [Lewis, 1981]
Induction [Graham, 1989]
Proof under hypothesis [Grassman, 1996]

Discharge (remove) assumption that P(k) is true Discharge hypothesis [Grassman, 1996]

Generalize from P(k) → P(k + 1)
for arbitrary k to (∀k)(P(k) → P(k + 1)) Generalize [Grassman, 1996]

Conclude (∀n)P(n) is true Conclusion [Grassman, 1996]

Induction proof steps and step names

Also “proof by induction” AKA “inductive proof”, “induction proof”.
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[Davis, 1994]  M. D. Davis, R. Sigal, and E. J. Weyuker, Computability, 
Complexity, and Languages, Fundamentals of Theoretical Computer Science, 
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Example proof by induction
Theorem
1 + 3 + 5 + … + (2n – 1) = n2 for any positive integer n.

Proof
Basis.  1 = 12.

Inductive hypothesis.  Assume 1 + 3 + 5 + … + (2k – 1) = k2.

Inductive step.  Show 1 + 3 + 5 + … + (2(k + 1) – 1) = (k + 1)2.

Rewrite left side to show the next to the last term
1 + 3 + 5 + … + (2k – 1) + (2(k + 1) – 1)

Example 14continued next slide
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This contains the value assumed for k
as a subexpression; substitute and simplify.

1 + 3 + 5 + … + (2(k + 1) – 1) Left side
= 1 + 3 + 5 + … + (2k – 1) + (2(k + 1) – 1) Rewrite left side
= k2 + (2(k + 1) – 1) Sub IH
= k2 + (2k + 2 – 1) Multiply through
= k2 + 2k + 1 Simplify
= (k + 1)2 Factor polynomial

Therefore by induction 1 + 3 + 5 + … (2n – 1) = n2

for any positive integer n. ■

Rule 5:  In a proof by induction, you must find the inductive 
hypothesis at some point in the inductive step.
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Example proof by induction
Theorem
20 + 21 + 22 + … + 2n = 2n + 1 – 1 for any integer n ≥ 1.

Proof
Basis.  20 + 21 = 3 = 21 + 1 – 1.

Inductive hypothesis.
Assume 20 + 21 + 22 + … + 2k = 2k + 1 – 1.

Inductive step.
Show 20 + 21 + 22 + … + 2k + 1 = 2k + 1 + 1 – 1.

Rewrite left side to show the next to the last term
20 + 21 + 22 + … + 2k + 2k + 1

Example 15

important
technique

continued next slide
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This contains the value assumed for k
as a subexpression; substitute and simplify.

20 + 21 + 22 + … + 2k + 1 Left side
= 20 + 21 + 22 + … + 2k + 2k + 1 Rewrite left side
= 2k + 1 – 1 + 2k + 1 Sub IH
= 2(2k + 1) – 1 Add like terms
= 2k + 1 + 1 – 1 Law of exponents

Therefore by induction 20 + 21 + 22 + … + 2n = 2n + 1 – 1
for any integer n ≥ 1. ■
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Example proof by induction
Theorem
For any positive integer n, 

Proof
Basis.

Inductive hypothesis.  Assume 

Inductive step.  Show 

2
)1(...321 +

=++++
nnn

2
)11(11 +

=

2
)1(...321 +

=++++
kkk

2
]1)1)[(1()1(...321 +++

=+++++
kkk

Practice 7continued next slide
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Rewrite to show the next to the last term,
substitute the value assumed in the IH, and simplify.

Therefore by induction, for any positive integer n

■2
)1(...321 +

=++++
nnn

Left side

Rewrite left side

Sub IH

Factor out (k + 1)

Common denominator

Multiply
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Example proof by induction
Theorem
For any positive integer n, 2n > n.

Proof
Basis.  21 > 1.
Inductive hypothesis.  Assume 2k > k.
Inductive step.  Show 2k+1 > k + 1.

2k+1 Left side
= 2k · 2 Law of exponents
> k · 2 By IH
= k + k Def of multiplication
≥ k + 1 k given as “positive integer”, thus k ≥ 1

Thus 2n > n for any positive integer n. ■ Example 16
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Example proof by induction
Theorem
For any positive integer n ≥ 4, n2 > 3n.

Proof
Basis.  42 > 3 · 4, i.e., 16 > 12.
Inductive hypothesis.  Assume k2 > 3k.
Inductive step.  Show (k + 1)2 > 3(k + 1).

(k + 1)2 Left side
= k2 + 2k + 1 Multiply
> 3k + 2k + 1 By IH
≥ 3k + 8 + 1 k ≥ 4 by basis
> 3k + 3 8 + 1 > 3
= 3(k + 1) Factor out 3
Thus n2 > 3n for any positive integer n ≥ 4. ■ Example 17
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Example proof by induction
Theorem
For any positive integer n, 22n – 1 is divisible by 3.

Proof
Basis.  22(1) – 1 = 4 – 1 = 3 is divisible by 3.

Inductive hypothesis.  Assume 22k – 1 is divisible by 3.
Therefore 22k – 1 = 3m and 22k = 3m + 1 for integer m.

Inductive step.
Show 22(k+1) – 1 is divisible by 3.

Example 18
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22(k+1) – 1 Left side
= 22k+2 – 1 Multiply through exponent
= 22 · 22k – 1 Law of exponents
= 22(3m + 1) – 1 By IH
= 12m + 4 – 1 Multiply through
= 12m + 3 Simplify
= 3(4m + 1) (4m + 1) an integer

Thus 22n – 1 is divisible by 3 for any positive integer n. ■
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Example 5.2.3 [Epp, 2011]

Example proof by induction
Theorem
For any real number r ≠ 1 and any integer n ≥ 0, 

Proof
Basis.  Show

Inductive hypothesis.  Assume

1
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=
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Inductive step.  Show

Left side

Rewrite left side to show next to last

Sub IH

Multiply by (r – 1)/(r – 1)

Add fractions

Multiply through

Add to cancel terms
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Example proof by induction
Programming language denotes multiplication with ( ),
e.g., a·b·c·d·e·f·g would be written ((((((a)b)c)d)e)f)g
or ((a)b)(((c)d)(e)f)g.

Theorem
Any product of factors in this language can be written
with an even number of parentheses.

Proof (by induction on number of factors)
Basis.  For a single factor, there are 0 parentheses.

Inductive hypothesis.  Assume for k factors there are an 
even number of parentheses.

Example 19
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Inductive step.  Consider product P of k + 1 factors;
P = r·s, where r has k factors and s is a single factor.
By the inductive hypothesis, r has an even number of 
parentheses.

Write P as (r)s, adding 2 parentheses to the even number 
of parentheses in r, thereby expressing P with an even 
number of parentheses.

Thus any product of factors can be written
with an even number of parentheses. ■
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Example proof by induction
Tiling:  Cover n x n checkerboard with tiles that conform to 
the grid, with no missed squares and no overlapping tiles.
Angle iron:  L-shaped tile of 3 squares.
Problem:  given any n x n checkerboard with one square 
removed, tile it with angle irons.

Example 20

n x n checkerboard
(n = 4)

4 x 4 checkerboard
with 1 square missing

4 x 4 checkerboard
with 1 square missing
tiled with angle irons

angle iron
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Theorem
For any positive n, a 2n x 2n checkerboard with 1 square 
removed can be tiled with angle irons.

Proof (by induction on size parameter n)
Basis.  For n = 1, a 21 x 21 checkerboard, see the figure.

Inductive hypothesis.  Assume any 2k x 2k checkerboard 
with 1 square removed can be tiled with angle irons.
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Inductive step.  Show that any 2k+1 x 2k+1 checkerboard with 
1 square removed can be tiled with angle irons.
Divide the 2k+1 x 2k+1 checkerboard into quarters;
each will be 2k x 2k, and one will be missing a square.
By the inductive hypothesis the 2k x 2k quarter missing a 
square can be tiled with angle irons.
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Suppose each of the other three quarters have a specific 
square removed, as shown in the left figure.
Then by the inductive hypothesis, each of them can be tiled 
with angle irons, and the three removed squares can be 
tiled with an angle iron, as shown in the right figure.
Thus the 2k+1 x 2k+1 checkerboard with 1 square removed 
can be tiled with angle irons, and so any 2n x 2n

checkerboard with 1 square removed can so tiled. ■
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Example proof by induction
• Parity setter purpose
▪ Reads input binary string
▪ Writes output binary string with additional bit
▪ Additional bit set to ensure even (odd) number of 1s
▪ Used for checking data for errors

• Parity setter operation (even parity)
▪ Parity bit initially 0
▪ Input read one bit at a time, input bit written to output
▪ If input bit 0, parity bit not changed
▪ If input bit 1, parity bit “flipped”:  0 → 1, 1 → 0
▪ After last input bit, final parity bit written to output

Parity Setter

0 parity bit
input binary string,

e.g., 10110

output binary string
with parity bit added,
e.g., 101101 Exercise 68
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Theorem
The number of 1s in the output string
(input string plus final parity bit), is always even.

Proof (by induction on the input length)
Basis.  Length n = 1.  Parity bit initially 0.
Case 1.  Input 0, parity bit unchanged, output 00, even.
Case 2.  Input 1, parity bit flipped, output 11, even.

Inductive hypothesis.  Assume that for input of length k
the output string has an even number of 1s.
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Inductive step.  Show that for input of length k + 1
the output string has an even number of 1s.

Analyze possible cases:

Parity bit Input bit Parity bit
Case after k bits k + 1 after k + 1 bits

1 0 0 0
2 0 1 1
3 1 0 1
4 1 1 0

all possible
cases

by definition
of parity setter

operation
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Case 1. No 1s added to or removed from output for bit k + 1.
Even number of 1s by IH unchanged.

Case 2.  Two 1s added to output string for bit k + 1:
input bit k + 1 and flipped parity bit 0 → 1.
Even number of 1s by IH plus two more 1s is even.

Case 3.  Same as Case 1.

Case 4.  One 1 added to output string for bit k + 1
(input bit k + 1) and one 1 removed (flipped parity bit 1 → 0).
Even number of 1s by IH plus one minus one is even.  ■
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Definition of induction, revisited
First principle of mathematical induction
1. P(1)
2. (∀k)[P(k) → P(k + 1)]

Second principle of mathematical induction
1. P(1)
2. (∀k)[P(r) true for all r,

1 ≤ r ≤ k → P(k + 1)]
→ P(n) for all positive integers n

→ P(n) for all positive integers n
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Proving the principles of induction
Principle of well-ordering
Every non-empty collection of positive integers
has a smallest member.

It can be proven that
Second induction → first induction
First induction → well-ordering
Well-ordering → second induction
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Example proofs by induction, both principles
Theorem
A straight fence with n fence posts has n – 1 connecting 
sections for any n ≥ 1.

(a) Fence with 4 fence posts, 3 sections

(c) Fence with post and section removed

(b) Fence with 1 fence post, 0 sections

(d) Fence with section removed

Example 21
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Proof (by induction on number of posts; first principle)
Basis.  A fence with 1 post has 0 sections; see Fig (b).
Inductive hypothesis:  Assume that a fence with k posts
has k – 1 sections.
Inductive step.  Show that a fence with k + 1 posts
has k sections.
Given a fence with k + 1 posts, remove last post and 
section; the remaining fence has k posts
and by the inductive hypothesis k – 1 sections; see Fig (c).
Because 1 section was removed from the original fence,
it had k – 1 + 1 = k sections.
Thus a fence with n posts has n – 1 sections. ■
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Proof (by induction on number of posts; second principle)
Basis.  A fence with 1 post clearly has 0 sections.
Inductive hypothesis:  Assume that for all r, 1 ≤ r ≤ k,
a fence with r posts has r – 1 sections.
Inductive step.  Show that a fence with k + 1 posts
has k sections.
Given a fence with k + 1 posts, remove 1 section; Fig (d).
The two parts have r1 and r2 posts, 1 ≤ r1 ≤ k and 1 ≤ r2 ≤ k,
and r1 + r2 = k + 1 (no posts were removed).
By the inductive hypothesis the two parts
have r1 – 1 and r2 – 1 sections,
thus the original fence had (r1 – 1) + (r2 – 1) + 1 = k sections. 
Thus a fence with n posts has n – 1 sections. ■
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Example proof by induction
Integer n is prime iff it is divisible only by 1 and itself.
Integer n is composite iff it can written as the product
of two integers other than 1 and n.

Theorem
For every integer n ≥ 2, n is either prime
or a product of primes.

Proof
Basis.  2 is a prime.

Inductive hypothesis.  Assume for all r, 2 ≤ r ≤ k,
r is either prime or the product of primes.

Example 23
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Inductive step.
Show k + 1 is either prime or a product of primes.
If k + 1 is prime, the proof is complete.
If k + 1 is not prime (i.e., composite),
it can be written k + 1 = ab (by definition of composite),
where 1 < a < k + 1 and 1 < b < k + 1.
Therefore 2 ≤ a ≤ k and 2 ≤ b ≤ k.
By inductive hypothesis, a and b are either prime or the 
product of primes.
Thus k + 1 = ab is the product of primes.
Therefore n is either prime or a product of primes. ■



CS 214 Proofs, Induction, and Number Theory 2.77

© 2014 W. H. Freeman and Company  © 2014 University of Alabama in Huntsville   © 2014 Mikel D. Petty, Ph.D.

Example proof by induction
Theorem
Any postage amount ≥ 8 cents,
can be assembled using only 3 and 5 cent stamps.

Proof
P(n) is the property that n cents of postage can be 
assembled from 3 and 5 cent stamps.

Basis.  8 = 3 + 5, 9 = 3 + 3 + 3, 10 = 5 + 5.

Inductive hypothesis.  Assume  that for all r, 8 ≤ r ≤ k,
r cents can be assembled from 3 and 5 cent stamps.

Example 24
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Inductive step.  Show k + 1 can be assembled from 3 and 5.
Consider k + 1 ≥ 11.
If k + 1 ≥ 11, then (k + 1) – 3 = k – 2 ≥ 8.
By inductive hypothesis k – 2 can be written as sum
of 3s and 5s.
But (k – 2) + 3 = k + 1,
so k + 1 also can be written as sum of 3s and 5s.

Thus n can be assembled as a sum of 3s and 5s. ■

1
2
3
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Induction summary
• Parts of a proof by induction
▪ Prove P(1) true; “basis step”
▪ Assume P(k) true (first principle),

or assume P(r) true for 1 ≤ r ≤ k (second principle);
“inductive hypothesis”

▪ Prove P(k + 1) true using assumption; “inductive step”
▪ Conclude that (∀n)P(n) true 

• Induction reminders
▪ Prove the basis case (or cases) first
▪ Make an assumption (the IH)
▪ Find the IH and use it in the IS
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• When to use induction
▪ Infinite or unknown number of cases
▪ Each case can be analyzed in terms of previous cases
▪ Examples; objects (previous objects)

- Integers (lesser integers); Chapter 2
- Sets (subsets); Chapter 3
- Graphs (subgraphs); Chapter 5
- Data structures (data structure before update); Chapter 5
- Computation steps (earlier computation steps); future classes

• Induction is a computer scientist’s essential tool

http://yoda.locutus.be/
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Section 2.2 homework assignment

See homework list for specific exercises.
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2.3  More on Proof of Correctness
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2.4  Number Theory
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