9
Euler’s Numerical Method

In the last chapter, we saw that a computer can easily gereshdpe field for a given first-order
differential equation. Using that slope field we can sketdhiaapproximation to the graph
of the solutiony to a given initial-value problem, and then, from that grapie, find find an
approximation toy(x) for any desiredx in the region of the sketched slope field. The obvious
guestion now arises: Why not let the computer do all the warkjast tell us the approximate
value of y(x) for the desiredx ?

Well, why not?

In this chapter, we will develop, use, and analyze one methiogenerating a “numerical
solution” to a first-order differential equation. This typ‘'solution” is not a formula or equation
for the actual solutiory(x) , but two lists of numbers,

{Xo, X1, X2, X3, ..., XN} and {Yo. Y1, Y2. ¥3, ..., YN}

with eachyy approximating the value of(xx) . Obviously, a nice formula or equation fgn(x)
would be usually be preferred over a list of approximate @aJuut, when obtaining that nice
formula or equation is not practical, a numerical solut®bétter than nothing.

The method we will study in this chapter is “Euler’'s methdtlis but one of many methods
for generating numerical solutions to differential eqoas. We choose it as the first numerical
method to study because is relatively simple, and, usingit,will be able to see many of the
advantages and the disadvantages of numerical solutioesid&s, most of the other methods
that might be discussed are refinements of Euler's methoglesnight as well learn this method
first.

9.1 Deriving the Steps of the Method

Euler's method is based on approximating the graph of aisolug(x) with a sequence of
tangent line approximations computed sequentially, iagst Our first task, then, is to derive a
useful formula for the tangent line approximation in eaapst

191



192 Euler’s Numerical Method

s v} (X5, ¥s)
Y(Xk + AX) 1 Ls
y(Xk) + Ay 1
La (X4, Y1)
Y01 L, S —Tle
Ly (X1, y1) (X2,¥2)
Yo %o X >

(a) (b)

Figure 9.1: (a) A single tangent line approximation for the Euler method] &) the
approximation of the solution curve generated by five stéfsuter's method.

The Basic Step Approximation

Let y = y(X) be the desired solution to some first-order differentialadiqun

dy
a - f(X7 y) ’
and letxx be some value fox ontheinterval ofinterest. Asillustrated in figure 9.18, y(Xx))
is a point on the graph of = y(x), and the nearby points on this graph can be approximated
by corresponding points on the straight line tangent attpoig y(xx)) (line Lk infigure 9.1a).
As with the slope lines in the last chapter, the differergigation can give us the slope of this
line:
the slope of the approximating line- % at (xq, YX) = (X, Y(X))
Now let Ax be any positive distance in th® direction. Using our tangent line approxi-
mation (again, see figure 9.1a), we have that

Yk +AX) ~ y(X) + Ay

where
% = slope of the approximating line= f (X, y(Xx))
So,
Ay = Ax- (X, Y(X))
and
YO+ AX) & yO) + AX- (X yOw) (9.1)

Approximation (9.1) is the fundamental approximation uhdeg each basic step of Euler’s
method. However, in what follows, the value g{xx) will usually only be known by some
approximationyy . With this approximation, we have

yx) + AX- f(X, YO) =~ Y + AX- (X, Y0

which, combined with approximation (9.1), yields the apgmation that will actually be used
in Euler's method,
YO+ AX) & Yk + AX- T V) - (9.2)
The distanceAx in the above approximations is called teiep size We will see that
choosing a good value for the step size is important.



Computing Via Euler’s Method (I1lustrated) 193

Generating the Numerical Solution (Generalities)

Euler's method is used to solve first-order initial-valuelgems. We start with the poiriko, Vo)
where yo = y(Xp) is the initial data for the initial-value problem to be salv&l hen, repeatedly
increasingx by some positive valueAx, and computing corresponding values wfusing a
formula based on approximation (9.2), we will obtain thase sequences

{Xo, X1, X2, X3, ..., XN} and {Yo. Y1, Y2. ¥3, ..., YN}

with yx =~ y(xx) for eachk. Plotting the(xk, yk) points, and connecting the resulting dots with
short straight lines leads to a piecewise straight appration to the graph of the solution(x)

as illustrated in figure 9.1b. For convenience, let us detiig¢eapproximation generated by the
Euler method byyg ax -

As already indicatedN will denote the number of steps taken. It must be chosen along
with Ax to ensure thaky is the maximum value ok of interest. In theory, botiN and the
maximum value ofx can be infinite. In practice, they must be finite.

The precise steps of Euler's method are outlined and ilitestkin the next section.

9.2 Computing Via Euler’s Method (Illustrated)

Suppose we wish to find a numerical solution to some firstrafifierential equation with initial
datay(Xo) = Yo, say,

5% — vy = —x2 with y0O =1 . (9.3)
(As it turns out, this differential equation is not easilyn&al by any of the methods already
discussed. So if we want to find the value of, sg§3), then a numerical method may be our
only choice.)

To use Euler's method to find our numerical solution, we fwllihe steps given below.
These steps are grouped into two parts: the main part in whielkalues of thex’s and yi's
are iteratively computed, and the preliminary part in whtoh constants and formulas for those
iterative computations are determined.

The Steps in Euler’s Method
Part I (Preliminaries)

1. Getthe differential equation into derivative formula fqrm

dy

For our example, solving for the derivative formula formlgie

dy 1., >
&_5[ X]

2. Setxg and yy equal to thex and y values of the initial data.
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In our example, the initial data ig(0) = 1. So
Xo = 0 and Yo = 1

3. Pick a distanceAx for the step size, a positive integ&F for the maximum number of
steps, and a maximum value desired for xmax. These quantities should be chosen so
that

Xmax = Xo + NAX

Of course, you only choose two of these values, and compatthitd. Which two are
chosen depends on the problem.

For no good reason whatsoever, let us pick
1
AX = > and N =6

Then

xmaX:x0+NAx:O+6é =3
4. Write out the equations
Xkp1 = Xk + AX (9.4a)
and
Yerr = Yk + AX- F (X, W) (9.4b)

using the information from the previous steps.

For our example,
lro 2 1
f(x,y)=g[y - x?]  and AX = 3
So, for our example, equation set (9.4) becomes
1 /
Xk+1 = Xk + > (9.44)
and -
Vet = Yk + §’§[y2 — %7
1
= Yk + ln*—xl] - (9.4D))

Formula (9.4b) foryx,1 is based on approximation (9.2). According to that apprexiom,
if y(x) is the solution to our initial-value problem and ~ y(xx) , then

Y(Xk+1) = Yk + AX) &~ Y + AX- T (X, Vo) = Yit1

Because of this, eacli generated by Euler's method is an approximatioryofy) .
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Part II of Euler’'s Method (Iterative Computations)

1. Computex; andy; using equation set (9.4) witk = 0 and the values okg and yg
from the initial data.

For our example, using equation set (9.with k = 0 and the initial values
Xo =0 andyo =1 gives us

1 1
X1=X()+1=X()—+-AX:0—|—§:E ,

and
Y1 = Yor1 = Yo + AX: f(Xo, Yo)
1
= Yo + E[Yoz—xoz]

11

_ e o7 11
_1+E[1 0]_10

2. Computex, and y, using equation set (9.4) witk = 1 and the values ok; and y;
from the previous step.

For our example, equation set (94vith k = 1 and the above values fo
andy, yields

1 1
Xo = X141 = X1 + AX = - + - =1,
2 1+1 1 > T35

and
Yo = Y1 = Y1 + AX- f (X, y1)

1
=Y + E[yz_xlz]

N E A AN
10 10| \10 2 250
3. Computexz and yz using equation set (9.4) witk = 2 and the values ok, and y,
from the previous step.

For our example, equation set (9.4vith k = 2 and the above values foe
andy, yields

X3=X2+1=X2+AX=1+

NI =
N

and

1
Y3 = Y241 = Y2 + E[yzz—xzz]

_ 20 1f(20)F | 774401
250 10| \ 250 " 625000

For future convenience, note that

774401
¥s = gom000 = 12390
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(d), (e), ... In each subsequent step, incredsdoy 1, and computex,; and Yk, 1 using
equation set (9.4) with the values & and yx from the previous step. Continue until
XN andyy are computed.

For our example (omitting many computational details):

With k +1 = 4,
3 1
X4—X3+1—X3+AX—§+E—2,
and L
Ya = Ya1 = Y2 + 15[¥s" = %] = .-+ ~ 11676 .
With k+1=5,
1 5
X5_X4+1_X4+AX_2+E_E ,
and L
Y5 = Yar1 = Ya + E[y42—X42] = --- ~ 09039 .
Withk+1=6,
5 1
XG—X5+1—X5+AX—§+§—6 .
and

1
Yo = Ysr1 = Y5 + 5[¥s" = %] = -+ ~ 0.3606

Since we had earlier choseéd, the maximum number of steps, to be we
can stop computing.

Using the Results of the Method

What you do with the results of your computations in depemisvhy you are doing these
computations. IfN is not too large, it is usually a good idea to write the obtdinalues of

{X05X13X27X3""’XN} and {y05yl, yz,Y3,---,YN}

in a table for convenient reference (with a note tat~ y(xx) for eachk) as done in figure
9.2a for our example. And, whatever the size Nf, it is always enlightening to graph —
as done in figure 9.2b for our example — the correspondingepise straight approximation
Y = Ye.ax(X) to the graph ofy = y(x) by drawing straight lines between eacky, yx) and
(K15 Yet1) -

On Doing the Computations

The first few times you use Euler’'s method, attempt to do &ldbmputations by hand. If the
numbers become too awkward to handle, use a simple calcalatbdecimal approximations.
This will help you understand and appreciate the method.illtalgo help you appreciate the
tremendous value of programming a computer to do the cdlookin the second part of the
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(a) (b)

Figure 9.2: Results of Euler’s method to solvey5— y?2 = —x2 with y(0) = 1 using
Ax =Y, and N = 6: (a) The numerical solution in whicly, ~ y(xx) (for
k > 3, the values ofyx are to the nearest.@01). (b) The graph of the
corresponding approximate solutigh= yg ax(X) .

method. That, of course, is how one should really carry ceictmputations in the second part
of Euler's method.

In fact, Euler's method may already be one of the standarcguhares in your favorite com-
puter math package. Still, writing your own version is ehtgning, and is highly recommended
for the good of your soul.

9.3 What Can Go Wrong

Do not forget that Euler's method does not yield exact answieistead, it yields values

{Xo, X1, X2, X3, ..., XN} and {Yo. Y1, Y2. ¥3, ..., YN}
with
Ve & Y(Xk) for k>0

What's more, eaclhyk1 is based on the approximation
YyXk + AX) & y(X) + AX- f (X, Y(X))

with y(xx) being replaced with approximatioyx whenk > 0. So we are computing approxi-
mations based on previous approximations.

Because of this, the accuracy of the approximatpn: y(xy) , especially for larger values
of k, is a serious issue. Consider the work done in the previaise Just how well can we
trust the approximation

y(3) ~ 0.3606

obtained for the solution to initial-value problem (9.3)fact, it can be shown that

y(3) = —.23699 to the nearest@001
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Figure 9.3: Catastrophic failure of Euler's method in solving = (y — 1)? with
y(0) = —1.3: (a) Graphs of the true solution and the approximate solutibh.
Same graphs with a slope field, the graph of the equilibriulntiem, and the
graph of the true solution ty’ = (y — 1)2 with y(x1) = y1.

So our approximation is not very good!

To getanidea of howthe errors can build up, look back at figuraon page 192. You can see
that, if the graphs of the true solutions to the differerdgig@liation are generally concave up (as in
the figure), then the tangent line approximations used ief&umnethod lie below the true graphs,
and yield underestimates for the approximations. Overraégéeps, these underestimates can
build up so that they,'s are significantly below the actual values of thiex)’s .

Likewise, if the graphs of the true solutions are generatiyocave down, then the tangent
line approximations used in Euler's method lie above the titaphs, and yield overestimates
for the approximations.

Also keep in mind that most of the tangent line approximatiosed in Euler’s method are
not based on lines tangent to the true solution, but on liaegent to solution curves passing
through the(xk, yk)'s. This can lead to the “catastrophic failure” illustraiedigure 9.3a. In
this figure, the true solution to

13
10

dy 5 .

ax = 0-D with  y(0) =
is graphed along with the graph of the approximate solutaregated from Euler's method with
Ax = Y% . Exactly why the graphs appear so different becomes appaten we superimpose
the slope field in figure 9.3b. The differential equation hasuastable equilibrium solution
y =1. If y(0) < 1, as in the above initial-value problem, then the true safut(x) should
convergeto 1 ax — oco. Here, however, one step of Euler's method overestimaeddlue
of y; enough that(x;, y1) ended up above equilibrium and in the region where the swisti
diverge away from the equilibrium. The tangent lines to ¢hesutions led to higher and higher
values for the subsequently computgds . Thus, instead of correctly telling us that

imyx) =1 ,
X—>00
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Y (Xmax) 1
YN 1
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Y (Xmax) 1
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Figure 9.4: Two approximationsyy of y(Xmax) Wherey is the solution toy’ = f(x, y)
with y(Xg) = Yo : (a) Using Euler’'s method wittAx equaling the distance
from Xg to Xmax- (b) Using Euler’'s method withAx equaling half the distance
from Xxo t0 Xmax (Note: ¥ is the solution toy’ = f (x, y) with y(x1) = y1.)

this application of Euler's method suggests that
lim y(X) = o0
X—>00

A few other situations where blindly applying Euler’'s mettaan lead to misleading results
are illustrated in the exercises (see exercises 9.6, AP .879.9). And these sorts of problems
are not unique to Euler’'s method. Similar problems can owgtlr all numerical methods for
solving differential equations. Because of this, it is ljgtecommended that Euler's method
(or any other numerical method) be used only as a last rebgrthe methods developed in the
previous chapters first. Use a numerical method only if tiewomethods fail to yield usable
formulas or equations.

Unfortunately, the world is filled with first-order differgal equations for which numerical
methods are the only practical choices. So be sure to skimakiesection on improving the
method. Also, if you must use Euler's method (or any other eical method), be sure to do a
reality check. Graph the corresponding approximation profahe slope field for the differential
equation, and ask yourself if the approximations are ressen In particular, watch out that
your numerical solution does not “jump” over an unstableildmium solution.

9.4 Reducing the Error
Smaller Step Sizes

Suppose we are applying Euler's method to a given initidlkevgoroblem over some interval
[Xo0, Xmax] - The one parameter we can adjust is the step size (or, equivalently, the number
of steps, N, in going from Xg t0 Xmax). BY shrinking Ax (increasingN ), at least two good
things are typically accomplished:

1. The error in the underlying approximation
YO + AX) & y(%) + Ax- (X, Y%))

is reduced.
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Figure 9.5: Graphs of the different piecewise straight line approxioret of the solution to
5y’ — y? = —x2 with y(0) = 1 obtained by using Euler's method with
different values for the step siz&x = Y,. Also graphed is the true solution.

2. The slope in the piecewise straight approximatios- yg ax(X) is recomputed at more
points, which means that this approximation can better imidie bends in the slope field
for the differential equation.

Both of these are illustrated in figure 9.4.

Accordingly, we should expect that shrinking the step siz&iler's method will yield
numerical solutions that more accurately approximaterieegolution. We can experimentally
test this expectation by going back to our initial-valueljemn

dy 2 2 ; _
5& y- = —X with y0 =1 |,
computing (as you’'ll be doing for exercise 9.5) the numérsmdutions arising from Euler’s
method using, say,

Ax=1 , AX == , Ax_21 and Ax_§ ,
and then graphing the corresponding piecewise straighibappations over the intervdlo, 3]
along with the graph of the true solution. Do this, and you gélt the graphs in figure 95As
expected, the graphs of the approximate solutions steaplisoach the graph of the true solution
as Ax gets smaller. It's even worth observing that the distan¢eden the true value foy(3)
and the approximated value appears to be cut roughly in half 8me Ax is cut in half.

In fact, our expectations can be rigorously confirmed. Inrtbet section, we will analyze
the error in using Euler's method to approximat&max) Wherey is the solution to a first-order

initial-value problem

d .
d_:(/ = f(x,y)  with y(Xo) = Yo

1 The graph of the “true solution” in figure 9.5 is actually theygh of a very accurate approximation. The difference
between this graph and the graph of the true solution is kessthe thickness of the curve used to sketch it.
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Assuming f is a “reasonably smooth” function of and y, we will discover that there is a
corresponding constaril such that

[Y(Xmax) — YnI < M - AX (9.5)

where yy is the approximation to/(Xmax) generated from Euler's method with step sixe .

Inequality (9.5) is arerror bound It describes the worst theoretical error in usipg for
Y(Xmax) - In practice, the error may be much less than suggested &pthind, but it cannot
be any worse (unless there are other sources of error). 8irscbound shrinks to zero asx
shrinks to zero, we are assured that the approximationgxtgax) obtained by Euler's method
will converge to the correct value of(xmax) if we repeatedly use the method with step sizes
shrinking to zero. In fact, if we know the value ®fl and wish to keep the error below some
small positive value, we can use error bound (9.5) to piclep size, Ax, that will ensure the
error is below that desired value. Unfortunately,

1. M can be fairly large.
2. In practice (as we will see)M can be difficult to determine.

3. Error bound (9.5) does not take into account the round-offrerthat normally arise in
computations.

Let's briefly consider the problem of round-off errors. Inatjty (9.5) is only the error
bound arising from the theoretically best implementatibBwaer's method. In a sense, it is an
“ideal error bound” because itis based on all the computatieing done with infinite precision.
This is rarely practical, even when using a computer matkggethat can do infinite precision
arithmetic — the expressions for the numbers rapidly bectonecomplicated to be usable,
even by the computer math packages, themselves. In prattceumbers must be converted to
approximations with finite precision, say, decimal appneeiions accurate to the nearesd@1
as done in the table on page 197.

Don't forget that the computations in each step involve neralfrom previous steps, and
these computations are affected by the round-off errors fhmse previous steps. So the ultimate
error due to round-off will increase as the number of stepeeimses. With modern computers,
the round-off error resulting from each computation is ligueery small. Consequently, as long
as the number of stepd remains relatively small, the total error due to round-oiff usually
be insignificant compared to the basic error in Euler's mgthB8ut if we attempt to reduce
the error in Euler’s method by taking the step size very, \wmall, then we must take many,
many more steps to go fromy to the desiredxmax. It is quite possible to reach a point where
the accumulated round-off error will negate the theoratipriovement in accuracy of the Euler
method described by inequality (9.5).

Better Methods

Be aware that Euler's method is a relatively primitive metfar numerically solving first-order
initial-value problems. Refinements on the method can ydeltkmes in which the approxima-
tions to y(Xmax) Converge to the true value much faster as the step size desregor example,
instead of using the tangent line approximation in each, step

Yir1 = Yk + AX- F(Xe, Vo)
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we might employ a “tangent parabola” approximation thatdseaccounts for the bend in the
graphs. (However, writing a program to determine this “migparabola’; can be tricky.)

In other approaches, th&(xk, yk) in the above equation is replaced with a cleverly chosen
weighted average of values df(x, y) computed at cleverly chosen points n€ag, yx) . The
idea is that this yields a straight a line approximation itk slope adjusted to reduce the over-
or undershooting noted a page or two ago. At least two of theereommonly used methods,
the “improved Euler method” and the “fourth-order Rungettumethod’, take this approach.

Numerous other methods may also worth learning if you aragyth make extensive use
of numerical methods. However, an extensive discussiomwfarical methods beyond Euler’s
would take us beyond the brief introduction to numericallmds intended by this author for this
chapter. So let us save a more complete discussion of theseadive methods for the future.

9.5 Error Analysis for Euler’'s Method"
The Problem and Assumptions

Throughout this section we will be concerned with the accyicd numerical solutions to some
first-order initial-value problem

d .
d_i/ = f(x,y) with yXo)=Yo . (9.6)

The precise results will be given in theorem 9.1, somewhel@¥ For this theoreml. is some
finite length, and we will assume there is a correspondingnggte in theX Y—plane

R = {(X,y) : X% <X=<X+L and Ymin <Y < Ymax
such that all of the following holds:

1. f anditsfirst partial derivatives are continuous, boundedtions onR . This “bound-
edness” means there are finite constafttsB and C such that, at each point iR ,

of

X

[f] < A , < B and % < C . (9.7)

2. There is a unique solutiory = y(x), to the given initial-value problem valid over the
interval [Xg, Xo + L]. (We'll referto y = y(x) as the “true solution” in what follows.)

3. TherectangleR contains the graph over the interviady, Xo + L] of the true solution.

4, If xg < X < X9+ L and (xk, Yx) is any point generated by any application of Euler’s
method to solve our problem, themy, yy) isin R.

The rectangleR may be the entire vertical strip

{(X,¥): % <X<X+L and —oo <y < oo}

* Another one of those optional sections for the “interestadler’
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if f and its partial derivatives are bounded on this stripf Ifand its partial derivatives are not
bounded on this strip, then finding the appropriate upperlandr limits for this rectangle is
one of the challenges in using the theorem.

Theorem 9.1 (Error bound for Euler’s method)
Let f, X0, Yo, L andR be as above, and lgt = y(x) be the true solution to initial-value
problem (9.6). Then there is a finite constavit such that

[y(Xn) — YnI < M- AX (9.8)
whenever

{X05X17X27X37"'7XN} and {yO’ y17 y27 y35"'ayN}

is a numerical solution to initial-value problem (9.6) dhtd from Euler’'s method with step
spacingAx and total number of stepd satisfying

0 < AX-N < L . (9.9)

This theorem is only concerned with the error inherent ireBsiimethod. Inequality (9.8)
does not take into account errors arising from rounding offibers during computation. For a
good discussion of round-off errors in computations, thergsted reader should consult a good
text on numerical analysis

To prove this theorem, we will derive a constavit that makes inequality (9.8) true. (The
impatient can look ahead to equation (9.16) on page 207.)owdaugly, for the rest of this
section,y = y(x) will denote the true solution to our initial-value probleamd

{Xo, X1, X2, X3, ..., XN} and {Yo. Y1, Y2. ¥3, ..., YN}

will be an arbitrary numerical solution to initial-valuegiiem (9.6) obtained from Euler's method
with step spacingAx and total number of stepll satisfying inequality (9.9).

Also, to simplify discussion, let us agree that, in all thédwing, k always denotes an
arbitrary nonnegative integer less than than

Preliminary Bounds

Our derivation of a value fotM will be based on several basic inequalities and facts from
calculus. These include the inequalities
b
/ Y (s)ds
a

whena < b. Of course, if|¥(s)| < K for some constanK , then, whether or noa < b,

b
A+B| < |Al + [B|  and < / W (9| ds
a

b
f l¥(s)lds < K|b—a|
a
Also remember that, ith = ¢ (X) is continuous and differentiable, then
b
_ [ 4o
s@ - o) = [ SLas

a



204 Euler’s Numerical Method

Combining the above, we get

Corollary 9.2
Assumeg is a continuous differentiable function on some intervadséme furtherthap’ < K
on this interval for some constait . Then, for any two points andb in this interval,

lp@ — ¢b)| < Klb—al
We will use this corollary twice.
First, we apply it with¢ (x) = f (X, y(x)). Recall that, by the chain rule in chapter 7,

d of  af dy
&f(X,Y(X)) = 5% + Jydx

which we can rewrite as q by by
&f(X, y(x)) = X + 8_yf<x’ Y)
whenevery = y(Xx) is a solution toy’ = f (x, y). Applying bounds (9.7), this then yields

df
dx

g_)f( + ‘%’H(x,yﬂ < B + CA  atevery pointinR

The above corollary (withp (x) = f (X, y(x)) and K = B + C A) then tells us that
If@ y@)— fb,yb) < (B+CAb-a) (9.10)

wheneverxg <a<b<xg+L.

The second application of the above corollary is witlly) = f(x, y). Here, y is the
variable,x remains constant, angl = °"/,y. Along with the fact that’’/,y| < C on rectangle
R , this corollary immediately gives us

[f(Xc, b) — f(Xc,@)] < C|b—a| (9.11)

whenevera and b are any two points in the intervdkg, Xo + L].

Maximum Error in the Underlying Approximation

Now consider the error in the underlying approximation
YOk + AX) & y) + AX- (X, Y(%))
Let 1 be the difference between(xx + Ax) and the above approximation,
1 = YO+ AX) — [y(i) — AX- f (X, y(%)]
Note that this can be rewritten both as

YXki1) = YO + AX- (X, YO)) + €ksa (9.12)

and as
et1 = [YXk+ AX) — y(x)] — F (X, Y(X0)) - AX
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From basic calculus, we know that

Xk+AX Xk+AX
f (%, YOK)) - AX = (X, y(xk))f dx = / f (X, Y(%)) dX
Xk Xk
We also knowy = y(x) satisfiesy’ = f(x, y). Hence,
Xk+AX dy Xk+AX
Y% + AX) — y(X) = / &dx = / f(x, y(x)) dx
Xk Xk

Taking the absolute value @f,; and applying the last three observations yields

lekt1l = I[yOx + AX) — y(X)] — (X, y(X)) - AX|

Xk+AX Xk+AX
/ F(x, yO) dx — / f (x Y(%0) dx

k Xk

Xk+AX
f f (X, y(x)) = f (X, y(x0) dx

k

Xk+AX
< / (X, y00) — f (%, Y(0)| dX

k

Remarkably, we've already found an upper bound for the naieg) in the last line (inequality
(9.10), witha = x and b = x¢). Replacing this integrand with this upper bound, and then
doing a little elementary integration yields

Xk+AX
sl < / (B+CAX—x)dx = 2(B+CA(AX’
X

k

This last inequality combined with equation (9.12) meaia$ We can rewrite the underlying
approximation more precisely as

YXkt1) = YO) + AX - f(X, YX)) + €kt (9.13a)
where

1
lekst] < E(B-I—CA)(AX)Z : (9.13b)

Ideal Maximum Error in Euler’'s Method

Now let Ex be the difference betweey(xy) and yx,

Bk = y(X0) — W
Becauseyy = y(Xp) :
Eo = y(X0) — Yo =0
More generally, using formula (9.13a) fgKxx+ Ax) and the formulafory1 from Euler’s
method, we have
Exi1 = YXk11) — Yis1
= Y(Xk + AX) — Ykt1
= [y() + AX- (e, YOu) + €] — [ + AX- f (X, Y]
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Cleverly rearranging the last line and taking the absolataesleads to

|Exi1l = leksr + [YO) — W] + AX-[f (X, YOK)) — f Xk, YOI
= leks1 + Ex + AX-[F (X, YX) — F (X, Vil
< lekpal + 1Bkl + [AX [ (X, YO%)) — (X, Y]

Fortunately, from inequality (9.13b), we know
el < 3(B+CAMAX?
and from inequality (9.11) and the definition &k , we know
I X YD) — F (i, i)l = Cly() — Ykl = CE«

Combining the last three inequalities, we get

IA

|Eksal = lewal + 1Bl + [AX-[f (X y(i)) — (X, Yol

< 2B+ CAMX? + |Ed + Ax-ClE
< %(B+CA)(AX)2 + (1+ Ax-C)|Ey
This is starting to look ugly. So let
o = %(B—i—CA) and B =1+ Ax-C ,
just so that the above inequality can be written more simgly a
Bl = a(A%)? + BIE«
RememberE, = 0. Repeatedly applying the last inequality, we then obtaérfollowing:

|E1l = |Eou1l = a(AX)? + BIEol = a(Ax)?

|Esl = |Exal < a(AX)? + B|E,|
< a(AX)? + Ba(AX)? < (1+ B)a(Ax)?
|Es| = |E2u1l < a(AX)? + B|E,|

IA

a(AX)? + B (1+ ) a(Ax)?
a(AX)? + (B+ %) a(Ax)? < (1+ B+ %) a(Ax)?

IA

Continuing, we eventually get

|Enl < Sve(Ax)?  where Sy = 1+B8+p%+---+81 . (9.14)
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You may recognizeSy as a partial sum for a geometric series. Whether you do omwmhave

B-D& = BS — &

= B[1+B+B2+ -+ — [L+B+B8% +- + 8N
= [B+B*+-- + B - [L+B+8% +--- + 8]
=N -1

Dividing through by 8 and recalling whatr and 8 represent then gives us

N

-1

Sva = ﬂﬂ—l o
_ A+ax-ON -1 B+CA _ [A+Ax-ON — 1](B+CA)
14 Ax-C-1 2 o AX - 2C

So inequality (9.14) can be rewritten as

14 Ax-ON —
AX-C

Enl < La(axy?

Dividing out one Ax leaves us with

[+ Aax-ON — 1](B+CA)
2C

[En] < My ax - AX where My ax = (9.15)
The claim of theorem 9.1 is almost proven with inequalityl 8. All we need to do now is
to find a single constan¥ such thatMy ax < M for all possible choices oM and Ax. To

this end, recall the Taylor series for the exponential,

e¢]

X _ 1on _ 12, 13
e _me =1+ X+ 5X+ 2X +
n=0
If X > 0 then
1., 1.3 X

Cutting out the middle and lettingk = Ax - C, this becomes
1+ Ax-C < ™€

Thus, N

where L is that constant witiNAX < L. So

[A+Ax-CON — 1] (B+CA

C < M

Ile,Ax =

where
€€ — 1H(B+CA

2C
And this (finally) completes our proof of theorem 9.1 on pag8a.2

M = (9.16)
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Additional Exercises

9.1.

d.

9.2.

9.3a

94.

Several initial-value problems are given below, along wilfues for two of the three
parameters in Euler’'s method: step sixe , number of step$l , and maximum variable
of interestXmax. For each, find the corresponding numerical solution usialgrs
method with the indicated parameter values. Do these probiathout a calculator or
computer.

dy _y _ 1 - _1 _

ix = x with y(1)=-1 ; Ax= 3 and N =3

% = —8xy with y(0) =10 ; Xmx=1] and N =4
dy 2 i : 1

4x + o = y- with y0O) =2 ;| Xmax=2 and AX= >

d_y_|_X—4 with y(1) =8 ; Ax—} and N =06

dx — x =2 2 B

Again, several initial-value problems are given belownalwvith values for two of the
three parameters in Euler's method: step sfoe, number of stepdN, and maxi-
mum variable of intereskmax. For each, find the corresponding numerical solution
using Euler’s method with the indicated parameter values.thiese problems with a
(nonprogramable) calculator.

% = /2x+y with y0 =0 ; Ax=% and N=6
A+ y)% =X with yO=1 ; N=6 and Xpx=2
% =y with y1) =2 ; Ax=01 and Xmax=15

dy . . 1

ax = cody) with y(0O =0 ; Ax= : and N=5

Using your favorite computer language or computer math @aekwrite a program
or worksheet for finding the numerical solution to an arbytfast-order initial-value
problem using Euler's method. Make it easy to change themdifftial equation and
the computational parameters (step size, number of steps>e

Test your program/worksheet by using it to re-compute thaerical solutions for
the problems in exercise 9.2, above.

Using your program/worksheet from exercise 9.3 a with edtthedfollowing step sizes,
find an approximation fox(5) wherey = y(x) is the solution to

g_i(/: 3X2+y2+1 with Y(O):O

2f your computer math package uses infinite precision or ®yimlrithmetic, you may have to include commands
to ensure your results are given as decimal approximations.
St may be easier to compute all thg’s first, and then compute thg's .



Additional Exercises 209

a Ax=1 b. Ax=0.1 c. Ax=0.01 d. Ax =0.001
9.5. Lety be the (true) solution to the initial-value problem consédtin section 9.2,
dy 2 2 : _
5& y° = —X with y(0)=1
For each step sizé\x given below, use your program/worksheet from exercise 9.3 a
to find an approximation to/(3) . Also, for each, find the magnitude of the error (to

the neares0.0001) in using the approximation foy(3) , assuming the correct value
of y(3) is —0.23699.

1 1 1
a Ax=1 b. Ax:E c. Ax::1 d. Ax:é
e Ax=0.01 f. Ax =0.001 g. Ax =0.0001
9.6. Consider the initial-value problem
dy _ o a2 : _ 13
P A with y(0) = 0

This is the problem discussed in section 9.3 in the illugtredf a “catastrophic failure”
of Euler’s method.

a. Findthe exact solution to this initial-value problem usingthods developed in earlier
chapters. What, in particular, is the exact valueyof) ?

b. Using your program/worksheet from exercise 9.3 a, find theerical solution to the
above initial-value problem witlm.x = 4 and step sizeAx = % . (Also, confirm
that this numerical solution has been properly plotted inrég9.3 on page 198.)

c. Findthe approximation tg(4) generated by Euler's method with each of the follow-
ing step sizes (use your answer to the previous part or yagram/worksheet from
exercise 9.3 a). Also, compute the magnitude of the errosiimgthis approximation
for the exact value found in the first part of this exercise.

1 1

. Ax=1 ii. AX == fii. AX == iv. Ax=i
2 4 10

9.7. Consider the following initial-value problem

dy _

ax —4y with y(©0) =3

The following will illustrate the importance of choosingmappriate step sizes.

a. Find the numerical solution using Euler’'s method witix = Y and N being any
large integer (this will be more easily done by hand thanguisiiculator!). Then do
the following:

i. There will be a pattern to thg’s. What is that pattern? What happenskas> co ?

ii. Plot the piecewise straight approximation correspondingtir numerical solution
along with a slope field for the above differential equatibiging these plots, decide
whether your numerical solution accurately describesrile $olution, especially
asx gets large.
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iii. Solve the above initial-value problem exactly using meghddveloped in earlier
chapters. What happens dx) asx — oo ? Compare this behavior to that of
your numerical solution. In particular, what is the approate error in usingyx
for y(xx) whenx is large?

b. Now find the numerical solution to the above initial-valuelgem using Euler's
method withAx = Y10 and N being any large integer (do this by hand, looking for
patterns in theyc's )). Then do the following:

i. Find a relatively simple formula describing the patternha ¥'s .

ii. Plot the piecewise straight approximation correspondirthis numerical solution
along with a slope field for the above differential equatiddoes this numerical
solution appear to be significantly better (more accuréim) the one found in part
9.7a?

9.8. In this problem we’ll see one danger of blindly applying a rauiwal method to solve
an initial-value problem. The initial-value problem is

dy 3 . _
dx = 7 3x with y(0) =0

a. Find the numerical solution to this using Euler’s methodwsitep sizeAx = Y% and
Xmax = 5. (Use your program/worksheet from exercise 9.3 a).

b. Sketch the piecewise straight approximation correspa@nidithe numerical solution
just found.

c. Sketch the slope field for this differential equation, andlfihe exact solution the
above initial-value problem by simple integration.

d. What happens in the true solution as— "3 ?
e. What can be said about the approximationsg/t®y) obtained in the first part when
Xk > 7/3 ?

9.9. What goes wrong with attempting to find a numerical solution t

(y—1)2/3% — 1  with y©0) =0

using Euler’'s method with, say, step sizex = Y%, ?



