23

Variation of Parameters
(A Better Reduction of Order Method for
Nonhomogeneous Equations)

“Variation of parameters” is another way to solve nonhonmageis linear differential equations,
be they second order,
ay’ + by +cy=g9 ,

or even higher order,
aoy(N) + aly(Nfl) + ..+ aN_ly/ + any =9

One advantage of this method over the method of undeterncimefficients from chapter 21 is
that the differential equation does not have to be simpleighthat we can ‘guess’ the form for
a particular solution. In theory, the method of variatiopafameters will work wheneveg and
the coefficients are reasonably continuous functions. Asrgay expect, though, it is not quite
as simple a method as the method of guess. So, for ‘suffigieimtiple’ differential equations,
you may still prefer using the guess method instead of whét des/elop here.

We will first develop the variation of parameters method frand-order equations. Then
we will see how to extend it to deal with differential equasaf even higher ordérAs you will
see, the method can be viewed as a very clever improvemeheaeduction of order method
for solving nonhomogeneous equations. What might not bebsmos is why the method is
called “variation of parameters”.

23.1 Second-Order Variation of Parameters
Derivation of the Method

Suppose we want to solve a second-order nonhomogeneoeiedifal equation

ay’ + by +cy =g

1tis possible to use a “variation of parameters” method teesfirst-order nonhomogeneous linear equations, but
that's just plain silly.
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454 Variation of Parameters

over some interval of interest, say,
X2y — 2xy 4+ 2y = 3x> for x>0
Let us also assume that the corresponding homogeneousaguat
ay” + by +cy =0 ,

has already been solved. That is, we already have an indepepair of functionsy; = y;1(X)
and y, = y»(x) for which

Yh(X) = C1y1(X) + CaY2(X)
is a general solution to the homogeneous equation.
For our example,
x2y" — 2xy + 2y = 3x® ,

the corresponding homogeneous equation is the Euler equati
x2y" —2xy + 2y =0

You can easily verify that this homogeneous equation is&ad if y is either

y1 = X or Yo = X°

Clearly, the se{x, x?} is linearly independent, and, so, the general solutiongo th
corresponding homogeneous homogeneous equation is

Vh = X + CoX2
Now, in using reduction of order to solve our nonhomogeneamustion
ay’ + by +cy =9 ,
we would first assume a solution of the form

Yy = You

where u = u(x) is an unknown function ‘to be determined’, ang = yo(x) is any single
solution to the corresponding homogeneous equation. Hernvexe do not just have a single
solution to the corresponding homogeneous equation — we tvav. y; and y, (along with

all linear combinations of these two). So why don’t we uséhlmftthese solutions and assume,
instead, a solution of the form

y = il + yav

where y; and y, are the two solutions to the corresponding homogeneousgiequaready
found, andu = u(x) and v = v(x) are two unknown functions to be determined.

For our example,
x2y" — 2xy + 2y = 3x® ,

we already have that

yi = X and Yy, = x?
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form a fundamental pair of solutions to the correspondingbgeneous differential
equation. So, in this case, the assumption that

y = il + yav

y = Xu + X%
whereu = u(x) andv = v(x) are two functions to be determined.

To determine the two unknown functiongx) and v(x) , we will need two equations. One,
of course, must be the original differential equation thatane trying to solve. The other equation
can be chosen at our convenience (provided it doesn’t adintrar simply repeat the original
differential equation). Here is a remarkably clever chdarehat other equation:

yiu' 4+ y20' =0 . (23.1)

For our example,

yi = x and vy, = X?

So we will require that
xu + x%' =0

To see why this is such a clever choice, let us now computeand y”, and see what the
differential equation becomes in termswfand v . We’'ll do this for the example first.

For our example,
y = xu + x%v

and we required that
xu + x%' =0

Computing the first derivative, rearranging a little, anglgmg the above require-

ment:
y = [xu+x%]
= U+ XU + 2xv + X%
= u + 2xv + xu + X%/
—_—
0
So
y =u+ 2Xv ,
and

y = [u+2xv] = U + 2v + 2xv/

Notice that the formula fory” does not involve any second derivativeswfand
v. Plugging the above formulas for, y' andy” into the left side of our original
differential equation, we see that

x2y" — 2xy + 2y = 3x?

— X2[U + 20+ 2xv] — 2x[u+ 2xv] + 2[xu+ x*] = 3x*
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— X2U 4+ 2x%0 4+ 2x30 — 2xu — 4x%v + 2Xu+ 2x% = 3x?

= XU+ 2% +[ 2 —ax*+ 2 v + [:ﬁ + 2§]u = 3x°

0 0

Hence, our original differential equation,

X2y — 2xy 4+ 2y = 3%

reduces to
x2u 4+ 2x%0 = 3x°

For reasons that will be clear in a little bit, let us dividéstbaquation through by? ,

giving us

u + 2xv’ = 3 . (23.2)
Keep in mind that this is what our differential equation reglsi to if we start by
letting

y = xu + x%

and requiring that
xu + x%' =0

Now back to the general case, where our differential eqoagio
ay” + by +cy=g

If we set
Y = yiu + You
(wherey, andy, are solutions to the corresponding homogeneous equagiodyequire that

yiu' + yov' = 0

then
y = [yau+ yav]
= [ya] + [y2v]
— yl/u+ylu/ + yz/v+y2v/
= yi'U + Yo'v + yiu’ + y'
\—/_-/
0
So
y = y'u + yv
and

y// — [yl/u+y2/v]’
— yl//u + yllu/ + y2//v + yzlv/
— yl/u/ + yzlv/ + yl//u + y2//v
Remembery; and y,, being solutions to the corresponding homogeneous e atibisfy

ay)"+by''+cyy = 0 and  ay,"+by'+cy, =0



Second-Order Variation of Parameters 457

Using all the above, we have
ay’ + by +cy =g
= a[y/u + ¥y v + yi"u+ y2"v] + b[yi'u+ y2'v] + c[yau+ yav]

Il Il
Q@ @

— a[y/u +yv'] + [ay" + by’ +cyrJu + [ay’ + by +cyq Jv
0 0

The vanishing of theu and v terms should not be surprising. A similar vanishing ocadiire
the original reduction of order method. What we also have hihianks to the ‘other equation’
that we chose, is that no second-order derivatives afr v occur either. Consequently, our
original differential equation,

ay’ + by +cy =g ,
reduces to
a[yl/u/'i‘YZ/U/] =4J

Dividing this by a then yields

Iy 4/ /! g
u = =
yiu + yov a

Keep in mind what the last equation is. It is what our origidiffierential equation reduces
to after setting
y = yiu + You (23.3)

(wherey; andy, are solutions to the corresponding homogeneous equagiotyequiring that
yil + yov' = 0

This means that the derivativas and v’ of the unknown functions in formula (23.3) must
satisfy the pair (or system) of equations

yiu' + yu' =

yl/u/ _"_ yz/v/ —

vl O

This system can be easily solved farand v’ . Integrating what we get fon’ and v’ then gives
us the formulas foru and v which we can plug back into formula (23.3) fgr, the solution to
our nonhomogeneous differential equation.

Let’s finish our example:

We have
Yy = XU + X7

whereu’ andv’ satisfy the system
xu + x%' =0
u + 2xv = 3

(The first was the equation we chose to require; the secondmaisthe differential
equation reduced to.) From the first equation in this systeerhave that

/ /

u = —Xv
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Combining this with the second equation:

u 4+ 2xv = 3

S —xv 4+ 2xv' = 3

— xv =3

, 3

= v o= —

X

Hence, also, 3

v =—-xv=—-x-= = -3

X
Remember, the primes denote differentiation with resaest.t So we have

du dv 3
&_—3 and O = x

Integrating yields

u:/d—udx:f—de=—3x+c1
dx

v = /@dx = /§dx = 3In|x| + ¢
dx X

Plugging these into the formula for, we get

and

y = xu + x%
= X[ = 3x+c1] + x?[3In|x| + ]
= —3x% + cix + 3XIn|x| + cx?
= 3In|x| + ax + (c;—3)x>
which simplifies a little to
y = 3x%In|x| + Cix + Cox?

This, at long last, is our solution to

X2y’ — 2xy’ 4+ 2y = 3x?

Before summarizing our work (and reducing it to a fairly slenprocedure) let us make two
observations based on the above:

1. If we keep the arbitrary constants arising from the indedinitegrals ofu’ and v’, then
the resulting formula fory is a general solution to the nonhomogeneous equation. If
we drop the arbitrary constants (or use definite integrét&n we will end up with a
particular solution.

2. After plugging the formulas fou and v into y = y,u + y,v, some of the resulting
terms can often be absorbed into other terms. (In the abovexmple, we absorbed
the —3x? and c,x? terms into oneC,x? term.)
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Summary: How to Do It

If you look back over our derivation, you will see that we h#lve following:

To solve

ay” + by +cy=g9 ,
firstfind a fundamental palry:, y»} of solutions to the corresponding homogeneous
equation

ay” + by +cy =0

Then set
y = yiu + Yovu (23.4)

assuming thati = u(x) andv = v(x) are unknown functions whose derivatives
satisfy the system
yiu' + you' = (23.5a)

yiu 4+ v = (23.5b)

vl O

Solve the system fon’ and v’ ; integrate to get the formulas far and v, and
plug the results back into (23.4). That formula fpris your solution.

The above procedure is what we call (the methodvaf)ation of parameters (for solving
a second-order nonhomogeneous differential equationjicé&lthe similarity between the two
equations in the system. That makes it relatively easy tengber the system of equations. This
similarity is carried over to problems with equations of e¥egher order.

It is possible to reduce the procedure further to a singlé-¢nesimple) formula. We will
discuss that in section 23.3. However, | recommend that peute above method for most of
your work, instead of that equation.

And remember:

1. Togetageneral solution to the nonhomogeneous equatidnyfend v using indefinite
integrals and keep the arbitrary constants arising frorhithegration. Otherwise, you
get a particular solution.

2. Aifter plugging the formulas fou and v into y = y.u + yov, some of the resulting
terms can often be absorbed into other terms. Go ahead anx ilsimplifies your final
result.

»Example23.1:  Using the above procedure, let us find the general solution to
y' +y = tanx)
The corresponding homogeneous equation is
Y +y=20
We've already solved this equation a couple of times; itegalsolution is

Vh = € coSX) + CpSin(X)
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So we will take
Y1 = Co9X) and Yo = sin(x)

as the independent pair of solutions to the correspondinglgeneous equation in the solution
formula

Y = yiu + Yo

That is, as the formula for the general solution to our nontgemeous differential equation,
we will use

y = cogx)u + sin(x)v
whereu = u(x) andv = v(X) are functions to be determined.

For our differential equationa = 1 and g = tan(x) . Thus, with our choice of); and
V>, the system

ylu/ + yzv/ —

vl O

'+ y =

cogx)u’” + sin(x)v’ = 0
—sin(x)u” 4+ cogx)v” = tan(x)

This system can be solved several different ways. Why doajust observe that, if we solve
the first equation forn’ , we get

r_ _CQS(X)U/
sin(x)

Combining this with the second equation (and recallingtke lttigonometry) then yields

: , cosgx) | _
—sln(X)U + CO&X) [_W(X)u} = tar(X)
. cog(x) ,
— <— sin(x) — SN0 >u = tan(x)
Sif(x) + cof(X)\ ,
= —( NGO )u = tan(x)
- 1 u = tan(x)
— sin(x) o
Thus,
. : __sif)
U = —tan(x)sin(x) = 050
and
p__S0sX) o cosn) [_smz(X)] _ sin)
sin(x) sin(x) cogX)

To integrate the formula foa’ , it may help to first observe that

B Sif(x) _1—cof(x)
cosx) cogx)

U/(X) =

= —sedx) + cogXx)
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It may also help to review the the integration of the secanttion in your old calculus text.
After doing so, you’ll see that

ux) = /u’(x)dx

= /[cos(x)—se({x)] dx
= sin(x) — In|se@x) + tan(x)| + ¢;

and
v(X) = /sin(x)dx = —cogX) + G

Plugging these formulas far andv back into our solution formula
Yy = yiu + Yov = cogxX)u + sin(x)v ,
we get
y = cogx)[sin(x) — In|sedx) +tan(x)| + ci] + sin(x)[ —cosx) + ;]
= —cogX)In|se@x) +tan(x)| + ¢y cogX) + CpSin(x)

as the general solution to the nonhomogeneous equation

y' + y = tanx)

Possible Difficulties

The main ‘work’ in carrying out the the variation of paranrsteethod to solve
ay” + by +cy =g

is in solving the system

yil + yov' = 0
g

U r.7
yiu + Yovu = a
for v andv’, and then integrating the results to get the formulaaf@nd v . One can foresee
two possible issues: (1) the ‘solvability’ of the systemd &R) the ‘integrability’ of the solutions
to the system (assuming the solutions can be obtained).
Remember, some systems of equations are “degenerate” eindlpsolvable, either having
no solution or infinitely many solutions. For example,

u+ 3 =0
u+4+ 3 =1

clearly has no solution. Fortunately, this not an issue @mriation of parameters method. As
we will see in section 23.3 (when discussing a formula fos thiethod), the requirement that
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{v1, ¥»} be a fundamental set for the corresponding homogeneogseatitial equation ensures
that the above system is nondegenerate and can be solvecklyrfior ' and v’ .

The issue of the “integrability” of the formulas obtained fo’ and v’ is much more
significant. In our discussion of a variation of parameteraiula (again, in section 23.3), it will
be noted that, in theory, the functions obtaineddbrand v" will be integrable for any reasonable
choice ofa, b, ¢ and g. In practice, though, it might not be possible to find usabtenulas
for the integrals ofu” and v’. In these cases it may be necessary to use definite integstdad
of indefinite, numerically evaluating these integrals taait approximate values for specific
choices ofu(x) and v(x). We will discuss this further in section 23.3.

23.2 Variation of Parameters for Even Higher Order
Equations

Take another quick look at part of our derivation in the poesi section. In setting
y = yiu + yv
and then requiring
yiu' + yv' =0

we ensured that the formula for ,
y = [yiu+y] = yiu + vt + yv + v
= yi'u + Yo'v + yit' 4+ y2u' = yi'u + yo'v + 0

contains no derivatives of the unknown functiomsand v .
Suppose, instead, that we have three known functignsy, and y;; and we set

Y = yiu + You + V3w
whereu, v and w are unknown functions. For the same reasons as beforeriregthat
yiu' + yav' + ysw' = 0 (23.6)

will insure that the formula fory’ contains no derivative ofi, v and w ; but will simply be

/

y = yiu + v + ys'w
Differentiating this yields

7

y = yl//u + yl/u/ + y2//v + yz/v/ + y3//w + y3/w/
— [yl//u + yz//v + y3//w] + [yl/u/ + yz/v/ + y3/w/] ’

which reduces to

y// — yl//u + y2//v + ys//w

provided we require that
yi'u + v 4+ ysw =0 . (23.7)
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Thus, requiring equations (23.6) and (23.7) prevents dévies of the unknown functions from
appearing in the formulas for eithgr or y”. As you can easily verify, differentiating the last
formula for y” and plugging the above formulas fgr, y and y” into a third-order differential
equation

/11

ay” + ay’ + ay + ay = ¢

then yields
o [yu+ vV +yw] + [ Jut [ e+ [ ]w =g (23.8)

where the coefficients in the, v and w terms will vanish ify;, y, and y; are solutions to
the corresponding homogeneous differential equation.

Together equations (23.6), (23.7) and (23.8) form a systétree equations in three
unknown functions. If you look at this system, and recallahiginal formula fory, you'll see
that we've derived the variation of parameters method forisg third-order nonhomogeneous
linear differential equations:

To solve the nonhomogeneous differential equation

/11

ay” + a1y’ + ay + asy =g ,

first find a fundamental set of solutiofyg,, Y., Y3} to the corresponding homoge-
neous equation

/11

ay” + ay’ + ay + ay =0

Then set
Yy = yiu + Yov + Yaw (23.9)

assuming thati = u(x), v = v(x) andw = w(x) are unknown functions whose
derivatives satisfy the system

YU 4 v+ yaw' = 0 (23.10a)
yi'u + yiv + ysw = 0 (23.10b)
yiu 4y 4y = % (23.10c)

Solve the system fou’, v/ andw’ ; integrate to get the formulas far, v andw ,
and plug the results back into formula (23.9) fpr That formula is the solution to
the original nonhomogeneous differential equation.

Extending the method to nonhomogeneous linear equatiomgeofhigher order is straight-
forward. We simply continue to ley be given by formulas similar to formula (23.9) using
fundamental sets of solutions to the corresponding honeamenequations. Repeatedly impos-
ing requirements patterned after equations (23.10a) a®d@B) to ensure that no derivatives
of unknown functions remain until we compute the highestomkrivative in the differential
equation, we eventually get the variation of parameterfatkfor solving any nonhomogeneous
linear differential equation:

To solve theN™-order nonhomogeneous differential equation

ay™ + ay™™P + .. +avay +ay =9
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first find a fundamental set of solutiods., Y», ..., YN} to the corresponding
homogeneous equation

ay™ + ay™? 4+ -+ ayay + avy =0

Then set
y = Yaup + YaU2 + --- + YnUN (23.11)

assuming that they’s are unknown functions whose derivatives satisfy theesyst

yiur + YU + -+ + ynun' = 0 (23.12a)
yi'ur’ 4+ YU’ + - 4+ ynuy' = 0 (23.12b)
yi'ui’ + y"uy + - + yw'un’ = 0 (23.12¢)
(23.12d)
iV Pu) + NP0 o+ N Puy = 0 (23.12€)
N a4 N Dy oy (N = % . (23.12f)
Solve the system fony’, Uy, ... anduy’; integrate to get the formula for each

Uk, and then plug the results back into formula (23.11)YorThat formula is the
solution to the original nonhomogeneous differential eigua

As with the second-order case, the above system can be shdembndegenerate, and the
resulting formula for eachu,’ can be shown to be integrable, at least in some theoretioaése
as long asg and theay’s are continuous functions withy never being zero on the interval of
interest.

23.3 The Variation of Parameters Formula
Second-Order Version with Indefinite Integrals

By solving system (23.5) fou’ and v’ using genericy; and y,, integrating, and then plugging
the result back into formula (23.4)

y = il + Yov

you can show that the solution to

ay” + by +cy =g (23.13)
is given by
y2(X) f (X) 10
yx) = —yi(x )f W0o dx + y(x)/ W0 dx (23.14)
where

900

200 v W) = vy (X)) — yi' (X)ya(X)

f(X) =
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and {y1, ¥»} is any fundamental set of solutions to the correspondingduyemeous equation.
The details will be left as an exercise (exercise 23.5 on g&ge.
A few observations should be made about the elements in farg8114:

1. Recall that we have been requiring solutions to secondrdlifferential equations to be
continuous and have continuous derivatives. ConsequéhédyaboveW(x) will be a
continuous function on the intervdl.

2. Moreover, if you recall the discussion about the “Wronskigarresponding to the func-
tion set{yi, y»} (see the discussion in chapter 14 starting on page 304) ythemay
have noticed that th&V(x) in the above formula is that very Wronskian. As noted in
theorem 14.3 on page 308/ (x) will be nonzero at every pointin our interval of interest,
provideda, b and c are continuous functions aral is never zero on that interval.

Consequently, the integrands of the integrals in formuBal(2) will, theoretically at least, be
nice integrable functions over our interval of interest@wlasa, b, ¢ and g are continuous
functions anda is never zero over this intervalAnd this verifies that, in theory, the variation
of parameters method does always yield the solution to agrangeneous linear second-order
differential equation over appropriate intervals.

In practice, this author discourages the use of formulal@®3at least at first. For most,
trying to memorize and effectively use this formula is moiféalilt than remembering the basic
system from which it was derived. And the small savings in potational time gained by using
this formula is hardly worth the effort unless you are goiodpé solving many of equations of
the form

ay” + by +cy =g

in which the left side remains the same, but you have sevédfataht choices forg .

Second-Order Version with Definite Integrals

If you fix a point Xg inthe interval of interest, and rederive formula (23.14hgslefinite integrals
instead of the indefinite ones used just above, you get thattecplar solution to

ay’ + by +cy =g

is given by
_ y2(s) f(s) yi(s) f(s)
Yp(X) = yl(x)/ WG ds + y»(X )/ WG ds (23.15)
where, again,
t9 =22 W = ey — YO

a(s)

and {y1, y»} is any fundamental set of solutions to the correspondingdgmmeous equation.
Then, of course,
y(X) = yp(X) + C1y(X) + Ca(X) . (23.16)

is the corresponding general solution to original nonhoamegus differential equation
There are two practical advantages to using definite intégmaula (23.15) instead of the
corresponding indefinite integral formula, formula (23:14

2Infact, f does not have to even be continuous. It just cannot havepkartly bad discontinuities.
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1. Often, itis virtually impossible to find usable, explicitrfoulas for the integrals of

y2(x) f(x) y1(x) f(x)
W) and W

In these cases, formula (23.14), with its impossible to aaimmdefinite integrals, is of
very little practical value. However, the definite integrad formula (23.15) can still be
accurately approximated for specific valuesxofising any decent numerical integration
method. Thus, while we may not be able to obtain a nice forfauly,(x) , we can still
evaluate it at desired points on any reasonable intervaitefést, possibly using these
values to generate a table fgp(x) or to sketch its graph.

2. As you can easily show (exercise 23.6), thg given by formula (23.15) satisfies the
initial conditions
y(X) = 0 and  y(X) =0

This makes it a little easier to find the constani{sand ¢, such that
yX) = Yp(X) + Ciy(X) + C2(X)
satisfies initial conditions
yXo) = A and y'(x) = B

for some valuesA and B (especially, if we cannot explicitly compute the integrials
formulas (23.14) and (23.15)).

For Arbitrary Orders

Inusing variation of parameters to solve the more gerdeébrder nonhomogeneous differential
equation

ay™ + ay™™ + .- +anay +ay =g
we need to solve system (23.12) foy’, uy’, ... and uy’. If you carefully solve this system

for arbitrary yk’s, or simply apply the procedure known as “Cramers rule’e(aémost any
introductory text in linear algebra), you will discover tha

Ntk Wk (X) f(X)

for k=1,2,3,...,n
W(X)

u'(x) = (=1

where f = Y,,, W is the determinant of the matrix

Y1 Y2 Y3 e YN

Y’ yo' y3' YN

M = y1" y2" ys” YN
_yl(N—l) yZ(N—l) y3(N—1) .. yN(N—l)_

and W is the determinant of the submatrix & obtained by deleting the last row and"
column.
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Integrating and plugging into formula (23.11) for the di#fatial equation’s solutiory , we
obtain either

n
_ Y (LN WkCO T 00 23.17
y(x) k;( M0 | = (23.17a)
or
n X
= ()N W(®) () 23.17b
Yo (X) é( MO | (23.17b)

depending on whether indefinite or definite integrals areluse

Again, it should be noted that thé/ in these formulas is the Wronskian of the fundamental
set{yi, Yo, ..., Yn},and, fromthe corresponding theory developed for thesengkians (see,
in particular, theorem 14.3 on page 305), it follows thatdbeve integrands will, theoretically
at least, be nice integrable functions over our intervahtériest as long ag and theay’s are
continuous functions and, is never zero over this interval.

Additional Exercises

23.1. Find the general solution to each of the following nonhonmeges differential equa-
tions. Use variation of parameters even if another methaghhdeem easier. For your
convenience, each equation is accompanied by a gener&bsatio the corresponding
homogeneous equation.

a X2y —2xy + 2y = 3/X , Yh = GX + CX?
b.y +y = cot(x) , Yn = c1co8X) + CpSin(x)

c. Y + 4y = csa2x) , Yyn = €1C092X) + Csin(2x)
d. y// _ 7y/ + 10y — 6e3X , yh — 0192X + C2e5X
ey —4y + 4y = [24X2+2] e, Yh = e + Cxe*

f.ox2y" + xy — 9y =123 |, yh = x4+ ox°
g xy' —y — &%y = X%,y = e’ + e
h. x2y" — 3xy' + 4y = x> , yh = &x? + cx?In|x|

i xy" + @42y + 2y = 8 |, yh, = ax ! 4+ coxle ™
jo X+DY +xyY —y = X+D? , Yh = X + e

23.2. Solve the following initial-value problems using variatiof parameters to find the
general solution to the given differential equations.

a x?y" — 2xy — 4y = 1?0 with y(1) =3 and y'(1) = —15

3 And, again,g does not have to even be continuous. It just cannot havepkatiy bad discontinuities.
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b.y —y — 6y =12* wih y0)=0 and y(0 =8

23.3. Find the general solution to each of the following nonhonmegeis differential equa-
tions. Use variation of parameters even if another meth@ghhdeem easier. For your
convenience, each equation is accompanied by a generéibsaioi the corresponding
homogeneous equation.

a y/// _ 4y/ — 3Oe3x , Vo = C + Cze2x + C3e72x

b. x3y" — 3x%y" + 6xy —6y = x> , Vh = C1X + X% + cx°

23.4. For each of the following, set up the system of equationgésponding to system 23.5,
23.10 or 23.12) arising in solving the equations via vaviatf parameters.

a X3 — 3x%y + 6xy —6y = e X | Wy = X + X2 + cx®

b. v/ —y +y -y =tanx) , yn = 1€ + C,c09X) + C3Sin(x)

o

y® — 8ly = sinh(x) , yh = ci€¥ + e > + c3c093x) + C4sin(3x)

d. X4y(4) + 6X3y/// . 3X2y// _ 9Xy/ + 9y = 12x sin(xz) ,
Vh = CGX + CoX 1 4+ x4+ cx73

23.5. Derive formula (23.14) on page 464 for the solutigrto
ay’ + by +cy =9
from the fact thaty = yiu + y,v where
yil + y2o' =0 and  y'u + yv = g
(Hint: Start by solving the system far andv’.)
23.6. Show thaty, given by formula (23.15) on page 465 satisfies the initiabttions

y(X) = 0 and y(x) =0



