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Variation of Parameters
(A Better Reduction of Order Method for
Nonhomogeneous Equations)

“Variation of parameters” is another way to solve nonhomogeneous linear differential equations,
be they second order,

ay′′ + by′ + cy = g ,

or even higher order,

a0y(N ) + a1y(N−1) + · · · + aN−1y′ + aN y = g .

One advantage of this method over the method of undeterminedcoefficients from chapter 21 is
that the differential equation does not have to be simple enough that we can ‘guess’ the form for
a particular solution. In theory, the method of variation ofparameters will work wheneverg and
the coefficients are reasonably continuous functions. As you may expect, though, it is not quite
as simple a method as the method of guess. So, for ‘sufficiently simple’ differential equations,
you may still prefer using the guess method instead of what we’ll develop here.

We will first develop the variation of parameters method for second-order equations. Then
we will see how to extend it to deal with differential equations of even higher order.1 As you will
see, the method can be viewed as a very clever improvement on the reduction of order method
for solving nonhomogeneous equations. What might not be so obvious is why the method is
called “variation of parameters”.

23.1 Second-Order Variation of Parameters
Derivation of the Method

Suppose we want to solve a second-order nonhomogeneous differential equation

ay′′ + by′ + cy = g

1 It is possible to use a “variation of parameters” method to solve first-order nonhomogeneous linear equations, but
that’s just plain silly.
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454 Variation of Parameters

over some interval of interest, say,

x2y′′ − 2xy′ + 2y = 3x2 for x > 0 .

Let us also assume that the corresponding homogeneous equation,

ay′′ + by′ + cy = 0 ,

has already been solved. That is, we already have an independent pair of functionsy1 = y1(x)

and y2 = y2(x) for which
yh(x) = c1y1(x) + c2y2(x)

is a general solution to the homogeneous equation.

For our example,
x2y′′ − 2xy′ + 2y = 3x2 ,

the corresponding homogeneous equation is the Euler equation

x2y′′ − 2xy′ + 2y = 0 .

You can easily verify that this homogeneous equation is satisfied if y is either

y1 = x or y2 = x2 .

Clearly, the set{x, x2} is linearly independent, and, so, the general solution to the
corresponding homogeneous homogeneous equation is

yh = c1x + c2x2 .

Now, in using reduction of order to solve our nonhomogeneousequation

ay′′ + by′ + cy = g ,

we would first assume a solution of the form

y = y0 u

where u = u(x) is an unknown function ‘to be determined’, andy0 = y0(x) is any single
solution to the corresponding homogeneous equation. However, we do not just have a single
solution to the corresponding homogeneous equation — we have two: y1 and y2 (along with
all linear combinations of these two). So why don’t we use both of these solutions and assume,
instead, a solution of the form

y = y1u + y2v

where y1 and y2 are the two solutions to the corresponding homogeneous equation already
found, andu = u(x) and v = v(x) are two unknown functions to be determined.

For our example,
x2y′′ − 2xy′ + 2y = 3x2 ,

we already have that
y1 = x and y2 = x2
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form a fundamental pair of solutions to the corresponding homogeneous differential
equation. So, in this case, the assumption that

y = y1u + y2v

is

y = xu + x2v

whereu = u(x) and v = v(x) are two functions to be determined.

To determine the two unknown functionsu(x) andv(x) , we will need two equations. One,
of course, must be the original differential equation that we are trying to solve. The other equation
can be chosen at our convenience (provided it doesn’t contradict or simply repeat the original
differential equation). Here is a remarkably clever choicefor that other equation:

y1u′ + y2v
′ = 0 . (23.1)

For our example,
y1 = x and y2 = x2 .

So we will require that
xu′ + x2v′ = 0 .

To see why this is such a clever choice, let us now computey′ and y′′ , and see what the
differential equation becomes in terms ofu and v . We’ll do this for the example first.

For our example,
y = xu + x2v ,

and we required that
xu′ + x2v′ = 0 .

Computing the first derivative, rearranging a little, and applying the above require-
ment:

y′ =
[

xu + x2v
]′

= u + xu′ + 2xv + x2v′

= u + 2xv + xu′ + x2v′
︸ ︷︷ ︸

0

.

So
y′ = u + 2xv ,

and

y′′ = [u + 2xv]′ = u′ + 2v + 2xv′

Notice that the formula fory′′ does not involve any second derivatives ofu and
v . Plugging the above formulas fory , y′ and y′′ into the left side of our original
differential equation, we see that

x2y′′ − 2xy′ + 2y = 3x2

H⇒ x2
[

u′ + 2v + 2xv′] − 2x
[

u + 2xv
]

+ 2
[

xu + x2v
]

= 3x2
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H⇒ x2u′ + 2x2v + 2x3v′ − 2xu − 4x2v + 2xu + 2x2v = 3x2

H⇒ x2u′ + 2x3v′ +
[

2x2 − 4x2 + 2x2
︸ ︷︷ ︸

0

]

v +
[

−2x + 2x
︸ ︷︷ ︸

0

]

u = 3x2 .

Hence, our original differential equation,

x2y′′ − 2xy′ + 2y = 3x2v′ ,

reduces to
x2u′ + 2x3v′ = 3x2 .

For reasons that will be clear in a little bit, let us divide this equation through byx2 ,
giving us

u′ + 2xv′ = 3 . (23.2)

Keep in mind that this is what our differential equation reduces to if we start by
letting

y = xu + x2v

and requiring that
xu′ + x2v′ = 0 .

Now back to the general case, where our differential equation is

ay′′ + by′ + cy = g .

If we set
y = y1u + y2v

(where y1 and y2 are solutions to the corresponding homogeneous equation),and require that

y1u′ + y2v
′ = 0 ,

then
y′ =

[

y1u + y2v
]′

=
[

y1u
]′ +

[

y2v
]′

= y1
′u + y1u′ + y2

′v + y2v
′

= y1
′u + y2

′v + y1u′ + y2v
′

︸ ︷︷ ︸

0

.

So
y′ = y1

′u + y2
′v ,

and

y′′ =
[

y1
′u + y2

′v
]′

= y1
′′u + y1

′u′ + y2
′′v + y2

′v′

= y1
′u′ + y2

′v′ + y1
′′u + y2

′′v .

Remember,y1 and y2 , being solutions to the corresponding homogeneous equation, satisfy

ay1
′′ + by1

′ + cy1 = 0 and ay2
′′ + by2

′ + cy2 = 0 .
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Using all the above, we have

ay′′ + by′ + cy = g

H⇒ a
[

y1
′u′ + y2

′v′ + y1
′′u + y2

′′v
]

+ b
[

y1
′u + y2

′v
]

+ c
[

y1u + y2v
]

= g

H⇒ a
[

y1
′u′ + y2

′v′] +
[

ay1
′′ + by1

′ + cy1
︸ ︷︷ ︸

0

]

u +
[

ay2
′′ + by2

′ + cy2
︸ ︷︷ ︸

0

]

v = g .

The vanishing of theu and v terms should not be surprising. A similar vanishing occurred in
the original reduction of order method. What we also have here, thanks to the ‘other equation’
that we chose, is that no second-order derivatives ofu or v occur either. Consequently, our
original differential equation,

ay′′ + by′ + cy = g ,

reduces to
a
[

y1
′u′ + y2

′v′] = g .

Dividing this by a then yields
y1

′u′ + y2
′v′ = g

a
.

Keep in mind what the last equation is. It is what our originaldifferential equation reduces
to after setting

y = y1u + y2v (23.3)

(where y1 and y2 are solutions to the corresponding homogeneous equation),and requiring that

y1u′ + y2v
′ = 0 .

This means that the derivativesu′ and v′ of the unknown functions in formula (23.3) must
satisfy the pair (or system) of equations

y1u′ + y2v
′ = 0

y1
′u′ + y2

′v′ = g

a

This system can be easily solved foru′ andv′ . Integrating what we get foru′ andv′ then gives
us the formulas foru and v which we can plug back into formula (23.3) fory , the solution to
our nonhomogeneous differential equation.

Let’s finish our example:

We have
y = xu + x2v

whereu′ and v′ satisfy the system

xu′ + x2v′ = 0

u′ + 2xv′ = 3

(The first was the equation we chose to require; the second waswhat the differential
equation reduced to.) From the first equation in this system,we have that

u′ = −xv′ .
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Combining this with the second equation:

u′ + 2xv′ = 3

H⇒ −xv′ + 2xv′ = 3

H⇒ xv′ = 3

H⇒ v′ = 3

x
.

Hence, also,

u′ = −xv′ = −x · 3

x
= −3 .

Remember, the primes denote differentiation with respect to x . So we have

du

dx
= −3 and

dv

dx
= 3

x
.

Integrating yields

u =
∫

du

dx
dx =

∫

−3dx = −3x + c1

and

v =
∫

dv

dx
dx =

∫
3

x
dx = 3 ln |x | + c2 .

Plugging these into the formula fory , we get

y = xu + x2v

= x
[

− 3x + c1
]

+ x2
[

3 ln |x | + c2
]

= −3x2 + c1x + 3x2 ln |x | + c2x2

= 3x2 ln |x | + c1x + (c2 − 3)x2 ,

which simplifies a little to

y = 3x2 ln |x | + C1x + C2x2 .

This, at long last, is our solution to

x2y′′ − 2xy′ + 2y = 3x2 .

Before summarizing our work (and reducing it to a fairly simple procedure) let us make two
observations based on the above:

1. If we keep the arbitrary constants arising from the indefinite integrals ofu′ and v′ , then
the resulting formula fory is a general solution to the nonhomogeneous equation. If
we drop the arbitrary constants (or use definite integrals),then we will end up with a
particular solution.

2. After plugging the formulas foru and v into y = y1u + y2v , some of the resulting
terms can often be absorbed into other terms. (In the above, for example, we absorbed
the −3x2 and c2x2 terms into oneC2x2 term.)



Second-Order Variation of Parameters 459

Summary: How to Do It

If you look back over our derivation, you will see that we havethe following:

To solve
ay′′ + by′ + cy = g ,

first find a fundamental pair{y1, y2} of solutions to the corresponding homogeneous
equation

ay′′ + by′ + cy = 0 .

Then set
y = y1u + y2v (23.4)

assuming thatu = u(x) and v = v(x) are unknown functions whose derivatives
satisfy the system

y1u′ + y2v
′ = 0 (23.5a)

y1
′u′ + y2

′v′ = g

a
(23.5b)

Solve the system foru′ and v′ ; integrate to get the formulas foru and v , and
plug the results back into (23.4). That formula fory is your solution.

The above procedure is what we call (the method of)variation of parameters (for solving
a second-order nonhomogeneous differential equation). Notice the similarity between the two
equations in the system. That makes it relatively easy to remember the system of equations. This
similarity is carried over to problems with equations of even higher order.

It is possible to reduce the procedure further to a single (not-so-simple) formula. We will
discuss that in section 23.3. However, I recommend that you use the above method for most of
your work, instead of that equation.

And remember:

1. To get a general solution to the nonhomogeneous equation, find u andv using indefinite
integrals and keep the arbitrary constants arising from that integration. Otherwise, you
get a particular solution.

2. After plugging the formulas foru and v into y = y1u + y2v , some of the resulting
terms can often be absorbed into other terms. Go ahead and do so; it simplifies your final
result.

!◮Example 23.1: Using the above procedure, let us find the general solution to

y′′ + y = tan(x) .

The corresponding homogeneous equation is

y′′ + y = 0 .

We’ve already solved this equation a couple of times; its general solution is

yh = c1 cos(x) + c2 sin(x) .
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So we will take
y1 = cos(x) and y2 = sin(x)

as the independent pair of solutions to the corresponding homogeneous equation in the solution
formula

y = y1u + y2v .

That is, as the formula for the general solution to our nonhomogeneous differential equation,
we will use

y = cos(x)u + sin(x)v

where u = u(x) and v = v(x) are functions to be determined.
For our differential equation,a = 1 and g = tan(x) . Thus, with our choice ofy1 and

y2 , the system
y1u′ + y2v

′ = 0

y1
′u′ + y2

′v′ = g

a

is
cos(x)u′ + sin(x)v′ = 0

− sin(x)u′ + cos(x)v′ = tan(x) .

This system can be solved several different ways. Why don’t we just observe that, if we solve
the first equation forv′ , we get

v′ = −cos(x)

sin(x)
u′ .

Combining this with the second equation (and recalling a little trigonometry) then yields

− sin(x)u′ + cos(x)

[

−cos(x)

sin(x)
u′

]

= tan(x)

H⇒
(

− sin(x) − cos2(x)

sin(x)

)

u′ = tan(x)

H⇒ −
(

sin2(x) + cos2(x)

sin(x)

)

u′ = tan(x)

H⇒ −
(

1

sin(x)

)

u′ = tan(x) .

Thus,

u′ = − tan(x) sin(x) = −sin2(x)

cos(x)

and

v′ = −cos(x)

sin(x)
u′ = −cos(x)

sin(x)
×

[

−sin2(x)

cos(x)

]

= sin(x) .

To integrate the formula foru′ , it may help to first observe that

u′(x) = −sin2(x)

cos(x)
= −1 − cos2(x)

cos(x)
= − sec(x) + cos(x) .
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It may also help to review the the integration of the secant function in your old calculus text.
After doing so, you’ll see that

u(x) =
∫

u′(x) dx

=
∫

[

cos(x) − sec(x)
]

dx

= sin(x) − ln |sec(x) + tan(x)| + c1

and

v(x) =
∫

sin(x) dx = − cos(x) + c2 .

Plugging these formulas foru and v back into our solution formula

y = y1u + y2v = cos(x)u + sin(x)v ,

we get

y = cos(x)
[

sin(x) − ln |sec(x) + tan(x)| + c1
]

+ sin(x)
[

− cos(x) + c2
]

= − cos(x) ln |sec(x) + tan(x)| + c1 cos(x) + c2 sin(x)

as the general solution to the nonhomogeneous equation

y′′ + y = tan(x) .

Possible Difficulties

The main ‘work’ in carrying out the the variation of parameters method to solve

ay′′ + by′ + cy = g

is in solving the system
y1u′ + y2v

′ = 0

y1
′u′ + y2

′v′ = g

a

for u′ and v′ , and then integrating the results to get the formulas foru and v . One can foresee
two possible issues: (1) the ‘solvability’ of the system, and (2) the ‘integrability’ of the solutions
to the system (assuming the solutions can be obtained).

Remember, some systems of equations are “degenerate” and not truly solvable, either having
no solution or infinitely many solutions. For example,

u′ + 3v′ = 0

u′ + 3v′ = 1

clearly has no solution. Fortunately, this not an issue in the variation of parameters method. As
we will see in section 23.3 (when discussing a formula for this method), the requirement that
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{y1, y2} be a fundamental set for the corresponding homogeneous differential equation ensures
that the above system is nondegenerate and can be solved uniquely for u′ and v′ .

The issue of the “integrability” of the formulas obtained for u′ and v′ is much more
significant. In our discussion of a variation of parameters formula (again, in section 23.3), it will
be noted that, in theory, the functions obtained foru′ andv′ will be integrable for any reasonable
choice of a , b , c and g . In practice, though, it might not be possible to find usable formulas
for the integrals ofu′ and v′ . In these cases it may be necessary to use definite integrals instead
of indefinite, numerically evaluating these integrals to obtain approximate values for specific
choices ofu(x) and v(x) . We will discuss this further in section 23.3.

23.2 Variation of Parameters for Even Higher Order
Equations

Take another quick look at part of our derivation in the previous section. In setting

y = y1u + y2v

and then requiring

y1u′ + y2v
′ = 0 ,

we ensured that the formula fory′ ,

y′ =
[

y1u + y2v
]′ = y1

′u + y1u′ + y2
′v + y2v

′

= y1
′u + y2

′v + y1u′ + y2v
′ = y1

′u + y2
′v + 0 ,

contains no derivatives of the unknown functionsu and v .
Suppose, instead, that we have three known functionsy1 , y2 and y3 ; and we set

y = y1u + y2v + y3w

where u , v and w are unknown functions. For the same reasons as before, requiring that

y1u′ + y2v
′ + y3w

′ = 0 (23.6)

will insure that the formula fory′ contains no derivative ofu , v and w ; but will simply be

y′ = y1
′u + y2

′v + y3
′w .

Differentiating this yields

y′′ = y1
′′u + y1

′u′ + y2
′′v + y2

′v′ + y3
′′w + y3

′w′

=
[

y1
′′u + y2

′′v + y3
′′w

]

+
[

y1
′u′ + y2

′v′ + y3
′w′] ,

which reduces to
y′′ = y1

′′u + y2
′′v + y3

′′w

provided we require that
y1

′u′ + y2
′v′ + y3

′w′ = 0 . (23.7)
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Thus, requiring equations (23.6) and (23.7) prevents derivatives of the unknown functions from
appearing in the formulas for eithery′ or y′′ . As you can easily verify, differentiating the last
formula for y′′ and plugging the above formulas fory , y′ and y′′ into a third-order differential
equation

a0y′′′ + a1y′′ + a2y′ + a3y = g

then yields

a0
[

y1
′′u′ + y2

′′v′ + y3
′′w′] +

[

· · ·
]

u +
[

· · ·
]

v +
[

· · ·
]

w = g (23.8)

where the coefficients in theu , v and w terms will vanish if y1 , y2 and y3 are solutions to
the corresponding homogeneous differential equation.

Together equations (23.6), (23.7) and (23.8) form a system of three equations in three
unknown functions. If you look at this system, and recall theoriginal formula for y , you’ll see
that we’ve derived the variation of parameters method for solving third-order nonhomogeneous
linear differential equations:

To solve the nonhomogeneous differential equation

a0y′′′ + a1y′′ + a2y′ + a3y = g ,

first find a fundamental set of solutions{y1, y2, y3} to the corresponding homoge-
neous equation

a0y′′′ + a1y′′ + a2y′ + a3y = 0 .

Then set
y = y1u + y2v + y3w (23.9)

assuming thatu = u(x) , v = v(x) and w = w(x) are unknown functions whose
derivatives satisfy the system

y1u′ + y2v
′ + y3w

′ = 0 (23.10a)

y1
′u′ + y2

′v′ + y3
′w′ = 0 (23.10b)

y1
′′u′ + y2

′′v′ + y3
′′w′ = g

a0
. (23.10c)

Solve the system foru′ , v′ and w′ ; integrate to get the formulas foru , v and w ,
and plug the results back into formula (23.9) fory . That formula is the solution to
the original nonhomogeneous differential equation.

Extending the method to nonhomogeneous linear equations ofeven higher order is straight-
forward. We simply continue to lety be given by formulas similar to formula (23.9) using
fundamental sets of solutions to the corresponding homogeneous equations. Repeatedly impos-
ing requirements patterned after equations (23.10a) and (23.10b) to ensure that no derivatives
of unknown functions remain until we compute the highest order derivative in the differential
equation, we eventually get the variation of parameters method for solving any nonhomogeneous
linear differential equation:

To solve theN th-order nonhomogeneous differential equation

a0y(N ) + a1y(N−1) + · · · + aN−1y′ + aN y = g ,
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first find a fundamental set of solutions{y1, y2, . . . , yN } to the corresponding
homogeneous equation

a0y(N ) + a1y(N−1) + · · · + aN−1y′ + aN y = 0 .

Then set
y = y1u1 + y2u2 + · · · + yN uN (23.11)

assuming that theuk ’s are unknown functions whose derivatives satisfy the system

y1u1
′ + y2u2

′ + · · · + yN uN
′ = 0 (23.12a)

y1
′u1

′ + y2
′u2

′ + · · · + yN
′uN

′ = 0 (23.12b)

y1
′′u1

′ + y2
′′u2

′ + · · · + yN
′′uN

′ = 0 (23.12c)

... (23.12d)

y1
(N−2)u1

′ + y2
(N−2)u2

′ + · · · + yN
(N−2)uN

′ = 0 (23.12e)

y1
(N−1)u1

′ + y2
(N−1)u2

′ + · · · + yN
(N−1)uN

′ = g

a0
. (23.12f)

Solve the system foru1
′ , u2

′ , . . . and uN
′ ; integrate to get the formula for each

uk , and then plug the results back into formula (23.11) fory . That formula is the
solution to the original nonhomogeneous differential equation.

As with the second-order case, the above system can be shown to be nondegenerate, and the
resulting formula for eachuk

′ can be shown to be integrable, at least in some theoretical sense,
as long asg and theak ’s are continuous functions witha0 never being zero on the interval of
interest.

23.3 The Variation of Parameters Formula
Second-Order Version with Indefinite Integrals

By solving system (23.5) foru′ and v′ using genericy1 and y2 , integrating, and then plugging
the result back into formula (23.4)

y = y1u + y2v ,

you can show that the solution to

ay′′ + by′ + cy = g (23.13)

is given by

y(x) = −y1(x)

∫
y2(x) f (x)

W (x)
dx + y2(x)

∫
y1(x) f (x)

W (x)
dx (23.14)

where
f (x) = g(x)

a(x)
, W (x) = y1(x)y2

′(x) − y1
′(x)y2(x) .
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and {y1, y2} is any fundamental set of solutions to the corresponding homogeneous equation.
The details will be left as an exercise (exercise 23.5 on page468).

A few observations should be made about the elements in formula 23.14:

1. Recall that we have been requiring solutions to second-order differential equations to be
continuous and have continuous derivatives. Consequently, the aboveW (x) will be a
continuous function on the intervalI .

2. Moreover, if you recall the discussion about the “Wronskian” corresponding to the func-
tion set {y1, y2} (see the discussion in chapter 14 starting on page 304), thenyou may
have noticed that theW (x) in the above formula is that very Wronskian. As noted in
theorem 14.3 on page 305,W (x) will be nonzero at every point in our interval of interest,
provideda , b and c are continuous functions anda is never zero on that interval.

Consequently, the integrands of the integrals in formula (23.14) will, theoretically at least, be
nice integrable functions over our interval of interest as long asa , b , c and g are continuous
functions anda is never zero over this interval.2 And this verifies that, in theory, the variation
of parameters method does always yield the solution to a nonhomogeneous linear second-order
differential equation over appropriate intervals.

In practice, this author discourages the use of formula (23.14), at least at first. For most,
trying to memorize and effectively use this formula is more difficult than remembering the basic
system from which it was derived. And the small savings in computational time gained by using
this formula is hardly worth the effort unless you are going to be solving many of equations of
the form

ay′′ + by′ + cy = g

in which the left side remains the same, but you have several different choices forg .

Second-Order Version with Definite Integrals

If you fix a point x0 in the interval of interest, and rederive formula (23.14) using definite integrals
instead of the indefinite ones used just above, you get that a particular solution to

ay′′ + by′ + cy = g

is given by

yp(x) = −y1(x)

∫ x

x0

y2(s) f (s)

W (s)
ds + y2(x)

∫ x

x0

y1(s) f (s)

W (s)
ds (23.15)

where, again,

f (s) = g(s)

a(s)
, W (s) = y1(s)y2

′(s) − y1
′(s)y2(s) .

and {y1, y2} is any fundamental set of solutions to the corresponding homogeneous equation.
Then, of course,

y(x) = yp(x) + c1y(x) + c2(x) . (23.16)

is the corresponding general solution to original nonhomogeneous differential equation
There are two practical advantages to using definite integral formula (23.15) instead of the

corresponding indefinite integral formula, formula (23.14):

2 In fact, f does not have to even be continuous. It just cannot have particularly bad discontinuities.
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1. Often, it is virtually impossible to find usable, explicit formulas for the integrals of

y2(x) f (x)

W (x)
and

y1(x) f (x)

W (x)
.

In these cases, formula (23.14), with its impossible to compute indefinite integrals, is of
very little practical value. However, the definite integrals in formula (23.15) can still be
accurately approximated for specific values ofx using any decent numerical integration
method. Thus, while we may not be able to obtain a nice formulafor yp(x) , we can still
evaluate it at desired points on any reasonable interval of interest, possibly using these
values to generate a table foryp(x) or to sketch its graph.

2. As you can easily show (exercise 23.6), theyp given by formula (23.15) satisfies the
initial conditions

y(x0) = 0 and y′(x0) = 0 .

This makes it a little easier to find the constantsc1 and c2 such that

y(x) = yp(x) + c1y(x) + c2(x)

satisfies initial conditions

y(x0) = A and y′(x0) = B

for some valuesA and B (especially, if we cannot explicitly compute the integralsin
formulas (23.14) and (23.15)).

For Arbitrary Orders

In using variation of parameters to solve the more generalN th-order nonhomogeneous differential
equation

a0y(N ) + a1y(N−1) + · · · + aN−1y′ + aN y = g ,

we need to solve system (23.12) foru1
′ , u2

′ , . . . and uN
′ . If you carefully solve this system

for arbitrary yk ’s , or simply apply the procedure known as “Cramers rule” (see almost any
introductory text in linear algebra), you will discover that

uk
′(x) = (−1)N+k Wk(x) f (x)

W (x)
for k = 1, 2, 3, . . . , n

where f = g/a0 , W is the determinant of the matrix

M =











y1 y2 y3 · · · yN

y1
′ y2

′ y3
′ · · · yN

′

y1
′′ y2

′′ y3
′′ · · · yN

′′

...
...

...
. . .

...

y1
(N−1) y2

(N−1) y3
(N−1) · · · yN

(N−1)











and Wk is the determinant of the submatrix ofM obtained by deleting the last row andkth

column.
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Integrating and plugging into formula (23.11) for the differential equation’s solutiony , we
obtain either

y(x) =
n

∑

k=1

(−1)N+k yk(x)

∫
Wk(x) f (x)

W (x)
dx (23.17a)

or

yp(x) =
n

∑

k=1

(−1)N+k yk(x)

∫ x

x0

Wk(s) f (s)

W (s)
ds (23.17b)

depending on whether indefinite or definite integrals are used.
Again, it should be noted that theW in these formulas is the Wronskian of the fundamental

set {y1, y2, . . . , yN } , and, from the corresponding theory developed for these Wronskians (see,
in particular, theorem 14.3 on page 305), it follows that theabove integrands will, theoretically
at least, be nice integrable functions over our interval of interest as long asg and theak ’s are
continuous functions anda0 is never zero over this interval.3

Additional Exercises

23.1. Find the general solution to each of the following nonhomogeneous differential equa-
tions. Use variation of parameters even if another method might seem easier. For your
convenience, each equation is accompanied by a general solution to the corresponding
homogeneous equation.

a. x2y′′ − 2xy′ + 2y = 3
√

x , yh = c1x + c2x2

b. y′′ + y = cot(x) , yh = c1 cos(x) + c2 sin(x)

c. y′′ + 4y = csc(2x) , yh = c1 cos(2x) + c2 sin(2x)

d. y′′ − 7y′ + 10y = 6e3x , yh = c1e2x + c2e5x

e. y′′ − 4y′ + 4y =
[

24x2 + 2
]

e2x , yh = c1e2x + c2xe2x

f. x2y′′ + xy′ − 9y = 12x3 , yh = c1x−3 + c2x3

g. xy′′ − y′ − 4x3y = x3ex2
, yh = c1ex2 + c2e−x2

h. x2y′′ − 3xy′ + 4y = x2 , yh = c1x2 + c2x2 ln |x |

i. xy′′ + (2 + 2x)y′ + 2y = 8e2x , yh = c1x−1 + c2x−1e−2x

j. (x + 1)y′′ + xy′ − y = (x + 1)2 , yh = c1x + c2e−x

23.2. Solve the following initial-value problems using variation of parameters to find the
general solution to the given differential equations.

a. x2y′′ − 2xy′ − 4y = 10

x
with y(1) = 3 and y′(1) = −15

3 And, again,g does not have to even be continuous. It just cannot have particularly bad discontinuities.
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b. y′′ − y′ − 6y = 12e2x with y(0) = 0 and y′(0) = 8

23.3. Find the general solution to each of the following nonhomogeneous differential equa-
tions. Use variation of parameters even if another method might seem easier. For your
convenience, each equation is accompanied by a general solution to the corresponding
homogeneous equation.

a. y′′′ − 4y′ = 30e3x , yh = c1 + c2e2x + c3e−2x

b. x3y′′′ − 3x2y′′ + 6xy′ − 6y = x3 , yh = c1x + c2x2 + c3x3

23.4. For each of the following, set up the system of equations (corresponding to system 23.5,
23.10 or 23.12) arising in solving the equations via variation of parameters.

a. x3y′′′ − 3x2y′′ + 6xy′ − 6y = e−x2
, yh = c1x + c2x2 + c3x3

b. y′′′ − y′′ + y′ − y = tan(x) , yh = c1ex + c2 cos(x) + c3 sin(x)

c. y(4) − 81y = sinh(x) , yh = c1e3x + c2e−3x + c3 cos(3x) + c4 sin(3x)

d. x4y(4) + 6x3y′′′ − 3x2y′′ − 9xy′ + 9y = 12x sin
(

x2
)

,
yh = c1x + c2x−1 + c3x3 + c4x−3

23.5. Derive formula (23.14) on page 464 for the solutiony to

ay′′ + by′ + cy = g

from the fact thaty = y1u + y2v where

y1u′ + y2v
′ = 0 and y1

′u′ + y2
′v′ = g

a
.

(Hint: Start by solving the system foru′ and v′ .)

23.6. Show thatyp given by formula (23.15) on page 465 satisfies the initial conditions

y(x0) = 0 and y′(x0) = 0 .


