29

Delta Functions

This chapter introduces mathematical entities commondnknas “delta functions” As we will
see, a delta function is not really a function, at least nthéclassical sense. Nonetheless, with
a modicum of care, they can be treated like functions. Mogoirtantly, they are useful. They
are valuable in modeling both “strong forces of brief dwmati(such as the force of a baseball
bat striking a ball) and "point masses”. Moreover, their Ingahatical properties turn out to be
remarkable, making them some of the simplest “functionsidal with. After a little practice,
you may rank them with the constant functions as some of yenarite functions to deal with.
Indeed, the basic delta function has a relation with the teorigunction f = 1 that will allow

us to expand our discussion of Duhamel’s principle.

29.1 Visualizing Delta Functions

What is commonly called “the delta function"— traditionatlenoted bys (t) — is best thought
of as shorthand for a particular limiting process. One stathdvay to visualizes(t) is as the
limit L

5(t) = lim recioq(®)

Look at the function we are taking the limit of,

0 if t<O
%recqo,g)(t) =11 it o<t<e
0 if e<t

Graphs of this for various small positive valuescohave been sketched in figure 29.1a. Notice
that, for eache, the nonzero part of the graph forms a rectangle of widthnd height?, .
Consequently, the area of this rectangle is. = 1. Keep in mind that we are taking a limit as
¢ — 0; so¢ is “small’; which means that this rectangle is very narrow &ary high, starts at
t =0, andis of unit area. As we let— O this “very narrow and very high rectangle starting at
t = 0 and of unit area” becomes an “infinitesimally narrow andiiily high ‘spike’ att = 0
enclosing unit area”.

Strictly speaking, there is no function whose graph is susjhilee. The closest we can come
is the function that is zero everywhere except at 0, where we pretend the function is infinite.
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Figure 29.1: The graphs ofa) 2 recig) (t) and(b) % rectoe (t — ) (equivalently
L rectgatet)) for e =1, e =% ande = Y.

This sort of gives the infinite spike, but the “area enclosediot at all well defined. Still, the
visualization of the delta function as “an infinite spike lsing unit area” is useful, just as it is
useful in physics to sometimes pretend that we can have at‘pwss” (an infinitesimally small
particle of nonzero mass).

The above describes “the” delta function. For any real numbgthe delta function atv ,
3, (1), is simply “the” delta function shifted by,

Sa(1) = 8t —a) = Iimogrecqo,e)(t—a)

With alittle thought (or aglance atfigure 29.1b), you cartbatthe nonzero part of regt, (t — «)
starts att = @ and ends at = « + ¢, and that

.1
b)) = 8t —a) = !lﬂqogrecr(a,a+e)(t)

Do notice that
So(t) = 8(t—0) = §(t)

This means that anything we derive concernijgalso holds for§ — justleta =0.

29.2 Delta Functions in Modeling

There are at least two general situations in which deltatfons naturally arise when we attempt
to describe “real world” phenomenon. One is when we attempiddel brief but strong forces.
The other is when we imagine physical objects as “point n&sse both, the delta functions
appear in integrals. This will be significant, and is well Wioobserving in the models described
below.

Since it will be especially useful to see how delta functiomsdel “strong forces of brief
duration’ we’ll start with that.
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Strong Forces of Brief Duration

Consider the motion of some object under a force that varigs time. We will assume the
object’s motion is one dimensional (say, along soKeaxis), and, as usual, we’ll let

m = the mass (in kilograms) of the object (assumed constant) ,
t = time (in seconds)

v(t) = velocity (in meters/second) of the object at titne,
and
F(t) = force (in kilogrammeters/secorfiiacting on the object at timie .

(Of course, any units for time, mass and distance can be asédng as we are consistent.)
Newton’s famous law of force gives

. d
F(t) = m x acceleration= md—lt)

If we integrate this over a intervdly, t1) , we get

t1 t1 dv
/ F@t)dt = / m—dt = m[v(t)) — v(to)]
o o dt
So the integral ofF(t) from t = t; to t = t; is the object's mass times the change in the
object’s velocity over that period of time. This integral Bf is sometimes called thmpulseof

the force over the interva(ty, t;) (with the total impulse being this integral with = —oc and

t; = oo).! Note that, following our above conventions for units, thésiassociated with the
impulse is kilograrrmeters/second.

Let’'s now restrict ourselves to situations in which the i zero except for a very short
period of time, during which the force is strong enough tmgigantly change the velocity of the
object under question. We may be talking about the force afszball bat striking a baseball,
or the force of some propellent (gunpowder, compresseeétail, forcing a bullet out of a gun,
or even the force of a baseball in flight striking some unfoate bat that fluttered out over the
field to catch flies. For concreteness, let's pretend we adystg the force of a baseball bat
hitting a baseball at “time¢ = « " If we are very precise, we may lét= « be the first instant
the bat comes into contact with the ball, andhe length of time the bat remains in contact with
the ball. Considering the situation this length of tineg, must be positive, but very small.

Before and after the bat touches the ball, this force is z&wo.our F(t) must be some
function, such as,

1
g recta,oﬂre) (t) y

that satisfies
Ft) =0 if t<a andif a+e <t

Thus, iftg <« anda + € < t1, then

mv(a) — v(to)] = /

to

F@t)dt = / 0dt =0
t

0

1 students of physics will observe that the impulse is acguedual to the change in tieomentummo .
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and
t1 t1
mlv(ty) — vl +¢€)] = / Ft)dt = 0dt =0
a+te€ a+te€
Sincety can be any value less than, andt; can be any value greater thary- ¢, the last two
equations tell us that the velocity is one constagtore before the bat hits the ball, and another
constantvaser afterwards, with

Ubefore = V(@) and Vafter = V(o +€)

(We are usingupetore aNd vaser because the expressionéx) and v(a + €) will become prob-
lematic when we lek — 0.)

The precise formula for(t) while the bat is in contact with the ball is typically both
difficult to determine and of little interest. All we usualbare about is describing (t) well
enough to get the correct change in the velocity of the haller — vpefore- SO let us pick

FO) = - reCluaso®)

and see what the resulting change of velocity id ashanges fromt, to t; (with to < o and
a+e<ty):

m [Uafter - Ubeforel =m [U(tl) - U(to)]

t1
= / F(t)dt
to

t1 1 1 ate
= / Zrect«x,oﬂre)(t)dt = Z/ dt = 1

to
In other words,
1
F(t) = grecr(a,oz—q—e)(t)

describes a force of duration starting att = « with a total impulse of 1. Obviously, if we,
instead, wanted a force of duratienstarting att = « with a total impulse ofZ , we could just
multiply the above byZ . The corresponding velocity of the ball is then given by

o(t) = Upefore if t<a
Vafter |f o + €< t

where
ty 1
m [Uafter - Ubefore] = /; 1T - recr(ot,a—i—e)(t) dt = 1
0
There is just one little complication: determinirg the length of time the bat is in contact
with the ball. And, naturally, because this length of timgdglose to being zero, we will simplify
our computations by letting — 0. Thus, for some constatit, we model the force by delta
function force

FO = lim T-2rectyuro®) = I6,(1)
e—0t €
The resulting velocity of the balb(t) is then given by two constant$,efore and vager, With

v if t<a
U(t) _ before

Vafter |f o< t
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where
M [vafter — Ubeford = totalimpulse ofFf = 1

Observe that using a delta function force leads to the vglobanging instantly from one constant
to another. The velocity is no longer continuous, and theaist right att = « is no longer
well defined. This is not physically possible, but is stillerygood approximation of what really
happens.

We should also note thafE (t) = 6,(t) corresponds to a force acting instantaneously at
t = a with total impulse of 1. For that reasoi, is also known as thénstantaneous) unit
impulse function atr .

»Example 29.1: A baseball of mas$.145 kilograms is thrown against a wall with a speed
of 40 meters per second (aboB5 miles per hour) and bounces off the wall with a speed
of 30 meters per second (abo6# miles per hour). Its direction of travel before and after
hitting the wall is along an imaginar)X—axis perpendicular to the wall and pointing in the
direction the ball is traveling after it bounces off the wadb, (in meters/second)

Upefore = —40 and Vafter = 30

Letting o be the time the ball hits the wall, we can model the force oftb# on the ball by

E(t) = T6,(1) (kg'meter)

second

where the impulse of the force is

- B B kg meter
I = m{vatter — vpetord = 0.145[30 + 40 = 10.15 (second)

As Density Functions for Point Masses

Suppose we have some material spread out along<thaxis. Recall that the linear density of
the material at positiorx, o(x), is the “mass per unit length” of the material at poit More
precisely, it is the function such that, ¥ < Xx;, then

/ l,o(x)dx

gives the mass of the material between positigns Xg and X = x; .
Now think about what it means to have a density function

if t<O

p(X) = ?rect(a,aﬁ)(x) = if O<t<e

0
m
€
0 if e<t

wherea, m and e real numbers withm and ¢ being positive. Here, all the mass is uniformly
spread out in some object located betweer= @« and X = o + €. Picking X < « and
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o + € < X1, we see that

X1
total mass of the object / p(X)dx

Xo

X1 m m a+e
= / ?rect(awg)(x)dx = ?/ ldx = m

X0

So we have an object of masgs occupying theX—axis fromx =« to X =« + €.

In many applications, the width of the objeet, is much smaller than the other dimensions
involved, and taking account of this width complicates catagions without significantly af-
fecting the results of the computations. In these casescdrinmon to simplify the mathematics
by letting e — O and thereby converting

our object of massn occupying the region between=«o andX =« + ¢

to
an object of massn occupying the poinX = «,

In doing so, we see that
(X) = lim ™ rec (X) = mlim lrec (X) = mé,(X)
1Y - Ot ? Ra,a+e) - s 0t g t(oc,oz+e) - o

Thus, the delta function at multiplied by m describes the linear density of a “point mass” at
a of massm.

29.3 The Mathematics of Delta Functions
Integrals with Delta Functions

While we used
S (t) = 8t —a) = Iin3+§rect(a,a+e)(t) (29.1)

to visualize the delta function at , it is mathematically better to view, through the integral

equation
t1 t1

g8 dt = lim. g(t);lrect(a,aJre)(t) dt (29.2)

to to

where (1o, t1) can be any interval and can be any function oritg, t;) continuous atx . This
means we are really viewings, (t) ” as notation indicating a certain limiting process involyi
integration. Remember, that's how we actually used delt&tfans in modeling strong brief
forces and point masses.

Since our interest is mainly in using delta functions witle tbaplace transform, let us
simplify matters a little and just consider the integral

/Oo g(t) 8 (1) dt
0
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Figure 29.2: The rectangle with area equal i ™ g(t) dt.

when o > 0 and g is any function continuous a& and piecewise continuous gi, co) .
Before applying equation (29.2), observe that, becausexOand

0 if t<a
g(t) reCRa,a+e)(t) = g(t) if a<t<a + €
0 if at+e<t |

we have
o+te

o0 1 1
/ g(t) - = reCluaio® dt = = / g(t) dt
0 € € Ju

Because we will be taking the limit of the above as—> 0, we can assume is small enough
that g is continuous on the closed interve, a + €], and then apply the fact (illustrated in
figure 29.2) that

a+te
f g(t)dt = “(net) area betwee —axis and graph off = g(t) with o« <t <a +¢”

= “(net) area of rectangle with bade, « + €] and (signed) heighg(t.)
for somet, inthe interval[a, « + €]”
= e x g(ty) for somet, in [a, a + €]

Combining the above and applying equation (29.2), we obtain
| awamdt = tim [ o) 2rectuun® dt
0 e—0 0 €
) 1 a+te
- lanoE/a g(n) dt
= Iimog X € X {g(té) for somet, in [a, o +e]}
= Iimo{g(te) for somet, in [, a + €]}

= g(t) forsomet. in [, a + O]

But, of course, the only. in [a, @ + 0] is t. = «. So the above reduces to a simple result that
is important enough to place in a theorem.
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Theorem 29.1
Let @« > 0 and letg be any piecewise continuous function g oo) which is continuous at
t=a. Then

/0 g s, (H)dt = gla) . (29.3)
In particular, sinces = &,
fo gmst)ydt = g0 . (29.4)

»Example 29.2: Actually, two examples:
/ t?5t)dt = 2 =9

0

and -
/ G-1)dst)dt = 5-0)° = 125
0

We derived the above theorem because it covers the casesadégrinterest to us. Still, it
is worth noting that with just a little more work, you can \fgrihat

t if to<a<ty

g(t) 8, (H dt = { g(:) (29.5)

to if a<toort; <«

wheneverg is a function continuous at and piecewise continuous diy, t;) .

Equations (29.3) and (29.4) (and, more generally, equé#8rb)) are often used instead of
equation (29.2) “fundamental descriptions” of the deltactions. Their simplicity belies their
significance.

Laplace Transforms of Delta Functions

Finding the Laplace transform of a delta function is east dse the integral formula for the
Laplace transform along with an equation from theorem 28skuminga > 0, we have

IOl = /O T setdt = e

which we usually prefer to write as
L. M]ls = e

In particular,
LIBOs = L[oM]ls = e® =1

These transforms are important enough to add to our tablemfrion transforms, giving us
table 29.1.
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Table 29.1: Laplace Transforms of Common Functions (Version 2)

In the following, « and w are real-valued constants, and, unless otherwise neted) .

f(t) F(s) = L[f )]s Restrictions
1
1 =
S
1
t 2
n!
n . _
t ] n=123, ...
1 JT
Vi Vs
Ma+1)
o
t W —l <
et ! o<S
S—«
eiat 1
S—ia
cogwt) S
a) _—
2 + w2
. w
sin(wt) m
e—c{S
step, (t), steft — «) S O<a«
S(t) 1
S (1), 6(t — o) e s O<a

Differential Equations with Delta functions

Using the Laplace transform, it is relatively easy to sohengndifferential equations in which
delta functions act as a forcing functions. Let us look at éxamples.

»Example 29.3: Let’s find the solution to

%’ = 5,)  with y©) =0

wherea is any positive real number.
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Taking the Laplace transform of both sides:

ﬁ[ﬂ—{] — [ ] (20.6)
= sY(s) —y(0) = e *° (29.7)
= sY(s)—0 = e *° (29.8)
— v = &5 (29.9)

s
Thus, the solution to our differential equation is

y© = LYl = ﬁl[e_: ] = step.(t

t

According to the last exampley(t) = step,(t) is a solution toy'(t) = §,(t). In other
words,

d
G SteR(® = &)

This interesting fact may also be a disturbing fact for thosgou who realize that the step
functions are not differentiable, at least not in the semsmally taught in calculus courses. The
truth is that delta functions are somewhat exotic entities &re outside the classical theory of
calculus. We will discuss this a little further in section29For now, let me just say that what
we are calling ‘delta functions’ are really examples of gsrbetter referred to as “generalized
functions’; and that the above equation about the derigatithe step function, while notvalidina
strict classical sense, is valid using a definition of défeiation appropriate for these generalized
functions.

But enough worrying about technicalities. Let’s solve &eotdifferential equation with a
delta function.

I»Example 29.4: Now consider
y’" — 10y + 21y = §(t) with y(0)=0 and y'(0) =0
Taking the Laplace transform of both sides:

Lly" — 10y + 21y]|S

LIs®]ls

— clyls = 10ey]ls + 21£0ls = 1
— s?Y(s) — 10sY(s) + 21Y(s) = 1
— [s*— 10s+ 21]Y(s) = 1
So,
Y(S) — ;
T s2-10s4+21

which just happens to be the function whose inverse tramsveas found in example 27.4 on
page 540. Using the result of that example, we can just wtite o

yO = LY )], = ;[e" — €]
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29.4 Delta Functions and Duhamel’s Principle

If you compare the results of the last example with the respiitexample 27.6 on page 542,
you'll notice that the solutiory(t) to

y' — 10y + 21y = §(t) with y(0) =0 and y(0) =0
and the impulse response functiaut) for
y" — 10y + 21y = f(b)

are one and the same. Is this an amazing coincidence?

No.

Insection 27.3 we saw that, for any real constant® andc, and any Laplace transformable
function f , the solution on(0, co) to the generic initial-value problem

ay’ + by + cy = f(t) with y(0) =0 and y'(0) =0

is given by
y(t) = hx f(t)

where
1

— pr-1 —
h=L"[H] and H(s) = a1 bstc

Now consider the corresponding initial-value problem
ay’” + by + cy = §(t) with y(0)=0 and y (@0 =0 |,

which is just the generic initial-value problem above with= § . Taking the Laplace transform,
we get

clay’ +by +cy]|, = LBM®]Is

= acly’]|; + bely]l + cLlylls = 1
= as’Y(s) + bsY(s) + cY(s) = 1
— [as® +bs+c]Y(s) = 1

Dividing by the polynomial and comparing the result with gimve formula forH , we see that

1

Y = "
() as? +bs+c

= H(s)
Thus,
y© = LYl = LTHE] = h)
In other words,h(t) is the solution to the particular initial-value problem
ah’ + bh' 4+ ch = §(@) with y(0)=0 and y'(0) =0

This explains whyh is commonly referred to as the “impulse response functionivieH,
almost explains. Here’s alittle background: In many aggtlans, the solution to the initial-value
problem

ay’ + by + cy = f(t) with y(0)=0 and y(@0) =0
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describes how some physical system responds to an apphiext"f f (t) (actually, f might not
be an actual force). With this interpretatidmt) does give the response of the system to a delta
function force, and, as noted earlier, the delta functioal$® known as an impulse function.
Hence the term “impulse response function” fot) .

Of course, the generic computations just done can be dotehigher-order differential
equations. Combining this with theorem 27.2 on page 54%yiel

Theorem 29.2 (Duhamel’s principle, version 2)
Let N be any positive integer, ledy, a;, ... anday be any collection of constants, and let
f(t) be any Laplace transformable function. Then, the solutiahe initial-value problem

aoy™ + ary™ P 4+ - 4+ ay ey’ + avay + awy = ft)

with
yO =0 , y©0=0 , y©=0 , ... and yNY0=0 ,

is given by t
yt) = hx @) = / hx) f({t —x)dx
0

whereh(t) is the solution to
aoh™ + ah™™Y 4 ... 4 ay oh" + ay1h’ + ayh = 8(t)

with
h©=0 , WO =0 , h"O=0 , ... and hN"Y0) =0

There is a practical consequenceltdbeing the impulse response function. Suppose you
have a physical system in which you know the ‘outpytt) is related to an ‘input’f (t) through
a differential equation of the form given in the above thewr&uppose, further, that you do not
know exactly what that differential equation is. Maybe, éxample, you have a mass/spring
system some of whose basic parameters — mass, spring cbost@amping constant — are
unknown and cannot be easily measured. The above theorlmusethat, if we input the
physical equivalent of a delta function (say, we provide ihiompulse to the mass/spring system
by carefully hitting the mass with a hammer), then measuttiregoutput over time will yield
a description of the impulse response functitigt) . Save those values fdr(t) over time in
a computer, and you can then numerically evaluate the outfiutcorresponding to any other
input f(t) through the formula

yt) = f=ht)

In practice, generating and inputting the physical egeivbabf 5(t) is usually impossible.
What is often possible is to generate and input a good appeation to the delta function, say,

1

for some small value o€ . The resulting measured output will not Igt) exactly, but, if the
errors in measurement aren’t too bad, it will be a close appration.
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29.5 Some “Issues” with Delta Functions

The astute reader may have noticed that we've glossed ovewr &aréublesome issues in our
discussion of delta functions. Let’s deal with a few of theew.

Defining the Delta Functions

You may have noticed that we have not giefinedthe delta function. In particular, I've not given
you any formula for computing the values 6ft) or §,(t) for different values oft . Instead,
I've only told you tovisualizeé, (t) in terms of either the limit

Su(t) = 8t —a) = |im0§rect<a,a+€)(t) , (29.10)

or the limit
t1 t1

gs. (M dt = lim g(t)grecqa,w)(t) dt . (29.11)

to to
If you check other texts, you'll often find, (with « > 0) “defined” either as the limit in

(29.10) or as the ‘function’ such that

foo g(t) dx(t) dt = g(@) (29.12)
0

wheneverg is a function continuous ai . (This, recall, was something we derived from equation
(29.11).) Both of these are good ‘working’ definitions intthaoperly interpreted, they tell you
how you should use the symbé) in computations (provided you interpret the limit in (29.10
as really meaning the limitin (29.11)).

Unfortunately, if you treat either as a rigorous definitian & classical functior$,, , then
you can then rigorously derive

S.t) = 0 whenever t # o

Rigorously applying the classical theory of integratiommally developed in undergraduate
mathematics, you then find that

/ gt) s, (t)dt = / g(t) & (t) dt +/ g(t) & (t) dt
0 0 o

/ag(t)~0dt n /oog(t)-Odt -0
0 o

In particular, usingg(t) = t2, « = 1 and both equation (29.11) and the last equation above, we
get

1=12=/ t28,(t)dt = 0 |
0

The problem is that there is no classical function that Basi®ither definition. Fortunately,
there is a way to ‘generalize’ the classical notion of ‘fuoct’ yielding a class of things called
“generalized functions” Delta functions are members @ ttlass. Unfortunately, a proper
development of “generalized functions” goes beyond th@eai this text. | will tell you that,
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if f isageneralized function, then, for every sufficiently sthand integrable functiog and

suitable interval(tp, t1) , then :
1

g(t) f (1) dt

to
“makes sense” in some generalized sense. Fef §, , this integral can be defined by equation
(29.11)? Using the theory of generalized functions, along with the@sponding generalization
of the theory of calculus, everything developed in this ¢bapan be rigorously defined or
derived, including the observation that, “in a generalizedse’,

d
B(t) = g step(®)

For now, however, it may best to view the computations we amegiwith 8, as shorthand for
doing the same computations with

1
g recr(a,a+e) ’

and then lettinge — 0" in the final result.

»Example 29.5: Let’s reconsider solving

dye
dt

wherea is any positive real number. Doing the replacement sugdedteve, we’'ll first solve

= § (1) with y(0) =0
% - %recqa,m) with y(0) =0 (29.13)

assuminge > 0, and then take the limit of the result as— 0.
Taking the Laplace transform of both sides of the last equati

dye
Ckd

_ SY(8) ~ ¥(0) = “£[rectuuro],

1
= EI:_ reCt(a,oHre)]‘
€ S

S

_— SYG(S) -0 = } }efas _ l'ef(oH*e)S
€1|S S
_ 111 —oS 1 —(a+e)s

So,

Tl e 1
ye(t) — £ 1|:E [?e S_?e ( +€)S:|:|

{ﬁ—l[ize—as} _ E—l[ize—(a+e):| }
S t S t

{[t — a]step,(t) — [t — (@ + )] step., (1))

S IS NS

2f you must know, “generalized functions” are actually "tomious linear functionals on a suitable space of test
functions’ and if you want to find out what that means, se¢ Idaof the author’sPrinciples of Fourier Analysis
or go to the library and look up books on either generalizedtfions or distributional theory.
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\4

(a) (b)

Figure 29.3: The graph of the solution to initial-value problem (29.1@8)when e = ¢,
and(b) whene = e with 0 < ¢p < €3.

0-0 if t<a
1
= - [t—a]—=0 If a<t<a+te
[t—a]l —[t—(a«+e€)] if a+e<t
0 if t<a
t—«a

If a<t<a-+te

€
1 if at+e<t

Graphs of this function for two different values efare sketched in figure 29.3.
Finally, taking the limit, we get

0 if t<a
® = lim y.) = lm {12 _ |0 iFt<a
y _eﬁOere _eﬁOJr € ! a<t<ate N 1 if a<t
1 if a+e<t
That is,

yt) = step(t) ,
just as obtained (with much less work!) in example 29.3.

Continuity of Solutions and Problems with Initial Values

Early in this text, it was stated that solutions to first-grdiferential equations had to be con-
tinuous, and solutions to second-order differential eiquathad to be continuous and have
continuous derivatives. By = step,(t), the solution to

dy

dt
obtained in exercises 29.3 and 29.5, is clearly not contisutf you think about it, this may not
be so surprising. Our original insistence on the continaftgolutions assumed we were using
classical functions. The exotic nature of the delta fumditakes us outside the classical theory
to the idealized cases where instantaneous change can occur

Normally, this is not a problem. Indeed, it can desirabl@eeglly if you are modeling

“brief strong forces” One place where this can case som&us@m is when the discontinuities
occur where initial data is given. In these cases, the cariusan be somewhat abated by
remembering that a delta function really indicate a lingtprocess.

= 8, (1) with y(0) =0
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»Example 29.6: Letting « = 0, we see that the solution to

%’ _ st)  with y(©0) =0

y(t) = steqt)

However, steft) has a jump at = 0, and its limit from the right at this point i&. So
how can we say this step function satisfies the given inibalition, y(0) = 0 ? By going
back to exercise 29.5, which showed that the above solutionld be viewed as the limit as
€ — 0 of the functiony.(t) graphed in figure 29.3 witlk = 0. For eache > 0, y.(t)

is continuous at = 0 and satisfies/.(0) = 0. As ¢ becomes smaller, the values wf(t)
increase more rapidly t& for positive values oft . So what we end up with after taking
€ — 0 Is that theleft-hand limitof y(t) att = 0 is 0, but y(t) “immediately” increases
from O to 1 ast switches from negative values to positive values.

What this last example demonstrates is that, when the diffel equation has a(t) in its
forcing function, then initial conditions naively writtexs

yO =y , YO =y ,
are, well, naive. What is really meant is that these values tie left-hand limits,

imy® =y , lmy@© =y ,
t—0 t—0

Additional Exercises

29.1. For the following, assume an object of maaskilograms is initially moving along the
X—axis with constant velocitypeore meters/second until its velocity is changedit@e,
meters/second by a delta function force with impulset timet = « seconds.

a. Find vager assumingm = 2, vpefore= —10 and
i. T=60 ii. T=100 ji. T=20

b. Assumem = 0.2 and vperore= —40. What impulsel is needed to obtain
I. vafler= 50 ii. vafer= 100 iii. vaer=0

c. AssumeI = 30, and that the velocity of the object before and aftee= o is
determined by radar. What is the mass of the object if

i. Upefore = _10 and Vafter = 50 ii. Upefore = O and Vafter = 15

29.2. Using the results given in theorem 29.1, compute the folgwntegrals
a. / t28,4(t) dt b. / t25(t) dt
0

0



Additional Exercises

C.

/OO cogt) 8(t) dt d. /oosin(t)a,,/e(t) dt
0 0

e. / oot2rec1;1,4)(t)53(t)dt f. / t2 recty, 4 (t)ds(t) dt
0

0

29.3. Prove/derive equation (29.5) on page 588.

29.4. Show that

g% 8.(t) = gt — ) step,(t)

whenevera > 0 and g is a piecewise continuous function @@, co) .

29.5. Find and sketch the solution ovg®, oo) to each of the following:

a.

b.

e.

f.

g.

29.6. Find the solution ort > 0 to each of the following initial-value problems:
a.

b.

C.

y = 38() with y(@0) =0
y = 8(t) — 84(t)  with y©) =0

c. Yy = 83(t) with y(0)=0 and y'(0) =0
d.

Yy’ = 81(t) — 84(t) with y(O)=0 and y(0) =0

y + 2y = 45(t) with y©0) =0

Y +y =058t + 68t with y0 =0 and y(@©0) =0
Y +y = 25,0 with y0O=0 and y(@©0) =0

y + 3y = 8(t) with y(0) =2

y' + 3y = §(t) with y(0)=0 and y () =0

+ 3y = &1(b) with y(0)=0 and y(©0) =1

+ 16y = 62(t) with y(0)=0 and y0) =0

— 16y = 810(t) with y(0)=0 and y0)=0

y = §(t) with y(0)=0 and y'(0) =-1

4y — 12y = §(1) with  y(0)=0 and y0) =0
4y — 12y = é83(1) with y(0O)=0 and y0)=0

+ o+ o+ +

By + 9y = 84(t) with y(0)=0 and y'(0) =0

/!
/!
/!
/!
/!
!/
/!
/!

y
y
y
y
y
y
y
y" — 12y’ + 45y = 4(t) with y(0)=0 and y'(0) =0
y

y

"4+ 9y = 81(1) with y(0)=0 and y(0) =0
"— 16y = §(t) with y(0)=0 and y0) =0

597






