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Euler Equations

We now know how to completely solve any equation of the form
ay” + by +cy =0

or even
aoy™ + ay™ Y + .. 4 anoy’ + any + any = 0

in which the coefficients are all constants (provided we canpetely factor the corresponding
characteristic polynomial).
Let us now consider some equations of the form

ay’” + by +cy =0
or even
aoy™ + ay™ PV 4+ -+ ay_oy’ + an-1y + any = 0

when the coefficients are not all constants. In particuédrug consider the “Euler equations’,
described more completely in the next section, in which tedfients happen to be particularly
simple polynomials.

As with the constant-coefficient equations, we will disciressecond-order Euler equations
(and their solutions) first, and then note how those ideaaneixto corresponding higher order
Euler equations.

19.1 Second-Order Euler Equations
Basics
A second-order differential equation is calledEuler equation if it can be written as

ax?y" + Bxy + yy = 0
wherew, B and y are constants (in fact, we will assume they are real-valoadtants). For
example,

x?y" — 6xy’ + 10y = 0

1 These differential equations are also calGalichy-Euler equations

395



396 Euler Equations

x?y" — 9xy’ + 25y = 0
and
x?y" — 3xy’ + 20y = 0

are the Euler equations we’ll solve below. In these equatitite coefficients are not constants
but are constants times the variable raised to the powetiagubhe order of the corresponding
derivative. Notice, too, that the first coefficientx? , vanishes ak = 0. This means we should
not attempt to solve these equations over intervals cantait. For convenience, we will use
(0, 00) as the interval of interest. You can easily verify that thmedormulas derived using
this interval also work using the intervgtoo, 0) after replacing thex in these formulas with
either —x or |x].

Euler equations are important for two or three good reasons:

1. They are easily solved.

2. They occasionally arise in applications, though not neagyoften as equations with
constant coefficients.

3. They are especially simple cases of a broad class of diffieteaquations for which
infinite series solutions can be obtained using the “metHd&tabenius? (Whether or
not this is a good reason may depend on your point of view.)

The basic approach to solving Euler equations is similah® approach used to solve
constant-coefficient equations: assume a particular fomthie solution with one constant “to
be determined’, plug that form into the differential eqoati simplify and solve the resulting
equation for the constant, and then construct the gendral®ousing the constants found and
the basic theory already developed.

The appropriate form for the solution to an Euler equationasthe exponential assumed
for a constant-coefficient equation. Instead, itis

y(x) = X'

wherer is a constant to be determined. This choice Jgk) can be motivated by either first
considering the solutions to the corresponding first-oedgrations
dy

(xX&-l-,By:O,

or by just thinking about what happens when you compute

r
X" X ]

We will outline the details of the method in a moment. Do notykver, bother memorizing
anything except for the first assumption about the form ofsbietion and general outline of
the method. The precise formulas that arise are not as easiiyorized as the corresponding
formulas for differential equations with constant coeéfittis. Moreover, you won't be using
them enough in your work outside this class to justify meming these formulas.

2 The method of Frobenious will be developed in a much much tepter.
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The Steps in Solving Second-Order Euler Equations
Here are the basic steps for finding a general solution to eoyral-order Euler equation

ax?y’ + Bxy + yy =0 for x>0

Rememberx, 8 and y are real-valued constants. To illustrate the basic methedyill solve

x%y" —6xy + 10y = 0 for x>0

1. Assume a solution of the form
y =yx =X

wherer is a constant to be determined.

2. Plug the assumed formula for into the differential equation and simplify. Let’s do the
example first:

Replacingy with X" gives

0 = x%y — 6xy + 10y
= x*x"]" - 6x[x"] + 10[x']
= X°[r(r —Dx"?] — 6x[rx"] + 10[x]
= (r2—r)x" — 6rx" 4 10x'
= [r? = r — 6 + 10]x'
= [r? — 7r + 10]X"

Since we are solving on an interval whete 0, we can divide out the" ,
leaving us with the algebraic equation

r>— 7 +10=0

In general, replacing with x" gives

0 = ax?®y + Bxy + yy

— wfx] + pxfx] + 7]

= aX?[r(r — DX 2] + BxX[rx"'] + y[X]
= a?2=r)x" 4+ prx" 4+ yx'
2—ar + pr + yJX

= [ar? + B—a) + y]X

= [ar

Dividing out the X" leaves us with the second-degree polynomial equation

ar? + B—a)Y +y =0
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This equation, which is sometimes called fimeicial equation corresponding to the

given Euler equatioh is analogous to the characteristic equation for a secotero

homogeneous linear differential equation with constaeffftments. (Don’'t memorize

this equation — it is easy enough to simply rederive it easteti Besides, analogous
equations for higher-order Euler equations are signifigatitferent.)

Solve the polynomial equation far.
In our example, we obtained the indicial equation

r’— 7 +10=0 ,
which factors to
r—2(r -5 =20

Sor =2 andr =5 are the possible values of.

Remember that, for each value of obtained, x" is a solution to the original Euler
equation. If there are two distinct real valuesandr, for r , then

[x1,x )
is clearly a fundamental set of solutions to the differdmguation, and
Y(X) = Xt + X"
is a general solution. If there is only one value forthen
yix) = x'

is one solution to the differential equation and the gensoaltion can be obtained via
reduction of order. (The cases where there is only one vdiue and where the two
values ofr are complex will be examined more closely in a little bit.)

In our example, we obtained two values for 2 and5. So
(32,5
is a fundamental set of solutions to the differential equrgtand
y(X) = c1xX? + &x°

is a general solution.

3 usually, though, it's not called anything except “the eguratve get forr *
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19.2 The Special Cases
A Single Value for r

Let’'s do an example and then discuss what happens in general.
»Example 19.1: Consider
X2y —9xy' + 25y =0 for x>0
Letting y = X", we get
0 = x?y" — 9xy + 25y
= xx"]" = x[x] + 10[x']
= X*[r(r —DXx"?] — ox[rx"] + 25[x]
= r?—r)x" — ax" + 25
=[r? —r — 9 + 25X
= [r? — 10r 4 25]x'
Dividing out thex" , this becomes
r —1or +25 =0 |,

which factors to
r—5%=0

Sor =5, and the corresponding solution to the differential equrais
yi(x) = x°

Since we only have one solution, we cannot just write out Breegal solution as we did
in the previous example. But we can still use the reductioordér method. So let

y(x) = x°u(x)
Computing the derivatives,
yx) = [x®u] = 5x%u + x°u’
and
y'(x) = [5x*u + x°u] = 20x%u + 10x*u + x°u”

and plugging into the differential equation yields

0 = x?y" — 9xy + 25y
= x*[20x°u + 10x*’ + x°u’] — 9x[5x*u + x°u'] + 25[x°u]
= 20x°u + 10x8u + x'u” — 45x%u — 9x8u’ + 25x°u
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= x'u" + [10x° — 9x®Ju’ + [20x° — 45x° + 25x°]u

— X7u// + XGU/

Letting v = U’ , this becomes
xv + x% =0 ,

a simple separable first-order equation. Solving it:

X7d—v + x%» =0

dx
N 1dv  x® 1
vdx ~ x? X
1d 1
- /——vdx = — | =dx
v dx X
— Injlv] = —In|X|+¢cg
— b = e MK _ @2
X
Thus,

ux) = /u’(x)dx = /v(x)dx = /%dx = cIn|x| + ¢ ,
and the general solution to the differential equation is

y(x) = x2u(x) = x°[czIn|x] + ] = cx® + cx°In x|

While just using reduction of order is recommended, you dawsthat, if your indicial
equation only has one solutian, then

yi(x) = X' and  y,(x) = X" In|x|
will always be solutions to the differential equation (butyamemorize something you won't use
that much). Since they are clearly not constant multiplesagh other, they form a fundamental
set for the differential equation. Thus, in this case,
y(xX) = X' + cx'In x|
will always be a general solution to the given Euler equation

Verifying this claim is left to the interested reader (seereise 19.3 on page 407).

Complex Values for r

Again, we start with an example.

»Example 19.2: Consider

x?y" — 3xy + 20y =0 for x>0
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Usingy = X", we get
0 = x%y" — 3xy + 20y
= x?[x"]" — 3x[x]" + 20[x]
2[rar — DX 2] — 3x[rx"] + 20[x"]
2

x|
X[r? —r —3r + 20 ,
which simplifies to

r2— 4 4+20=0

The solution to this is

(D EV/(-H?-420)  4+J/-64 > 4ia
2 B 2 B

Thus, we have two distinct values for, 2+ i4 and 2 — i4. Presumably, then, we could
construct a general solution from

x2+i4 and x2-i4 ,
provided we had some idea as to just what tb a complex power” meant.

So let’s figure out what X to a complex power” means.
For exactly the same reasons as when we were solving comstafficient equations, the
complex solutions to the indicial equation will occur as g@b&x conjugate pairs

r.=»x+iw and r_ =1 —iw ,
which, formally at least, yield
yi(X) = X+ = x*T'®  and  y_ (x) = x- = x} 7
as solutions to the original Euler equation. Now, assuntiegstandard algebraic rules remain

valid for complex powers
rtiw Ay tio

X = XX ,
and, forx > 0,

xto — gnii®e _ gdolixl — cogen|x|) + i sin(eIn |x|)
So our two solutions can be written as

x*[cosgwIn|x]) + isin(wn|x])]

Y4+ (X)
and

y-(x) = x*[cogwIn|x]) — isin(wIn|x])]

To get solutions in terms of only real-valued functions gesiglly do what was done when
we had complex-valued roots to characteristic equationsdonstant-coefficient equations: Use
the fundamental set

{yL. 2}

4 They do.
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where L L

yi¥) = Z¥+ () + 3y-() = -+ = x"coswlIn|x|)
and

Y00 = 2V — Y- (0 = o = x*sin(wIn |x|)

Note that these are just the real and the imaginary partsdbtimulas fory, = x**¢
If you really wish, you can memaorize what we just derived, sgm

If you get
r= A+ iw

when assuming = X" is a solution to an Euler equation, then
yi(X) = x*cogwIn|x|) and  yo(X) = X*sin(wIn|x|)

form a corresponding linearly independent pair of real+gdl solutions to the dif-
ferential equation, and

y(x) = cix*cogwIn|x|) + cx*sin(wln|x|)
is a general solution in terms of just real-valued functions

Memorizing these formulas is not recommended. It's easyghdand safer) to simply
re-derive the formulas fox**'“ as needed, and then just take the real and imaginary parts as
our the two real-valued solutions.

»Example 19.3: Let us finish solving
x2y" —3xy + 20y =0 for x>0

From above, we got the complex-power solutions

ye(x) = x2*4

Rewriting this using the corresponding complex exponéntia get
2,414

+i4
— Xzeln|x\

= x24I = x2[cog4In|x|) £ isin@In|x]) ]

yi(X) = X

Taking the real and imaginary parts of this then yields theasponding linearly independent
pair of real-valued solutions to the differential equation

yi(x) = x?cog4In|x|) and  y>(x) = x?sin(4In|x|)

Thus,
y(x) = c1x2cog4In|x|) + cx?sin4In|x|)

is a general solution in terms of just real-valued functions
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19.3 Euler Equations of Any Order

The definitions and ideas just described for second-ordier Equations are easily extended to
analogous differential equations of any order. The naextnsion of the concept of a second-
order Euler differential equation is that of aff-order Euler equation, which is any differential
equation that can be written as

N, (N) N-1

aoxNyMN 4 apxN Ty NTD L ay oX®Y 4 anaxy 4 any = 0

where thewy’s are all constants (andy # 0). We will further assume they are all real constants.
The basic ideas used to find the general solutinfi-arder Euler equation ove(0, co) are
pretty much the same as used to solve the second-order Euiatiens:

1. Assume a solution of the form
y = yx) =X

wherer is a constant to be determined.

2. Plug the assumed formula for into the differential equation and simplify. The result
will be an N degree polynomial equation

AgrN 4+ ANt o Ayar + Ay =0

We'll call this theindicial equation for the given Euler equation, and the polynomial on
the left will be called thendicial polynomial. It is easily shown that thé\’s are all real
(assuming they’s are real) and tha® = «p. However, the relation between the other
Ac’s and ai’s will depend on the ordeN of the original differential equation.

3. Solvetheindicial equation. The same tricks used to helgedbke characteristic equations
in chapter 18 can be used here. And, as with those charditterqgations, we will obtain
a list of all the different roots of the indicial polynomial,

ry , r , rz , ... and rg ,
along with their corresponding multiplicities,
m , m , mg , ... and mg
As noted in chapter 18,
m + my +mg+ -+ + mg = N

What you do next with eachy depends on whether is real or complex, and on the
multiplicity my of ry.

4. If r =rg isreal, then there will be a corresponding linearly indefgati set ofm = my
solutions to the differential equation. One of these, ofrseuwill be y = x" . If this
root's multiplicity m is greater than 1, then a second corresponding solutioe teuker
equation is obtained by multiplying the first] , by In|x|, just as in the second-order
case. This — multiplying the last solution found by|¥t — turns out to be the pattern
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for generating the other solutions whem= my > 2. That s, the set of solutions to the
differential equation corresponding to= ry is

[, x"In|x|, x"(n|xp?, ..., x"(n|xp™*}
with m = my.. (We’'ll verify this rigorously in the next section.)

5. Ifarootis complex, sayr = A + iw, and has multiplicitym, then we know that this
root’s complex conjugate* = A — iw is another root of multiplicitym. By the same
arguments given for real roots, we have that

{Xk+iw’ Xk+iw|n|xl , X)Hria)(IanDZ, o X)L+ia)<|n|x|)mfl}
with
[x*e e x|, xMedn|xp?, ..., XM edn | xp™ )

forms a linearly independent set ofn2solutions to the Euler equation. To obtain the
corresponding set of real-valued solutions, we again uséattt that, forx > 0,

X = xrxHe = xtetleX = x* cogwIn|x|) + isinwlin|x])] (19.1)
to obtain the alternative solutions sets
{x*cogwlIn|x|) , x*coswIn |x|) In|x| , x* cogwIn [x|) (In |x])?,
..., x*cogwIn|x]) (In|x)™*}
and
{x*sin@In |x]) , x*sin(@In |x[) In x| , X" sin(e In [x]) (In]x])?,

o XEsin(In x]) dnxp™t )
for the Euler equation.

6. Now form the set of solutions to the Euler equation consistih the my solutions
described above for each real roat, and the P, real-valued solutions described
above for each conjugate pair of roais and r*. Since (as we saw in chapter 18) the
sum of the multiplicities equaldN , and since the’s are distinct, it will follow that
the set of solutions to the Euler equation, this will be a fameéntal set of solutions for
our Euler equation. Thus, finally, a general solution to tiverg Euler equation can be
written out as an arbitrary linear combination of the fuoos in this set.

We will do two examples (skipping some of the tedious alggbra

»Example 19.4: Consider the third-order Euler equation
xX3y" — 6x%y" + 1xy — 27y =0 for x>0
Plugging iny = X" , we get
Xrr =D —2x' 2 — 6xr(r —Hx"? + 19%rx"t — 27" =0
which, after a bit of algebra, reduces to

r3— o2 +2r —2r =0
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This is the indicial equation for our Euler equation. You eenify that its factored form is
r-3*=0

So the only root to our indicial polynomial is= 3, and it has multiplicity3. As discussed
above, the corresponding set of solutions to the Euler équest

{x®,CInIx|, Canxp?}
and the corresponding general solution is

y = cx® + &CIn|x| + cx(n|x)?

I»Example 19.5: Consider the fourth-order Euler equation
xy® + 6x3y” + 25x%y" + 19xy’ + 8ly = 0 for x>0
Plugging iny = X" , we get
Xre =0 =2 =3x* + 6xrr -1 —2)x" 3
+ 25X (r —Dx' 2 + 19%rx" ! + 8Ix' = 0 ,

which simplifies to
r* +18%2481=0

Solving this yields
r = +£3i with multiplicity 2

This corresponds to the real-valued Euler equation salgtio
cog3In|x]) , sinBIn|x|] , cog3In|x)In|x|] and sin3In|x|In|X]|
The general solution, then, is

y = ¢cog3In|x|) + csin@In|x| + cscog3In|x])In|x] 4+ ca4sin(3In|x]|In|X]

19.4 The Relation Between Euler and Constant
Coefficient Equations

Let us suppose that
Agr™ + ANt 4+ o+ Ayr + Ay =0 (19.2)

is the indicial equation for somdl™-order Euler equation

N-1 2

N
NV N1 Y e Ly =0 . (19.3)

X
0% dxN dxN-1 dx?
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Observe that polynomial equation (19.2) is also the charistic equation for theN™-order
constant coefficient equation
dNy daN-ty dy

AT + A giN-1 + - + AN_lE + AyY =0 . (194)

(We've changed notation a little to avoid confusion.)
This means that, if is a solution to polynomial equation (19.2), then

Ao

X" and €

are solutions, respectively, to above Euler equation aa@dliove constant coefficient equation.
This suggests that these two differential equations asta@lto each other, possibly through a
substitution of the form

XI’ — el't

Taking ther ™ root of both sides, this simplifies to

t

X =€ or, equivalently, Inx| =t

Exploring this possibility further eventually leads to fiedowing lemma about the solutions to
the above differential equations:

Lemma 19.1
Let y(x) andY (t) betwo functions, witty defined on(0, oo) , andY (t) defined on(—oo, c0) .
Assume they are related by the substitutios: € (equivalently,In |x| =t ); that is,

t

y(x) = Y(t) where x = € and t = In|x|

Theny is a solution to Euler equation (19.3) if and onlyif is a solution to constant coefficient
equation (19.3).

The proof of this lemma involves repeated chain rule contparta such as

dt d dinixjd 1dy _ __dY

dy
&EY(U T dx dt xdt dt

d
ax &Y(t) =
We'll leave the details to the adventurous (see exercisés 19.6 and 19.7).

There are two noteworthy consequences of this lemma:

Yt) = (19.5)

1. Itgivesusanotherwayto solve Euler equations. To be spewi& can use the substitution
in the lemma to convert the Euler equation into a constarfficant equation (witht as
the variable); solve that coefficient equation for its gahsolution (in terms of functions
of t), and then use the substitution backwards to get the geselztion to the Euler
equation (in terms of functions of).

2. We can now confirm the claim made (and used) in the previoumseabout solutions to
the Euler equation corresponding to a reobf multiplicity m to the indicial equation.
After allif r is a solution of multiplicitym to equation (19.2), then we know that

[t te!, 2, ..., t" et ]

5 It may be argued that this method, requiring the repeatediise chair rule, is more tedious and error-prone than
the one developed earlier, which only requires algebra #fetehtiation of x" . That would be a good argument.
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is a set of solutions to constant coefficient equation (19Te lemma then assures us
that this set, witht = In|x|, is the corresponding set of solutions to Euler equation
(19.3). But, using this substitution,

thedt = ()" t* = x" (n|x])*
So the set of solutions obtained to the Euler equation is
[, X" In|x|, x"(n|xp?, ..., x"(n|xp™*}

just as claimed in the previous section.

Additional Exercises

19.1. Find the general solution to each of the following Euler diums on (0, co) :

a. x?y’ — 5xy + 8y =0 b. X%y — 2y =0

c. X3y — 2xy’ = 0 d 2x?%y" —xy +y =0
e. x2%y" — Bxy' + 9y =0 f. x2y" +5xy + 4y =0
g 4’y +y=0 h. x?y" — xy + 10y = 0
i. X?y" + 5xy + 29y = 0 jo X%y +xy +y=0

19.2. Solve the following initial-value problems:
a x?y —6xy +10y =0 with y1)=-1 and yQ) =7
b. 4x?y" + 4xy —y =0 with y4 =0 and y @) =2
c. X2y — 1Ixy' + 36y =0 with y()=% and y @) =2
d x?y" —3xy + 13y =0 with y1)=9 and y(1) =3
19.3. Suppose that the indicial equation for a second-order Eagaation only has one so-

lution r . Using reduction of order (or any other approach you thingrapriate) show
that both

yix) = x'and  y(x) = X" In|x|
are solutions to the differential equation @, co) .
19.4. Findthe general solution to each of the following third- &matth-order Euler equations
on (0, 00) :
a. X3y + 2x%y" — 4xy' + 4y = 0
b. x3y" + 2x?y" + xy —y =0
c. x3y" — 5x%y” + 14xy’ — 18y = 0O
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d. x*y® + 6x3%y" — 3x%y" — 9xy + 9y = 0
e. X4y(4) + 2X3y/// + XZy// _ Xy/ + y = 0

19.5. Confirm that the claim of lemma 19.1 holds whéh= 2 by considering the general
second-order Euler equation

d2y
2
axX"ge T Bx

dy _

d_X + yy = 0
and doing the following:

a. Find the corresponding indicial equation.

b. Convert the above Euler equation to a second-order, carstefficient differential
equation using the substitution= €' . Remember, this is equivalent to= In |x| .
(You may want to glance back at the chain rule computatiofiaén(19.5).)

c. Confirm (by inspection!) that the characteristic equationthe constant coefficient
equation just obtained is identical to the indicial equafir the above Euler equation.

19.6. Confirm that the claim of lemma 19.1 holds whéh= 3 by considering the general
third-order Euler equation

d3y d2y dy
3y 24y hetd —
apX 03 + aX ax2 + azxdx + azy =0

and doing the following:

a. Find the corresponding indicial equation.

b. Convert the above Euler equation to a second-order, canztefficient differential
equation using the substitution= €.

c. Confirm that the characteristic equation for the constaeffmwent equation just ob-
tained is identical to the indicial equation for the abovéeEequation.

19.7. Confirm that the claim of lemma 19.1 holds whbhis any positive integer.



