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Chapter sections and objectives

e 2.1 Proof Techniques
* Prove conjectures using direct proof,
proof by contrapositive, and proof by contradiction

e 2.2 Induction
= Recognize when a proof by induction is appropriate
= Write proofs by induction using either the first
or second principle of induction

e 2.3 More on Proof of Correctness | not covered
e 2.4 Number Theory in CS 214
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Sample problem

The nonprofit organization at which you volunteer has
received donations of 792 bars of soap and 400 bottles
of shampoo. You want to create packages to distribute
to homeless shelters such that each package contains
the same number of shampoo bottles and each package
contains the same number of bars of soap.

How many packages can you create?
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2.1 Proof Techniques
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Arguments and theorems

e Formal arguments of Chapter 1
 Form P — Q, where P, O compound wffs
= Objective: show argument is valid

= Intrinsically true, based on logical structure
- Propositional logic; truth of P implied truth of O
- Predicate logic; P — Q true under all interpretations

e Theorems of Chapter 2
 Form P — Q, where P, O compound wffs
= QObjective: show conclusion is true

= Contextually true, based on domain knowledge
- Propositional logic; P true, therefore QO true
- Predicate logic; P and P — Q true under specific interpretation

= Combine formal logic and domain knowledge
= Often stated less formally than formal arguments
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Inductive and deductive reasoning

e Inductive reasoning
= Observe instances where P — Q
= Assume P — Q always true; known as theory
= Inductive reasoning in science: acceptable
= Inductive reasoning in math and CS: not acceptable

e Deductive reasoning
» State P — QO as conjecture
Prove using logic and domain knowledge,;
P — O becomes theorem
Disprove by showing instance when not true;
P — O becomes fallacy
Deductive reasoning in science: not possible
Deductive reasoning in math and CS: acceptable
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Inductive and deductive reasoning in math

e Conjecture: “Fermat’s Last Theorem”
= x"+y"=z" has no integer solutions for n > 2, x, y, z#0
= “This margin is too narrow” (1637)

e |Inductive reasoning
= Shown true by hand for n <14 (1832)
= Shown true by computer for n <4 - 10°
= Conjecture not proven for all »n

e Deductive reasoning

= Multiple incomplete and incorrect proofs
= Proven true for all n by Wiles (1993)
= Proof used methods unknown to Fermat

(:l;salm'\lfpﬂ, s prgreldeg o el 5 Engdefs mepalpan G,

Wiles © C. J. Mozzochi, Princeton NJ
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Inductive reasoning and mathematical induction

¢ |Inductive reasoning # mathematical induction

¢ |Inductive reasoning; way to learn about world,
develop conjectures, discern patterns

e Mathematical induction; valid proof technique,
a type of deductive reasoning

e Confusingly, both AKA “induction”
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Proof techniques

Proof techniques

= Disproof by counterexample (§ 2.1)
= Exhaustive proof (§ 2.1)

= Direct proof (§ 2.1)

= Proof by contraposition (§ 2.1)
= Proof by contradiction (§ 2.1)
» Mathematical induction (§ 2.2)

Differences

* Process of proving theorem

= Underlying logical structure

Similarities

* Prove P — QO

* Proofs based on valid argument, domain knowledge
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Example disproof by counterexample

Factorial: n=n-n-1)-n-2)-...-1
Example: 31=3-2-1=6
Conjecture: For every positive integer n, n! < n?

n n! n? n! <n?

1 1 true

2 2 4 true l

3 9 true looks good so far ...
4 24 16 false counterexample

Example 1
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Example disproof by counterexample

Conjecture
If « and b are integers and a? = b?, then a = b.

Counterexample
12=-1%, but 1 #-1.

Example 4.1.4 [Epp, 2011]
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Exhaustive proof

e Goal: prove P — QO

e Method: show conjecture holds for each case,
l.e., each object in collection

e Applicable when conjecture P — QO
Is about finite collection of objects

e Exhaustive proof vs. “proof by example”
= Exhaustive proof covers all possible cases
= Exhaustive proof is a valid proof method
* “Proof by example” covers a subset of the cases
* “Proof by example” is not a valid proof method
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Example exhaustive proof

Conjecture: If an integer between 1 and 20 inclusive
IS divisible by 6, then it is also divisible by 3.
Proof: Show true for each x, 1 <x <20.
Number | Divisible by 6 Divisible by 3 Number | Divisible by 6 Divisible by 3
1 no 11 no
2 no 12 yes: 12=2x6 | yes: 12=4x3
3 no 13 no
4 no 14 no
5 no 15 no
6 yes: 6=1x6 yes: 6=2x3 16 no
7 no 17 no
8 no 18 yes: 18=3x6 | yes: 18=6Xx3
9 no 19 no
10 no 20 no
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Example exhaustive proof

Problem: Assign colors to regions of a map so that

no two adjacent regions have the same color
Conjecture: 4 colors suffice (1852)
Proof: Exhaustive analysis of 1,476 cases (1976)

/lIwww.math.gatech.edu/~thomas/FC/fourcolor.html [Wilson 2004]
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Getting proofs started

e Understand statement of theorem
e Restate in if-then form and assign “names”
e Write first and last lines of proof

Theorem
The product of two even integers is even.
If x and y are even integers, then xy is even.

Proof
Let x and y be even integers.

Therefore xy is even. =
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Theorem

Every complete, bipartite graph is connected.
If G is a complete, bipartite graph, then G is connected.

Proof
Let G be a complete, bipartite graph.

Therefore G is connected. =

Example 4.1.8, p. 158, [Epp, 2011]
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Direct proof

e Goal: prove P — QO

e Method: assume hypothesis P is true,
deduce conclusion Q is true

e Logical form: prove P — QO
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Example formal direct proof

Theorem
(Vx)(Vy)(x 1s even integer A y 1s even integer — product xy is even integer)

Proof
1. xis even integer A y is even integer

2. (Vx)[x is even integer — (dk)(k is integer A x = 2k)] def of even integer
3. x1s even integer — (3k)(k 1s integer A x = 2k)] 1, ui
4. yis even integer — (3k)(k is integer A y = 2k)] 1, ui
5. xis even integer 4, sim
6. (3k)(k 1s integer A x = 2k) 2,5, mp
7. mis integer A x =2m 6, el
8. y1s even integer 4, sim
9. (Fk)(k 1s integer A y = 2k) 3,8, mp
10. nis integer A y =2n 9, e1
11. x=2m 7, sim
12. y=2n 10, sim

Example 4
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13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.

24.

Even more formal version of conjecture:

(VX)(Vy)U(x) A E(x) A(y) A E(y) — 1(xy) A E(xy))
where I(x) is x is integer, E(x) is x is even.

xy = (2m)(2n)

xy = 2(2mn)

m 1s integer

n is integer

2mn 1s integer

xy =2(2mn) A\ 2mn 1is integer
(3k)(k an integer A xy = 2k)

(Vx)(3k)(k an integer A x = 2k) — x is even integer)
(3k)(k an integer A xy = 2k) — xy 1s even integer)

Xy 1s even integer

X 1s even integer A y 1s even integer

— Xy 1s even integer

(Vx)(Vy)(x 1s even integer A y 1s even integer
— product xy 1s even integer)

11, 12, substitution of equals
13, com and ass )
7, sim

10, sim

15, 16, number fact
14, 17, con

18, eg

def of even integer
20, u1

19, 21, mp

temp hyp discharged

23, ug twice m

Proofs rarely written this formally; possibility of doing so assumed.
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Example direct proof

Theorem
The product of two even integers is even.
If two integers are even, then their product is even.

Proof
Let x and y be even integers.
Then x =2m and y =2n, where m and n are integers.

Then xy = (2m)(2n) = 2(2mn), where 2mn is an integer.

Thus xy has the form 2k, where k=2mn is an integer,
and xy is therefore even. =

Rule 4: In direct proof, assume the hypothesis (antecedent) is true,
then use that information to prove the conclusion (consequent).

© 2014 W. H. Freeman and Company © 2014 University of Alabama in Huntsville © 2014 Mikel D. Petty, Ph.D.
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Example direct proof

Notation: x|y means x divides y, i.c., y is divisible by x.
x | y means y = xk for integer k.

Theorem
If n|mand m|p, thenn|p.

Proof

Let n | m; then there is integer a such that m = na.

Let m | p; then there is integer b such that p = mb.
Substitute for m in p = mb to give p = mb = (na)b = n(ab).
Because p = n(ab), where ab is an integer, thenn |p. =

Exercise 33
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Example direct proof

Theorem
Given any two consecutive integers,
one of them is odd and the other is even.

“Live”

Theorem 4.4.2, p. 158, [Epp, 2011]
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Example direct proof

Notation: x|y means x divides y, i.c., y is divisible by x.
x | y means y = xk for integer k.

Theorem
If n|mand m|p, thenn|p.

Proof

Let n | m; then there is integer a such that m = na.

Let m | p; then there is integer b such that p = mb.
Substitute for m in p = mb to give p = mb = (na)b = n(ab).
Because p = n(ab), where ab is an integer, thenn |p. =

Exercise 33
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Proof by contraposition

e Goal: prove P — QO
e Method: assume negation of conclusion Q'
IS true, deduce negation of hypothesis P’is true
e Logical form: prove O'— P’
e Valid by tautology: (O'— P") < (P — Q)

Plo|P |0 |00—P|Po0| (@ —P)e@—0)
T T F F T T T
T F F T F F T
F T T F T T T
F F T T T T T

tautology
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Example proof by contraposition

Theorem
If the square of an integer is odd, then the integer is odd.

Proof (by contraposition)
Original conjecture restated
If n> is an odd integer, then » is an odd integer.

Contrapositive
If n is an even integer, then #? is an even integer.

Suppose # is even.
Then n>=n - nis even by the theorem of Example 5.

Thus if »? is an odd integer, then n is an odd integer,
by contraposition. =

Example 6
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Example proof by contraposition

Theorem
If n + 1 passwords are issued to » students,
then at least one student received = 2 passwords.

Forming the contrapositive: P — Q becomes Q' — P’
Original antecedent P

“n+ 1 passwords are issued to » students”
Contrapositive consequent P’

“it is false that n + 1 passwords were issued”

Original consequent O

“at least one student received = 2 passwords” (3x)R(x)
Contrapositive antecedent O

“‘every student receives < 2 passwords” (Vx)R(x)'

Example 7
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Theorem
If n + 1 passwords are issued to » students,
then at least one student received = 2 passwords.

Proof (by contraposition)
Contrapositive: If every student receives <2 passwords,
then it is false that » + 1 passwords were issued.

Suppose every student receives < 2 passwords;

then each student receives at most 1 password.

The total number of passwords isat mostn-1+#n+ 1.
Thus the theorem is true by contraposition. =
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Errors in proof by contrapositive

e P'— (' (negate but not reverse) AKA inverse
 P— Qand P — Q' are not equivalent
* Proving P — Q' does not prove P — QO

e O — P (reverse but not negate) AKA converse
= P— Qand Q0 — P are not equivalent
* Proving QO — P does not prove P — 0

Example of converse
Original: If a>5,thena>2. True
Converse: If a>2,then a>5. False

Example 8
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If and only if

e Theorems may have form P if and only if O
= “if and only if” AKA “iff”
e Parts of “if and only if”
“Pif 0" means Q — P
“Ponly if 0" means P — QO
e To prove P iff O, prove both 9 —- Pand P — QO
= Not a separate proof technique
= |f and only if requires two proofs
= Parts of proof may use same or different techniques
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Example if and only if proof

Theorem
Given integers x and y, product xy is odd if and only if ?

x and y are odd integers.

Proof
(if) If x and y are odd integers, then xy is odd.

Suppose x and y are odd.
Thenx=2n+1and y=2m + 1, where m and n are integers.

Thenxy=Q2n+ 1)2m+1)=4nm +2m + 2n + 1

=22nm+m+n)+ 1.
This has the form 2k + 1, where k= (2nm + m + n) is an

iInteger, so xy is odd.

Example 9
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(only if) If xy is odd, then x and y are odd. ?
Contrapositive: If x is even or y is even, then xy is even.

The antecedent has three cases:
Case 1. xeven,yodd: x=2m,y=2n+1,
Then xy=(2m)(2n + 1) = 2(2mn + m), which is even.
Case 2. xodd, yeven: x=2m+ 1, y=2n,
Then xy=(2m + 1)(2n) = 2(2mn + n), which is even.
Case 3. xeven,yeven: x=2m+ 1, y=12n,
Then xy = (2m)(2n) = 2(2mn), which is even.
Alternative: xy even by Example 5.

Thus xy odd — x and y are odd by contraposition. =
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Proof by contradiction

e Goal: prove P — QO

e Method: assume negation of conclusion Q’,
deduce contradiction 0

e Logical form: prove P A O'— 0 (contradiction)

e Valid by tautology: (PAQ'— 0) < (P — Q)

PO |Q |PAQ | 0 |PAQ =0 |P =0 |PAQ = 0)o (P —0)
T T F F F T T T

T & T T F F [F T

B T F F F T T T

[ IE T F F T T T
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Proof by contradiction example

Theorem
If a number added to itself gives itself, then the number is 0.

Restated: If x + x=x, then x=0.

Proof (by contradiction)

Assume x + x=x and x # 0.

Then 2x = x.

Because x = 0, divide both sides of 2x=x by x to get 2 =1,
a contradiction.

Thusx+x=ximpliesx=0. =

Example 10
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Proof by contradiction example

Theorem
The product of two odd integers is not even.
Restated: If x and y are odd integers, then xy is odd.

Proof (by contradiction)
Letx=2m + 1 and y =2n + 1 where m and » are integers,
soxy=02m+ 1)2n+1).

Assume by way of contradiction xy is even.
Then xy = 2k for some integer k.

Thus 2k=02m+ 1D)2n+ 1)=4mn +2m + 2n + 1.
Rearranging, 1 =2k —4mn —2m — 2n.

Factoring out 2, 1 =2(k —2mn — m — n),

with £ — 2mn — m — n an integer.

This is a contradiction, because 1 is not even. =

Practice 6
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Proof by contradiction example (hard)

Theorem

\2 is not rational.

Restated: If x =2, then x can not be written as p/qg,
where p and g are integers, g # 0,

and p and ¢ have no common factors.

Proof (by contradiction)

Assume by way of contradiction V2 is rational,

i.e., V2 = p/q for integers p and ¢, g # 0, with no common factors.
Then 2 = (p/q)? = p?/q* and 2¢* = p°.

Then 2 | p?> which means 2 | p,

so 2 is a factor of p and 4 is a factor of p°.

Then 2¢? = p? can be written 2¢? = 4x, so ¢° = 2x.

Then 2 | ¢ which means 2|q.

Now we have 2 is a factor of p and ¢, which contradicts

the statement that p and ¢ have no common factors. m  Example 11
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Errors in proof by contradiction

e |nadvertent direct proof
 Goal: prove P— QO
» Mistake: assume P A O, deduce QO
(rather than contradiction) without using O’
= Incorrectly claim O A Q' as contradiction
= Actually direct proof P — QO

e |nadvertent proof by contrapositive
= Goal: prove P— QO
 Mistake: assume P A Q', deduce P’
(rather than contradiction) without using P
= Incorrectly claim P A P'as contradiction
= Actually proof of 0" — P/,
proof by contrapositive of P — O
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Proof technigue summary

Goal: prove P — QO

Proof technique Approach to prove P — QO R emarks
Exhaustive proof Sz 22 _ — O ':_3111}’ useful for
for all possible cases a finite number of cases
Direct proof Assume P, deduce O Standard approach,

should be considered first

Proof by contraposition

Assume Q', deduce P’

Use if Q' seems to provide
more support to proof than P

Proof by contradiction

Assume P and Q’,
deduce a contradiction

Often useful when O asserts
something is not true

If and only if (iff) proof

(only if) Assume P, prove O
(if) Assume O, prove P

Be careful not to assume too much;
either (if) or (only if) false means iff false

Table 2.2
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Number theory definitions

e Perfect square: integer n such that n = &* for integer k.
e Prime number: integer n such that n > 1
and n is divisible only by 1 and n.
e Composite number: integer n that is not prime;
l.e., n=ab where q and b are integers, 1 <a, b <n.
e Lessthan: x <y meansthaty—x>0.
e Divides: n | m means that m = kn for integer k.
e Absolute value: if x>0, then |x| = x; if x <0, then |x| = —x.
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Section 2.1 homework assignment

See homework list for specific exercises.
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2.2 Induction
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Induction analogy: climbing an infinite ladder

o |f two things are true ...
= You can reach the first rung
 From any rung, you can reach the next rung

e ... then you can reach every rung

/lwww.smdc.army.mil/SMDCPhoto_Gallery/Eagle/Jun04/
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Induction analogy: knocking over dominoes

o |f two things are true ...
= You can knock over the first domino
= Each domino will knock over the next one

e ... then you can knock over all the dominoes

/lwww.tomgpalmer.com/images/
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Induction concept

e Goal
» Notation P(n) means positive integer n has property P
* How can it be proven that (Vn)P(n)?

e |f two things are true ...
= P(1)
= For any positive integer k, P(k) — P(k+ 1)
e ... then P(n) holds for every positive integer
e Prove infinitely many statements in two steps
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Definition of induction

First principle of mathematical induction

1. P(1) L

2. (VR[P(K) — P(k+ 1)] }—> P(n) for all positive integers »
Equivalently (P(1) A (VE)[P(k) — P(k+ 1)]) — (Vr)P(n)

Mathematical induction is deductive reasoning.
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Parts of a proof by induction

e Basis: Prove P(1) true directly

e |Inductive hypothesis: Assume P(k) true

e |Inductive step: Prove P(k+ 1) true
using assumption that P(k) true
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Induction proof steps and step names

Induction proof step Name(s) for the step
Basis step [Gersting, 2014] [Epp, 2004] [Lewis, 1981]
o (1) I8 e Basis [Hopcroft, 1979] [Sipser, 2006] [Graham, 1989]

Inductive base [Grassman, 1996]
Basis of induction [Grassman, 1996]

Assume P(k) is true

Inductive hypothesis [Gersting, 2014] [Hopcroft, 1979]
[Epp, 2004] [Grassman, 1996]

Inductive assumption [Gersting, 2014 ]

Induction hypothesis [Sipser] [Lewis, 1981] [Davis, 1994]

Show P(k) — P(k+ 1)

Inductive step [Gersting, 2014] [Hopcroft, 1979]
[Epp, 2004] [Grassman, 1996]

Induction step [Sipser, 2006] [Lewis, 1981]

Induction [Graham, 1989]

Proof under hypothesis [Grassman, 1996]

Discharge (remove) assumption that P(k) is true

Discharge hypothesis [Grassman, 1996]

Generalize from P(k) — P(k+ 1)
for arbitrary & to (Vk)(P(k) — P(k+ 1))

Generalize [Grassman, 1996]

Conclude (Vn)P(n) is true

Conclusion [Grassman, 1996]

Also “proof by induction” AKA “inductive proof”, “induction proof”.
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Example proof by induction

Theorem
1+3+5+...+(2n~-1)=n?for any positive integer n.

Proof
Basis. 1 =12,

Inductive hypothesis. Assume 1 +3+5+ ... +(2k—-1)=k.
Inductive step. Show 1 +3+5+...+Q2k+1)-1)=(k+ 1)

Rewrite left side to show the next to the last term
1+3+5+...+2k—-D+Q2Kk+1)-1)

continued next slide Example 14
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This contains the value assumed for &
as a subexpression; substitute and simplify.

1+3+5+...+Q2Kk+1)-1)
1+3+5+...+2k-1)+Q2Kk+1)-1)
E+Qk+1)-1)

K+Qk+2-1)

K+ 2k+ 1

(k+ 1)

Left side

Rewrite left side
Sub IH

Multiply through
Simplify

Factor polynomial

Therefore by induction 1 +3+5+ ... 2n—1) = n?
for any positive integer n. =

Rule 5: In a proof by induction, you must find the inductive
hypothesis at some point in the inductive step.
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Example proof by induction

Theorem
20+ 21 +22+  +27=27*1_1for any integer n > 1.

Proof
Basis. 20+2!1=3=21+1_1,

Inductive hypothesis.
Assume 20+ 21 + 22+ | +2k=2k+1_ 1,

Inductive step.
Show 20+ 21 +22+4 | +2k+t1=2k+14+1_ 1

Rewrite left side to show the next to the last term important
20 421 49224 4 k4 Dk+1 technique

continued next slide Example 15
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This contains the value assumed for &
as a subexpression; substitute and simplify.

20421 4224 4 2kt Left side
= 204214224+ 2k4 Dk+1 Rewrite left side
= Qk+t1_ 14 2k+1 Sub IH
= 202kt -1 Add like terms
= Qk+1+1_1 Law of exponents

Therefore by induction 20+ 2! +22 + | +2r=21+1_]
forany integern>1. m
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Example proof by induction

Theorem

For any positive integern, 1+2+3+...+n= n(n+1)

2

Proof

Basis. 1= Id+1)

2

Inductive hypothesis. Assume 1+2+3+..+k=

k(k+1)

(k+D[(k+1)+1]
2

Inductive step. Show 1+2+3+.. . +(k+1)=

continued next slide Practice 7

© 2014 W. H. Freeman and Company © 2014 University of Alabama in Huntsville © 2014 Mikel D. Petty, Ph.D.



CS 214 Proofs, Induction, and Number Theory

2.53

Rewrite to show the next to the last term,
substitute the value assumed in the IH, and simplify.

1+2+...+(k+1) Left side
=1+2+..+k+(k+1)  Rewrite left side
k(k+1)
e+ D) Sub IH
k
= (k+ 1)(— j Factor out (k + 1)
B k
B Common denominator
(k+1)[(12c+1)+1 Multiply
Therefore by induction, for any positive integer n
+1
1+2+3+...+n:n(n )
2 |
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Example proof by induction

Theorem
For any positive integer n, 2" > n.

Proof

Basis. 21> 1.

Inductive hypothesis. Assume 2f> k.
Inductive step. Show 241>k + 1.

play Left side
= 2k.2 Law of exponents
> k-2 By IH
= k+k Def of multiplication
> k+1 k given as “positive integer”, thus k> 1

Thus 27 > n for any positive integer n. = Example 16
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Example proof by induction

Theorem
For any positive integer n > 4, n> > 3n.

Proof

Basis. 42>3 -4 ie.,16>12.

Inductive hypothesis. Assume k? > 3k.
Inductive step. Show (k+ 1)2>3(k+ 1).

(k+ 1)? Left side
= 2+ 2k+1 Multiply
> 3k+2k+1 By IH
> 3k+8+1 k 2 4 by basis
> 3k+3 §+1>3
= 3(k+1) Factor out 3

Thus n? > 3n for any positive integern=4. = Example 17
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Example proof by induction

Theorem
For any positive integer n, 22" — 1 is divisible by 3.

Proof
Basis. 2?()—-1=4-1=3is divisible by 3.

Inductive hypothesis. Assume 22%¢—1 is divisible by 3.
Therefore 22— 1 =3m and 2% = 3m + 1 for integer m.

Inductive step.
Show 22D —1 s divisible by 3.

Example 18
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22(kt1) 1 Left side
= Q22 _ ] Multiply through exponent
= 22.2% _ ] Law of exponents
= 223m+1)-1  BylH
= 12m+4-1 Multiply through
= 12m+3 Simplify
= 3dm+1) (4m + 1) an integer

Thus 2%" — 1 is divisible by 3 for any positive integer n. =

© 2014 W. H. Freeman and Company © 2014 University of Alabama in Huntsville © 2014 Mikel D. Petty, Ph.D.



CS 214 Proofs, Induction, and Number Theory 2.58

Example proof by induction

Theorem
For any real number » # 1 and any integer n > 0,

n i n+1 _1
2=
i=0 r—1
Proof 041 0 oul
— - —1 -1
Basis. Shoer =L 1 Zr’:r(’:l,r 7
r—1 i—0 r—1 r—1
k k+1
. . i r —1
Inductive hypothesis. Assume ) 7' = 1
i=0 r—

continued next slide

Example 5.2.3 [Epp, 2011]
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k+1 r(k+1)+1 1 rk+2 |
Inductive step. Show > r' = =
=0 r—1 r—1
k+1
2.7 Left side
i=0
k .
>ttt Rewrite left side to show next to last
l;gﬂ | ol
e Sub IH
r—1
k+1 k+1 .
L 2D vuttiply by (- 1/ 1)
r—1 r—1

Add fractions

r—1
k+1 k+2 k+1
-1+ — .
- ~—"—  Multiply through
’/' f—
Vk+2 1
1 u Add to cancel terms
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Example proof by induction

Programming language denotes multiplication with (),
e.g., a:b-c:defg would be written ((((((a)b)c)d)e)f)g

or ((a)b)(((c)d)(e))g-

Theorem

Any product of factors in this language can be written
with an even number of parentheses.

Proof (by induction on number of factors)
Basis. For a single factor, there are 0 parentheses.

Inductive hypothesis. Assume for & factors there are an
even number of parentheses.

Example 19
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Inductive step. Consider product P of k£ + 1 factors;
P =rs, where r has k factors and s is a single factor.
By the inductive hypothesis, » has an even number of

parentheses.

Write P as (r)s, adding 2 parentheses to the even number
of parentheses in r, thereby expressing P with an even
number of parentheses.

Thus any product of factors can be written
with an even number of parentheses. =
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Example proof by induction

Tiling: Cover n x n checkerboard with tiles that conform to
the grid, with no missed squares and no overlapping tiles.
Angle iron: L-shaped tile of 3 squares.

Problem: given any n x n checkerboard with one square
removed, tile it with angle irons.

n X n checkerboard angle iron 4 x 4 checkerboard 4 x 4 checkerboard
(n=4) with 1 square missing with 1 square missing
tiled with angle irons

Example 20
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Theorem

For any positive n, a 2" x 2" checkerboard with 1 square
removed can be tiled with angle irons.

Proof (by induction on size parameter n)
Basis. Forn=1, a 2! x 2! checkerboard, see the figure.

Inductive hypothesis. Assume any 2% x 2 checkerboard
with 1 square removed can be tiled with angle irons.

m
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Inductive step. Show that any 2%! x 21 checkerboard with
1 square removed can be tiled with angle irons.

Divide the 241 x 2%1 checkerboard into quarters;

each will be 2% x 25, and one will be missing a square.

By the inductive hypothesis the 2% x 2% quarter missing a
square can be tiled with angle irons.
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Suppose each of the other three quarters have a specific
square removed, as shown in the left figure.

Then by the inductive hypothesis, each of them can be tiled
with angle irons, and the three removed squares can be
tiled with an angle iron, as shown in the right figure.

Thus the 2+1 x 2++1 checkerboard with 1 square removed
can be tiled with angle irons, and so any 2" x 2"
checkerboard with 1 square removed can so tiled. =
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Example proof by induction

e Parity setter purpose
» Reads input binary string
= Writes output binary string with additional bit
= Additional bit set to ensure even (odd) number of 1s
» Used for checking data for errors

e Parity setter operation (even parity)
= Parity bit initially 0
= Input read one bit at a time, input bit written to output
= [f input bit 0, parity bit not changed
= [finput bit 1, parity bit “flipped™ 0 - 1,1 —> 0
= After last input bit, final parity bit written to output

b " Parity Setter output binary string
inpu Igary ?(;'1”196 > > with parity bit added,
g., 0 | parity DI e.g., 101101 Exercise 68
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Theorem
The number of 1s in the output string
(input string plus final parity bit), is always even.

Proof (by induction on the input length)

Basis. Length » =1. Parity bit initially 0.

Case 1. Input 0, parity bit unchanged, output 00, even.
Case 2. Input 1, parity bit flipped, output 11, even.

Inductive hypothesis. Assume that for input of length &
the output string has an even number of 1s.
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Inductive step. Show that for input of length £ + 1
the output string has an even number of 1s.

Analyze possible cases:

Parity bit Input bit Parity bit
Case after k bits k+ 1 after k + 1 bits

/’

o 1 0 0 0
S 2 0 1 1
7] 7 <
& 2 3 1 0 I
® 4 1 1 0
- N J
Y
by definition
of parity setter
operation
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Case 1. No 1s added to or removed from output for bit £ + 1.
Even number of 1s by IH unchanged.

Case 2. Two 1Is added to output string for bit £ + 1:
input bit £+ 1 and flipped parity bit 0 — 1.
Even number of 1s by IH plus two more 1s is even.

Case 3. Same as Case 1.

Case 4. One 1 added to output string for bit £ + 1
(input bit £+ 1) and one 1 removed (flipped parity bit 1 — 0).
Even number of 1s by IH plus one minus one is even. =
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Definition of induction, revisited

First principle of mathematical induction

1. P(1)

2. (YO)[P(k) — P(k+ 1)] } — P(n) for all positive integers n

Second principle of mathematical induction

1. P(1)
2. (VK)[P(r) true for all », » — P(n) for all positive integers n
1<r<k— Plk+1)]

\

~/
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Proving the principles of induction

Principle of well-ordering

Every non-empty collection of positive integers
has a smallest member.

It can be proven that

Second induction — first induction
First induction — well-ordering
Well-ordering — second induction
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Example proofs by induction, both principles

Theorem
A straight fence with n fence posts has » — 1 connecting

sections for any n > 1.

(a) Fence with 4 fence posts, 3 sections (b) Fence with 1 fence post, 0 sections

(c) Fence with post and section removed (d) Fence with section removed

Example 21
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Proof (by induction on number of posts; first principle)
Basis. A fence with 1 post has 0 sections; see Fig (b).

Inductive hypothesis: Assume that a fence with & posts
has k£ — 1 sections.

Inductive step. Show that a fence with £+ 1 posts

has k sections.

Given a fence with £ + 1 posts, remove last post and
section; the remaining fence has k& posts

and by the inductive hypothesis k£ — 1 sections; see Fig (c).
Because 1 section was removed from the original fence,
ithad k-1 + 1 =k sections.

Thus a fence with n posts has n — 1 sections. =
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Proof (by induction on number of posts; second principle)
Basis. A fence with 1 post clearly has 0 sections.

Inductive hypothesis: Assume that for all r, 1 <r <k,
a fence with » posts has » — 1 sections.

Inductive step. Show that a fence with £+ 1 posts

has k sections.

Given a fence with £+ 1 posts, remove 1 section; Fig (d).
The two parts have r, and r, posts, 1 <r, <kand 1 <r, <k,
and r, + r, =k + 1 (no posts were removed).

By the inductive hypothesis the two parts

have r, — 1 and r, — 1 sections,

thus the original fence had (», — 1) + (r,— 1) + 1 = k sections.
Thus a fence with n posts has n — 1 sections. =
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Example proof by induction

Integer n is prime iff it is divisible only by 1 and itself.
Integer n is composite iff it can written as the product
of two integers other than 1 and x.

Theorem
For every integer n > 2, n is either prime
or a product of primes.

Proof
Basis. 2 is a prime.

Inductive hypothesis. Assume for all r, 2 <r <k,
r is either prime or the product of primes.

Example 23
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Inductive step.

Show £ + 1 is either prime or a product of primes.

If £+ 1 is prime, the proof is complete.

If £+ 1 is not prime (i.e., composite),

it can be written £+ 1 = ab (by definition of composite),
where 1 <a<k+land 1<b<k+1.

Therefore 2 <a<kand2<b <k

By inductive hypothesis, a and b are either prime or the
product of primes.

Thus k+ 1 = ab is the product of primes.

Therefore n is either prime or a product of primes. =
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Example proof by induction

Theorem
Any postage amount = § cents,
can be assembled using only 3 and 5 cent stamps.

Proof
P(n) is the property that n cents of postage can be

assembled from 3 and 5 cent stamps.
Basis. 8=3+5,9=3+3+3,10=5+5.

Inductive hypothesis. Assume that for all », 8 <r <k,
r cents can be assembled from 3 and 5 cent stamps.

Example 24
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Inductive step. Show &+ 1 can be assembled from 3 and 5.

Considerk+12=11. 1
fk+1=211,then(k+1)-3=k-228. 2
By inductive hypothesis £ — 2 can be written as sum 3
of 3s and 5s.

But(k—2)+3=Fk+1,
so k+ 1 also can be written as sum of 3s and 5s.

Thus n can be assembled as a sum of 3s and 5s. =
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Induction summary

e Parts of a proof by induction
= Prove P(1) true; "basis step”
= Assume P(k) true (first principle),
or assume P(r) true for 1 <r <k (second principle);
“inductive hypothesis”
* Prove P(k+ 1) true using assumption; “inductive step”
= Conclude that (Vn)P(n) true

e |Induction reminders
= Prove the basis case (or cases) first

 Make an assumption (the IH)
 Find the IH and use it in the IS
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e \When to use induction
= Infinite or unknown number of cases
= Each case can be analyzed in terms of previous cases
= Examples; objects (previous objects)
- Integers (lesser integers); Chapter 2
- Sets (subsets); Chapter 3
- Graphs (subgraphs); Chapter 5
- Data structures (data structure before update); Chapter 5
Computation steps (earlier computation steps); future classes

o Inductlon IS a computer scientist’s essential tool

http://yoda.locutus.be/
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Section 2.2 homework assignment

See homework list for specific exercises.
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2.3 More on Proof of Correctness
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2.4 Number Theory
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