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Delta Functions

This chapter introduces mathematical entities commonly known as “delta functions”. As we will
see, a delta function is not really a function, at least not inthe classical sense. Nonetheless, with
a modicum of care, they can be treated like functions. More importantly, they are useful. They
are valuable in modeling both “strong forces of brief duration” (such as the force of a baseball
bat striking a ball) and ”point masses”. Moreover, their mathematical properties turn out to be
remarkable, making them some of the simplest “functions” todeal with. After a little practice,
you may rank them with the constant functions as some of your favorite functions to deal with.
Indeed, the basic delta function has a relation with the constant function f ≡ 1 that will allow
us to expand our discussion of Duhamel’s principle.

29.1 Visualizing Delta Functions

What is commonly called “the delta function”— traditionally denoted byδ(t) — is best thought
of as shorthand for a particular limiting process. One standard way to visualizeδ(t) is as the
limit

δ(t) = lim
ǫ→0+

1

ǫ
rect(0,ǫ)(t) .

Look at the function we are taking the limit of,

1

ǫ
rect(0,ǫ)(t) =



















0 if t < 0

1

ǫ
if 0 < t < ǫ

0 if ǫ < t

.

Graphs of this for various small positive values ofǫ have been sketched in figure 29.1a. Notice
that, for eachǫ , the nonzero part of the graph forms a rectangle of widthǫ and height1/ǫ .
Consequently, the area of this rectangle isǫ · 1/ǫ = 1 . Keep in mind that we are taking a limit as
ǫ → 0 ; so ǫ is “small”, which means that this rectangle is very narrow and very high, starts at
t = 0 , and is of unit area. As we letǫ → 0 this “very narrow and very high rectangle starting at
t = 0 and of unit area” becomes an “infinitesimally narrow and infinitely high ‘spike’ at t = 0
enclosing unit area”.

Strictly speaking, there is no function whose graph is such aspike. The closest we can come
is the function that is zero everywhere except att = 0 , where we pretend the function is infinite.
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Figure 29.1: The graphs of(a) 1
ǫ

rect(0,ǫ)(t) and(b) 1
ǫ

rect(0,ǫ)(t − α) (equivalently
1
ǫ

rect(α,α+ǫ)(t) ) for ǫ = 1 , ǫ = 1/2 and ǫ = 1/4 .

This sort of gives the infinite spike, but the “area enclosed”is not at all well defined. Still, the
visualization of the delta function as “an infinite spike enclosing unit area” is useful, just as it is
useful in physics to sometimes pretend that we can have a “point mass” (an infinitesimally small
particle of nonzero mass).

The above describes “the” delta function. For any real number α , the delta function atα ,
δα(t) , is simply “the” delta function shifted byα ,

δα(t) = δ(t − α) = lim
ǫ→0

1

ǫ
rect(0,ǫ)(t − α) .

Witha little thought (or a glance at figure 29.1b), youcanseethat the nonzeropart of rect(0,ǫ)(t − α)

starts att = α and ends att = α + ǫ , and that

δα(t) = δ(t − α) = lim
ǫ→0

1

ǫ
rect(α,α+ǫ)(t) .

Do notice that
δ0(t) = δ(t − 0) = δ(t) .

This means that anything we derive concerningδα also holds forδ — just let α = 0 .

29.2 Delta Functions in Modeling

There are at least two general situations in which delta functions naturally arise when we attempt
to describe “real world” phenomenon. One is when we attempt to model brief but strong forces.
The other is when we imagine physical objects as “point masses”. In both, the delta functions
appear in integrals. This will be significant, and is well worth observing in the models described
below.

Since it will be especially useful to see how delta functionsmodel “strong forces of brief
duration”, we’ll start with that.
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Strong Forces of Brief Duration

Consider the motion of some object under a force that varies with time. We will assume the
object’s motion is one dimensional (say, along someX–axis), and, as usual, we’ll let

m = the mass (in kilograms) of the object (assumed constant) ,

t = time (in seconds) ,

v(t) = velocity (in meters/second) of the object at timet ,

and

F(t) = force (in kilogram·meters/second2) acting on the object at timet .

(Of course, any units for time, mass and distance can be used,as long as we are consistent.)
Newton’s famous law of force gives

F(t) = m × acceleration= m
dv

dt
.

If we integrate this over a interval(t0, t1) , we get

∫ t1

t0

F(t) dt =
∫ t1

t0

m
dv

dt
dt = m [v(t1) − v(t0)] .

So the integral ofF(t) from t = t0 to t = t1 is the object’s mass times the change in the
object’s velocity over that period of time. This integral ofF is sometimes called theimpulseof
the force over the interval(t0, t1) (with the total impulse being this integral witht0 = −∞ and
t1 = ∞ ).1 Note that, following our above conventions for units, the units associated with the
impulse is kilogram·meters/second.

Let’s now restrict ourselves to situations in which the force is zero except for a very short
period of time, during which the force is strong enough to significantly change the velocity of the
object under question. We may be talking about the force of a baseball bat striking a baseball,
or the force of some propellent (gunpowder, compressed air,etc.) forcing a bullet out of a gun,
or even the force of a baseball in flight striking some unfortunate bat that fluttered out over the
field to catch flies. For concreteness, let’s pretend we are studying the force of a baseball bat
hitting a baseball at “timet = α ”. If we are very precise, we may lett = α be the first instant
the bat comes into contact with the ball, andǫ the length of time the bat remains in contact with
the ball. Considering the situation this length of time,ǫ , must be positive, but very small.

Before and after the bat touches the ball, this force is zero.So our F(t) must be some
function, such as,

1

ǫ
rect(α,α+ǫ)(t) ,

that satisfies
F(t) = 0 if t < α and if α + ǫ < t .

Thus, if t0 < α and α + ǫ < t1 , then

m [v(α) − v(t0)] =
∫ α

t0

F(t) dt =
∫ α

t0

0dt = 0

1 Students of physics will observe that the impulse is actually equal to the change in themomentum, mv .
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and

m [v(t1) − v(α + ǫ)] =
∫ t1

α+ǫ

F(t) dt =
∫ t1

α+ǫ

0dt = 0 .

Since t0 can be any value less thanα , and t1 can be any value greater thanα + ǫ , the last two
equations tell us that the velocity is one constantvbefore before the bat hits the ball, and another
constantvafter afterwards, with

vbefore = v(α) and vafter = v(α + ǫ) .

(We are usingvbefore and vafter because the expressionsv(α) and v(α + ǫ) will become prob-
lematic when we letǫ → 0 .)

The precise formula forF(t) while the bat is in contact with the ball is typically both
difficult to determine and of little interest. All we usuallycare about is describingF(t) well
enough to get the correct change in the velocity of the ball,vafter − vbefore. So let us pick

F(t) = 1

ǫ
rect(α,α+ǫ)(t) ,

and see what the resulting change of velocity is ast changes fromt0 to t1 (with t0 < α and
α + ǫ < t1 ):

m [vafter − vbefore] = m [v(t1) − v(t0)]

=
∫ t1

t0

F(t) dt

=
∫ t1

t0

1

ǫ
rect(α,α+ǫ)(t) dt = 1

ǫ

∫ α+ǫ

α

dt = 1 .

In other words,
F(t) = 1

ǫ
rect(α,α+ǫ)(t)

describes a force of durationǫ starting att = α with a total impulse of 1 . Obviously, if we,
instead, wanted a force of durationǫ starting att = α with a total impulse ofI , we could just
multiply the above byI . The corresponding velocity of the ball is then given by

v(t) =

{

vbefore if t < α

vafter if α + ǫ < t
.

where

m [vafter − vbefore] =
∫ t1

t0

I · 1

ǫ
rect(α,α+ǫ)(t) dt = I .

There is just one little complication: determiningǫ , the length of time the bat is in contact
with the ball. And, naturally, because this length of time isso close to being zero, we will simplify
our computations by lettingǫ → 0 . Thus, for some constantI , we model the force by adelta
function force

F(t) = lim
ǫ→0+

I · 1

ǫ
rect(α,α+ǫ)(t) = I δα(t) .

The resulting velocity of the ballv(t) is then given by two constantsvbefore and vafter , with

v(t) =

{

vbefore if t < α

vafter if α < t
.
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where
m [vafter − vbefore] = total impulse ofF = I .

Observe that using a delta function force leads to the velocity changing instantly from one constant
to another. The velocity is no longer continuous, and the velocity right at t = α is no longer
well defined. This is not physically possible, but is still a very good approximation of what really
happens.

We should also note thatF(t) = δα(t) corresponds to a force acting instantaneously at
t = α with total impulse of 1 . For that reason,δα is also known as the(instantaneous) unit
impulse function atα .

!◮Example 29.1: A baseball of mass0.145 kilograms is thrown against a wall with a speed
of 40 meters per second (about85 miles per hour) and bounces off the wall with a speed
of 30 meters per second (about64 miles per hour). Its direction of travel before and after
hitting the wall is along an imaginaryX–axis perpendicular to the wall and pointing in the
direction the ball is traveling after it bounces off the wall. So, (in meters/second)

vbefore = −40 and vafter = 30 .

Letting α be the time the ball hits the wall, we can model the force of thewall on the ball by

F(t) = I δα(t)

(

kg·meter

second2

)

where the impulse of the force is

I = m [vafter − vbefore] = 0.145[30 + 40] = 10.15

(

kg·meter
second

)

.

As Density Functions for Point Masses

Suppose we have some material spread out along theX–axis. Recall that the linear density of
the material at positionx , ρ(x) , is the “mass per unit length” of the material at pointx . More
precisely, it is the function such that, ifx0 < x1 , then

∫ x1

x0

ρ(x) dx

gives the mass of the material between positionsx = x0 and x = x1 .
Now think about what it means to have a density function

ρ(x) = m

ǫ
rect(α,α+ǫ)(x) =



















0 if t < 0

m

ǫ
if 0 < t < ǫ

0 if ǫ < t

whereα , m and ǫ real numbers withm and ǫ being positive. Here, all the mass is uniformly
spread out in some object located betweenx = α and x = α + ǫ . Picking x0 < α and
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α + ǫ < x1 , we see that

total mass of the object=
∫ x1

x0

ρ(x) dx

=
∫ x1

x0

m

ǫ
rect(α,α+ǫ)(x) dx = m

ǫ

∫ α+ǫ

α

1dx = m .

So we have an object of massm occupying theX–axis from x = α to x = α + ǫ .
In many applications, the width of the object,ǫ , is much smaller than the other dimensions

involved, and taking account of this width complicates computations without significantly af-
fecting the results of the computations. In these cases, it is common to simplify the mathematics
by letting ǫ → 0 and thereby converting

our object of massm occupying the region betweenx = α and x = α + ǫ

to
an object of massm occupying the pointx = α ,

In doing so, we see that

ρ(x) = lim
ǫ→0+

m

ǫ
rect(α,α+ǫ)(x) = m lim

ǫ→0+

1

ǫ
rect(α,α+ǫ)(x) = mδα(x) .

Thus, the delta function atα multiplied by m describes the linear density of a “point mass” at
α of massm .

29.3 The Mathematics of Delta Functions
Integrals with Delta Functions

While we used
δα(t) = δ(t − α) = lim

ǫ→0+

1

ǫ
rect(α,α+ǫ)(t) (29.1)

to visualize the delta function atα , it is mathematically better to viewδα through the integral
equation

∫ t1

t0

g(t)δα(t) dt = lim
ǫ→0+

∫ t1

t0

g(t)
1

ǫ
rect(α,α+ǫ)(t) dt (29.2)

where (t0, t1) can be any interval andg can be any function on(t0, t1) continuous atα . This
means we are really viewing “δα(t) ” as notation indicating a certain limiting process involving
integration. Remember, that’s how we actually used delta functions in modeling strong brief
forces and point masses.

Since our interest is mainly in using delta functions with the Laplace transform, let us
simplify matters a little and just consider the integral

∫ ∞

0
g(t) δα(t) dt
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g(tǫ)

α α + ǫtǫ

Figure 29.2: The rectangle with area equal to
∫ α+ǫ

α
g(t) dt .

when α ≥ 0 and g is any function continuous atα and piecewise continuous on[0,∞) .
Before applying equation (29.2), observe that, because 0≤ α and

g(t) rect(α,α+ǫ)(t) =















0 if t < α

g(t) if α < t < α + ǫ

0 if α + ǫ < t ,

we have
∫ ∞

0
g(t) · 1

ǫ
rect(α,α+ǫ)(t) dt = 1

ǫ

∫ α+ǫ

α

g(t) dt .

Because we will be taking the limit of the above asǫ → 0 , we can assumeǫ is small enough
that g is continuous on the closed interval[a, α + ǫ] , and then apply the fact (illustrated in
figure 29.2) that

∫ α+ǫ

α

g(t) dt = “(net) area betweenT–axis and graph ofy = g(t) with α ≤ t ≤ α + ǫ ”

= “(net) area of rectangle with base[α, α + ǫ] and (signed) heightg(tǫ)

for some tǫ in the interval[a, α + ǫ] ”

= ǫ × g(tǫ) for some tǫ in [α, α + ǫ] .

Combining the above and applying equation (29.2), we obtain

∫ ∞

0
g(t) δα(t) dt = lim

ǫ→0

∫ ∞

0
g(t) · 1

ǫ
rect(α,α+ǫ)(t) dt

= lim
ǫ→0

1

ǫ

∫ α+ǫ

α

g(t) dt

= lim
ǫ→0

1

ǫ
× ǫ ×

{

g(tǫ) for some tǫ in [α, α + ǫ]
}

= lim
ǫ→0

{

g(tǫ) for some tǫ in [α, α + ǫ]
}

= g(tǫ) for some tǫ in [α, α + 0] .

But, of course, the onlytǫ in [α, α + 0] is tǫ = α . So the above reduces to a simple result that
is important enough to place in a theorem.
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Theorem 29.1
Let α ≥ 0 and let g be any piecewise continuous function on[0,∞) which is continuous at
t = α . Then

∫ ∞

0
g(t) δα(t) dt = g(α) . (29.3)

In particular, sinceδ = δ0 ,
∫ ∞

0
g(t) δ(t) dt = g(0) . (29.4)

!◮Example 29.2: Actually, two examples:
∫ ∞

0
t2 δ3(t) dt = 32 = 9 ,

and
∫ ∞

0
(5 − t)3 δ(t) dt = (5 − 0)3 = 125 .

We derived the above theorem because it covers the cases of greatest interest to us. Still, it
is worth noting that with just a little more work, you can verify that

∫ t1

t0

g(t) δα(t) dt =

{

g(α) if t0 ≤ α < t1

0 if α < t0 or t1 ≤ α
(29.5)

wheneverg is a function continuous atα and piecewise continuous on[t0, t1) .
Equations (29.3) and (29.4) (and, more generally, equation(29.5)) are often used instead of

equation (29.2) “fundamental descriptions” of the delta functions. Their simplicity belies their
significance.

Laplace Transforms of Delta Functions

Finding the Laplace transform of a delta function is easy. Just use the integral formula for the
Laplace transform along with an equation from theorem 29.1.Assumingα ≥ 0 , we have

L[δα(t)]|s =
∫ ∞

0
δα(t)e

−st dt = e−sα ,

which we usually prefer to write as

L[δα(t)]|s = e−αs .

In particular,
L[δ(t)]|s = L[δ0(t)]|s = e−0s = 1 .

These transforms are important enough to add to our table of common transforms, giving us
table 29.1.
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Table 29.1: Laplace Transforms of Common Functions (Version 2)

In the following, α and ω are real-valued constants, and, unless otherwise noted,s > 0 .

f (t) F(s) = L[ f (t)]|s Restrictions

1
1

s

t
1

s2

tn n!
sn+1

n = 1, 2, 3, . . .

1
√

t

√
π

√
s

tα
Ŵ(α + 1)

sα+1
−1 < α

eαt 1

s − α
α < s

ei αt 1

s − iα

cos(ωt)
s

s2 + ω2

sin(ωt)
ω

s2 + ω2

stepα(t), step(t − α)
e−αs

s
0 ≤ α

δ(t) 1

δα(t), δ(t − α) e−αs 0 ≤ α

Differential Equations with Delta functions

Using the Laplace transform, it is relatively easy to solve many differential equations in which
delta functions act as a forcing functions. Let us look at twoexamples.

!◮Example 29.3: Let’s find the solution to

dy

dt
= δα(t) with y(0) = 0

whereα is any positive real number.
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Taking the Laplace transform of both sides:

L

[

dy

dt

]∣

∣

∣

∣

s

= L[δα(t)]|s (29.6)

H⇒ sY(s) − y(0) = e−αs (29.7)

H⇒ sY(s) − 0 = e−αs (29.8)

H⇒ Y(s) = e−αs

s
. (29.9)

Thus, the solution to our differential equation is

y(t) = L
−1[Y(s)]|t = L

−1

[

e−αs

s

]∣

∣

∣

∣

t

= stepα(t) .

According to the last example,y(t) = stepα(t) is a solution toy′(t) = δα(t) . In other
words,

d

dt
stepα(t) = δα(t) .

This interesting fact may also be a disturbing fact for thoseof you who realize that the step
functions are not differentiable, at least not in the sense normally taught in calculus courses. The
truth is that delta functions are somewhat exotic entities that are outside the classical theory of
calculus. We will discuss this a little further in section 29.5. For now, let me just say that what
we are calling ‘delta functions’ are really examples of things better referred to as “generalized
functions”, and that the above equation about the derivative of the step function,while not valid in a
strict classical sense, is valid using a definition of differentiation appropriate for these generalized
functions.

But enough worrying about technicalities. Let’s solve another differential equation with a
delta function.

!◮Example 29.4: Now consider

y′′ − 10y′ + 21y = δ(t) with y(0) = 0 and y′(0) = 0 .

Taking the Laplace transform of both sides:

L
[

y′′ − 10y′ + 21y
]∣

∣

s
= L[δ(t)]|s

H⇒ L
[

y′′]∣
∣

s
− 10L

[

y′]∣
∣

s
+ 21L[y]|s = 1

H⇒ s2Y(s) − 10sY(s) + 21Y(s) = 1

H⇒
[

s2 − 10s + 21
]

Y(s) = 1 .

So,

Y(s) = 1

s2 − 10s + 21
,

which just happens to be the function whose inverse transform was found in example 27.4 on
page 540. Using the result of that example, we can just write out

y(t) = L
−1[Y(s)]|t = 1

4

[

e7t − e3t
]

.
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29.4 Delta Functions and Duhamel’s Principle

If you compare the results of the last example with the results of example 27.6 on page 542,
you’ll notice that the solutiony(t) to

y′′ − 10y′ + 21y = δ(t) with y(0) = 0 and y′(0) = 0

and the impulse response functionh(t) for

y′′ − 10y′ + 21y = f (t)

are one and the same. Is this an amazing coincidence?
No.
In section 27.3 we saw that, for any real constantsa , b andc , and any Laplace transformable

function f , the solution on(0,∞) to the generic initial-value problem

ay′′ + by′ + cy = f (t) with y(0) = 0 and y′(0) = 0

is given by
y(t) = h ∗ f (t)

where
h = L

−1[H ] and H(s) = 1

as2 + bs+ c
.

Now consider the corresponding initial-value problem

ay′′ + by′ + cy = δ(t) with y(0) = 0 and y′(0) = 0 ,

which is just the generic initial-value problem above withf = δ . Taking the Laplace transform,
we get

L
[

ay′′ + by′ + cy
]
∣

∣

s
= L[δ(t)]|s

H⇒ aL
[

y′′]∣
∣

s
+ bL

[

y′]∣
∣

s
+ cL[y]|s = 1

H⇒ as2Y(s) + bsY(s) + cY(s) = 1

H⇒
[

as2 + bs+ c
]

Y(s) = 1 .

Dividing by the polynomial and comparing the result with theabove formula forH , we see that

Y(s) = 1

as2 + bs+ c
= H(s) .

Thus,
y(t) = L

−1[Y(s)]|t = L
−1[H(s)]|t = h(t) .

In other words,h(t) is the solution to the particular initial-value problem

ah′′ + bh′ + ch = δ(t) with y(0) = 0 and y′(0) = 0 .

This explains whyh is commonly referred to as the “impulse response function” —well,
almost explains. Here’s a little background: In many applications, the solution to the initial-value
problem

ay′′ + by′ + cy = f (t) with y(0) = 0 and y′(0) = 0
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describes how some physical system responds to an applied “force” f (t) (actually, f might not
be an actual force). With this interpretation,h(t) does give the response of the system to a delta
function force, and, as noted earlier, the delta function isalso known as an impulse function.
Hence the term “impulse response function” forh(t) .

Of course, the generic computations just done can be done with higher-order differential
equations. Combining this with theorem 27.2 on page 545 yields

Theorem 29.2 (Duhamel’s principle, version 2)
Let N be any positive integer, leta0 , a1 , . . . and aN be any collection of constants, and let
f (t) be any Laplace transformable function. Then, the solution to the initial-value problem

a0y(N) + a1y(N−1) + · · · + aN−2y′′ + aN−1y′ + aN y = f (t)

with
y(0) = 0 , y′(0) = 0 , y′′(0) = 0 , . . . and yN−1(0) = 0 ,

is given by

y(t) = h ∗ f (t) =
∫ t

0
h(x) f (t − x) dx

whereh(t) is the solution to

a0h(N) + a1h(N−1) + · · · + aN−2h′′ + aN−1h′ + aNh = δ(t)

with
h(0) = 0 , h′(0) = 0 , h′′(0) = 0 , . . . and hN−1(0) = 0 .

There is a practical consequence toh being the impulse response function. Suppose you
have a physical system in which you know the ‘output’y(t) is related to an ‘input’f (t) through
a differential equation of the form given in the above theorem. Suppose, further, that you do not
know exactly what that differential equation is. Maybe, forexample, you have a mass/spring
system some of whose basic parameters — mass, spring constant or damping constant — are
unknown and cannot be easily measured. The above theorem tells us that, if we input the
physical equivalent of a delta function (say, we provide a unit impulse to the mass/spring system
by carefully hitting the mass with a hammer), then measuringthe output over time will yield
a description of the impulse response function,h(t) . Save those values forh(t) over time in
a computer, and you can then numerically evaluate the outputy(t) corresponding to any other
input f (t) through the formula

y(t) = f ∗ h(t) .

In practice, generating and inputting the physical equivalent of δ(t) is usually impossible.
What is often possible is to generate and input a good approximation to the delta function, say,

1

ǫ
rect(0,ǫ)(t)

for some small value ofǫ . The resulting measured output will not beh(t) exactly, but, if the
errors in measurement aren’t too bad, it will be a close approximation.



Some “Issues” with Delta Functions 593

29.5 Some “Issues” with Delta Functions

The astute reader may have noticed that we’ve glossed over a few troublesome issues in our
discussion of delta functions. Let’s deal with a few of thesenow.

Defining the Delta Functions

You may have noticed that we have not yetdefinedthe delta function. In particular, I’ve not given
you any formula for computing the values ofδ(t) or δα(t) for different values oft . Instead,
I’ve only told you tovisualizeδα(t) in terms of either the limit

δα(t) = δ(t − α) = lim
ǫ→0

1

ǫ
rect(α,α+ǫ)(t) , (29.10)

or the limit
∫ t1

t0

g(t)δα(t) dt = lim
ǫ→0+

∫ t1

t0

g(t)
1

ǫ
rect(α,α+ǫ)(t) dt . (29.11)

If you check other texts, you’ll often findδa (with α ≥ 0 ) “defined” either as the limit in
(29.10) or as the ‘function’ such that

∫ ∞

0
g(t) δα(t) dt = g(α) (29.12)

wheneverg is a function continuous atα . (This, recall, was something we derived from equation
(29.11).) Both of these are good ‘working’ definitions in that, properly interpreted, they tell you
how you should use the symbolδα in computations (provided you interpret the limit in (29.10)
as really meaning the limit in (29.11)).

Unfortunately, if you treat either as a rigorous definition for a classical functionδα , then
you can then rigorously derive

δα(t) = 0 whenever t 6= α .

Rigorously applying the classical theory of integration normally developed in undergraduate
mathematics, you then find that

∫ ∞

0
g(t) δα(t) dt =

∫ α

0
g(t) δα(t) dt +

∫ ∞

α

g(t) δα(t) dt

=
∫ α

0
g(t) · 0dt +

∫ ∞

α

g(t) · 0dt = 0 .

In particular, usingg(t) = t2 , α = 1 and both equation (29.11) and the last equation above, we
get

1 = 12 =
∫ ∞

0
t2 δ2(t) dt = 0 !

The problem is that there is no classical function that satisfies either definition. Fortunately,
there is a way to ‘generalize’ the classical notion of ‘functions’ yielding a class of things called
“generalized functions”. Delta functions are members of this class. Unfortunately, a proper
development of “generalized functions” goes beyond the scope of this text. I will tell you that,
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if f is a generalized function, then, for every sufficiently smooth and integrable functiong and
suitable interval(t0, t1) , then

∫ t1

t0

g(t) f (t) dt

“makes sense” in some generalized sense. Forf = δα , this integral can be defined by equation
(29.11).2 Using the theory of generalized functions, along with the corresponding generalization
of the theory of calculus, everything developed in this chapter can be rigorously defined or
derived, including the observation that, “in a generalizedsense”,

δα(t) = d

dt
stepα(t) .

For now, however, it may best to view the computations we are doing with δα as shorthand for
doing the same computations with

1

ǫ
rect(α,α+ǫ) ,

and then lettingǫ → 0+ in the final result.

!◮Example 29.5: Let’s reconsider solving

dyǫ
dt

= δα(t) with y(0) = 0

whereα is any positive real number. Doing the replacement suggested above, we’ll first solve

dyǫ
dt

= 1

ǫ
rect(α,α+ǫ) with y(0) = 0 (29.13)

assumingǫ > 0 , and then take the limit of the result asǫ → 0 .
Taking the Laplace transform of both sides of the last equation:

L

[

dyǫ
dt

]∣

∣

∣

∣

s

= L

[

1

ǫ
rect(α,α+ǫ)

]
∣

∣

∣

s

H⇒ sY(s) − y(0) = 1

ǫ
L

[

rect(α,α+ǫ)

]∣

∣

s

H⇒ sYǫ(s) − 0 = 1

ǫ

[

1

s
e−αs − 1

s
e−(α+ǫ)s

]

H⇒ Yǫ(s) = 1

ǫ

[

1

s2
e−αs − 1

s2
e−(α+ǫ)s

]

.

So,

yǫ(t) = L
−1

[

1

ǫ

[

1

s2
e−αs − 1

s2
e−(α+ǫ)s

]]∣

∣

∣

∣

t

= 1

ǫ

{

L
−1

[

1

s2 e−αs

]∣

∣

∣

∣

t

− L
−1

[

1

s2 e−(α+ǫ)

]∣

∣

∣

∣

t

}

= 1

ǫ

{

[t − α] stepα(t) − [t − (α + ǫ)] stepα+ǫ(t)
}

2 If you must know, “generalized functions” are actually ”continuous linear functionals on a suitable space of test
functions”, and if you want to find out what that means, see part IV of the author’sPrinciples of Fourier Analysis,
or go to the library and look up books on either generalized functions or distributional theory.
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(a) (b)

αα α + ǫa α + ǫb

11

TT

Figure 29.3: The graph of the solution to initial-value problem (29.13)(a) when ǫ = ǫa

and(b) when ǫ = ǫb with 0 < ǫb < ǫa .

= 1

ǫ















0 − 0 if t < α

[t − α] − 0 if α < t < α + ǫ

[t − α] − [t − (α + ǫ)] if α + ǫ < t

=



















0 if t < α

t − α

ǫ
if α < t < α + ǫ

1 if α + ǫ < t

.

Graphs of this function for two different values ofǫ are sketched in figure 29.3.
Finally, taking the limit, we get

y(t) = lim
ǫ→0+

yǫ(t) = lim
ǫ→0+



















0 if t < α

t − α

ǫ
if α < t < α + ǫ

1 if α + ǫ < t



















=

{

0 if t < α

1 if α < t
.

That is,
y(t) = stepα(t) ,

just as obtained (with much less work!) in example 29.3.

Continuity of Solutions and Problems with Initial Values

Early in this text, it was stated that solutions to first-order differential equations had to be con-
tinuous, and solutions to second-order differential equations had to be continuous and have
continuous derivatives. Buty = stepα(t) , the solution to

dy

dt
= δα(t) with y(0) = 0

obtained in exercises 29.3 and 29.5, is clearly not continuous. If you think about it, this may not
be so surprising. Our original insistence on the continuityof solutions assumed we were using
classical functions. The exotic nature of the delta functions takes us outside the classical theory
to the idealized cases where instantaneous change can occur.

Normally, this is not a problem. Indeed, it can desirable, especially if you are modeling
“brief strong forces”. One place where this can case some confusion is when the discontinuities
occur where initial data is given. In these cases, the confusion can be somewhat abated by
remembering that a delta function really indicate a limiting process.
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!◮Example 29.6: Letting α = 0 , we see that the solution to

dy

dt
= δ(t) with y(0) = 0

is
y(t) = step(t) .

However, step(t) has a jump att = 0 , and its limit from the right at this point is1 . So
how can we say this step function satisfies the given initial condition, y(0) = 0? By going
back to exercise 29.5, which showed that the above solution should be viewed as the limit as
ǫ → 0 of the function yǫ(t) graphed in figure 29.3 withα = 0 . For eachǫ > 0 , yǫ(t)
is continuous att = 0 and satisfiesyǫ(0) = 0 . As ǫ becomes smaller, the values ofyǫ(t)
increase more rapidly to1 for positive values oft . So what we end up with after taking
ǫ → 0 is that theleft-hand limitof y(t) at t = 0 is 0 , but y(t) “immediately” increases
from 0 to 1 as t switches from negative values to positive values.

What this last example demonstrates is that, when the differential equation has aδ(t) in its
forcing function, then initial conditions naively writtenas

y(0) = y0 , y′(0) = y1 , . . .

are, well, naive. What is really meant is that these values give the left-hand limits,

lim
t→0−

y(t) = y0 , lim
t→0−

y′(0) = y1 , . . . .

Additional Exercises

29.1. For the following, assume an object of massm kilograms is initially moving along the
X–axis with constant velocityvbefore meters/second until its velocity is changed tovafter

meters/second by a delta function force with impulseI at time t = α seconds.

a. Find vafter assumingm = 2 , vbefore= −10 and

i. I = 60 ii. I = 100 iii. I = 20

b. Assumem = 0.2 and vbefore= −40. What impulseI is needed to obtain

i. vafter = 50 ii. vafter = 100 iii. vafter = 0

c. AssumeI = 30, and that the velocity of the object before and aftert = α is
determined by radar. What is the mass of the object if

i. vbefore= −10 and vafter = 50 ii. vbefore= 0 and vafter = 15

29.2. Using the results given in theorem 29.1, compute the following integrals

a.
∫ ∞

0
t2δ4(t) dt b.

∫ ∞

0
t2δ(t) dt
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c.
∫ ∞

0
cos(t) δ(t) dt d.

∫ ∞

0
sin(t) δπ/6(t) dt

e.
∫ ∞

0
t2 rect(1,4)(t)δ3(t) dt f.

∫ ∞

0
t2 rect(1,4)(t)δ6(t) dt

29.3. Prove/derive equation (29.5) on page 588.

29.4. Show that
g ∗ δα(t) = g(t − α) stepα(t)

wheneverα ≥ 0 and g is a piecewise continuous function on(0,∞) .

29.5. Find and sketch the solution over[0,∞) to each of the following:

a. y′ = 3δ2(t) with y(0) = 0

b. y′ = δ2(t) − δ4(t) with y(0) = 0

c. y′′ = δ3(t) with y(0) = 0 and y′(0) = 0

d. y′′ = δ1(t) − δ4(t) with y(0) = 0 and y′(0) = 0

e. y′ + 2y = 4δ1(t) with y(0) = 0

f. y′′ + y = δ(t) + δπ (t) with y(0) = 0 and y′(0) = 0

g. y′′ + y = −2δπ/2(t) with y(0) = 0 and y′(0) = 0

29.6. Find the solution ont > 0 to each of the following initial-value problems:

a. y′ + 3y = δ2(t) with y(0) = 2

b. y′′ + 3y′ = δ(t) with y(0) = 0 and y′(0) = 0

c. y′′ + 3y′ = δ1(t) with y(0) = 0 and y′(0) = 1

d. y′′ + 16y = δ2(t) with y(0) = 0 and y′(0) = 0

e. y′′ − 16y = δ10(t) with y(0) = 0 and y′(0) = 0

f. y′′ + y = δ(t) with y(0) = 0 and y′(0) = −1

g. y′′ + 4y′ − 12y = δ(t) with y(0) = 0 and y′(0) = 0

h. y′′ + 4y′ − 12y = δ3(t) with y(0) = 0 and y′(0) = 0

i. y′′ + 6y′ + 9y = δ4(t) with y(0) = 0 and y′(0) = 0

j. y′′ − 12y′ + 45y = δ(t) with y(0) = 0 and y′(0) = 0

k. y′′′ + 9y′ = δ1(t) with y(0) = 0 and y′(0) = 0

l. y′′′′ − 16y = δ(t) with y(0) = 0 and y′(0) = 0




