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Euler Equations

We now know how to completely solve any equation of the form

ay′′ + by′ + cy = 0

or even
a0y(N ) + a1y(N−1) + · · · + aN−2y′′ + aN−1y′ + aN y = 0

in which the coefficients are all constants (provided we can completely factor the corresponding
characteristic polynomial).

Let us now consider some equations of the form

ay′′ + by′ + cy = 0

or even

a0y(N ) + a1y(N−1) + · · · + aN−2y′′ + aN−1y′ + aN y = 0

when the coefficients are not all constants. In particular, let us consider the “Euler equations”,
described more completely in the next section, in which the coefficients happen to be particularly
simple polynomials.1

As with the constant-coefficient equations, we will discussthe second-order Euler equations
(and their solutions) first, and then note how those ideas extend to corresponding higher order
Euler equations.

19.1 Second-Order Euler Equations
Basics

A second-order differential equation is called anEuler equation if it can be written as

αx2y′′ + βxy′ + γ y = 0

where α , β and γ are constants (in fact, we will assume they are real-valued constants). For
example,

x2y′′ − 6xy′ + 10y = 0 ,

1 These differential equations are also calledCauchy-Euler equations
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396 Euler Equations

x2y′′ − 9xy′ + 25y = 0 ,

and

x2y′′ − 3xy′ + 20y = 0

are the Euler equations we’ll solve below. In these equations, the coefficients are not constants
but are constants times the variable raised to the power equaling the order of the corresponding
derivative. Notice, too, that the first coefficient,αx2 , vanishes atx = 0 . This means we should
not attempt to solve these equations over intervals containing 0 . For convenience, we will use
(0,∞) as the interval of interest. You can easily verify that the same formulas derived using
this interval also work using the interval(−∞, 0) after replacing thex in these formulas with
either −x or |x | .

Euler equations are important for two or three good reasons:

1. They are easily solved.

2. They occasionally arise in applications, though not nearlyas often as equations with
constant coefficients.

3. They are especially simple cases of a broad class of differential equations for which
infinite series solutions can be obtained using the “method of Frobenius”.2 (Whether or
not this is a good reason may depend on your point of view.)

The basic approach to solving Euler equations is similar to the approach used to solve
constant-coefficient equations: assume a particular form for the solution with one constant “to
be determined”, plug that form into the differential equation, simplify and solve the resulting
equation for the constant, and then construct the general solution using the constants found and
the basic theory already developed.

The appropriate form for the solution to an Euler equation isnot the exponential assumed
for a constant-coefficient equation. Instead, it is

y(x) = xr

where r is a constant to be determined. This choice fory(x) can be motivated by either first
considering the solutions to the corresponding first-orderequations

αx
dy

dx
+ βy = 0 ,

or by just thinking about what happens when you compute

xm dm

dxm

[

xr
]

.

We will outline the details of the method in a moment. Do not, however, bother memorizing
anything except for the first assumption about the form of thesolution and general outline of
the method. The precise formulas that arise are not as easilymemorized as the corresponding
formulas for differential equations with constant coefficients. Moreover, you won’t be using
them enough in your work outside this class to justify memorizing these formulas.

2 The method of Frobenious will be developed in a much much later chapter.
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The Steps in Solving Second-Order Euler Equations

Here are the basic steps for finding a general solution to any second-order Euler equation

αx2y′′ + βxy′ + γ y = 0 for x > 0 .

Rememberα , β and γ are real-valued constants. To illustrate the basic method,we will solve

x2y′′ − 6xy′ + 10y = 0 for x > 0 .

1. Assume a solution of the form
y = y(x) = xr

wherer is a constant to be determined.

2. Plug the assumed formula fory into the differential equation and simplify. Let’s do the
example first:

Replacingy with xr gives

0 = x2y′′ − 6xy′ + 10y

= x2
[

xr
]′′ − 6x

[

xr
]′ + 10

[

xr
]

= x2
[

r(r − 1)xr−2
]

− 6x
[

r xr−1
]

+ 10
[

xr
]

= (r2 − r)xr − 6r xr + 10xr

=
[

r2 − r − 6r + 10
]

xr

=
[

r2 − 7r + 10
]

xr .

Since we are solving on an interval wherex 6= 0 , we can divide out thexr ,
leaving us with the algebraic equation

r2 − 7r + 10 = 0 .

In general, replacingy with xr gives

0 = αx2y′′ + βxy′ + γ y

= αx2
[

xr
]′′ + βx

[

xr
]′ + γ

[

xr
]

= αx2
[

r(r − 1)xr−2
]

+ βx
[

r xr−1
]

+ γ
[

xr
]

= α(r2 − r)xr + βr xr + γ xr

=
[

αr2 − αr + βr + γ
]

xr

=
[

αr2 + (β − α)r + γ
]

xr .

Dividing out the xr leaves us with the second-degree polynomial equation

αr2 + (β − α)r + γ = 0 .
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This equation, which is sometimes called theindicial equation corresponding to the
given Euler equation3, is analogous to the characteristic equation for a second-order,
homogeneous linear differential equation with constant coefficients. (Don’t memorize
this equation — it is easy enough to simply rederive it each time. Besides, analogous
equations for higher-order Euler equations are significantly different.)

3. Solve the polynomial equation forr .

In our example, we obtained the indicial equation

r2 − 7r + 10 = 0 ,

which factors to

(r − 2)(r − 5) = 0 .

So r = 2 and r = 5 are the possible values ofr .

4. Remember that, for each value ofr obtained, xr is a solution to the original Euler
equation. If there are two distinct real valuesr1 and r2 for r , then

{

xr1 , xr2
}

is clearly a fundamental set of solutions to the differential equation, and

y(x) = c1xr1 + c2xr2

is a general solution. If there is only one value forr , then

y1(x) = xr

is one solution to the differential equation and the generalsolution can be obtained via
reduction of order. (The cases where there is only one value of r and where the two
values ofr are complex will be examined more closely in a little bit.)

In our example, we obtained two values forr , 2 and 5 . So

{

x2 , x5
}

is a fundamental set of solutions to the differential equation, and

y(x) = c1x2 + c2x5

is a general solution.

3 usually, though, it’s not called anything except “the equation we get forr ”.



The Special Cases 399

19.2 The Special Cases
A Single Value for r

Let’s do an example and then discuss what happens in general.

!◮Example 19.1: Consider

x2y′′ − 9xy′ + 25y = 0 for x > 0 .

Letting y = xr , we get

0 = x2y′′ − 9xy′ + 25y

= x2
[

xr
]′′ − 9x

[

xr
]′ + 10

[

xr
]

= x2
[

r(r − 1)xr−2
]

− 9x
[

r xr−1
]

+ 25
[

xr
]

= (r2 − r)xr − 9r xr + 25xr

=
[

r2 − r − 9r + 25
]

xr

=
[

r2 − 10r + 25
]

xr .

Dividing out the xr , this becomes

r2 − 10r + 25 = 0 ,

which factors to
(r − 5)2 = 0 .

So r = 5 , and the corresponding solution to the differential equation is

y1(x) = x5 .

Since we only have one solution, we cannot just write out the general solution as we did
in the previous example. But we can still use the reduction oforder method. So let

y(x) = x5u(x) .

Computing the derivatives,

y′(x) =
[

x5u
]′ = 5x4u + x5u′

and

y′′(x) =
[

5x4u + x5u′]′ = 20x3u + 10x4u′ + x5u′′ ,

and plugging into the differential equation yields

0 = x2y′′ − 9xy′ + 25y

= x2
[

20x3u + 10x4u′ + x5u′′] − 9x
[

5x4u + x5u′] + 25
[

x5u
]

= 20x5u + 10x6u′ + x7u′′ − 45x5u − 9x6u′ + 25x5u
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= x7u′′ +
[

10x6 − 9x6
]

u′ +
[

20x5 − 45x5 + 25x5
]

u

= x7u′′ + x6u′ .

Letting v = u′ , this becomes
x7v′ + x6v = 0 ,

a simple separable first-order equation. Solving it:

x7 dv

dx
+ x6v = 0

H⇒ 1

v

dv

dx
= − x6

x7 = −1

x

H⇒
∫

1

v

dv

dx
dx = −

∫

1

x
dx

H⇒ ln |v| = − ln |x | + c0

H⇒ v = ±e− ln|x |+c0 = c2

x
.

Thus,

u(x) =
∫

u′(x) dx =
∫

v(x) dx =
∫

c2

x
dx = c2 ln |x | + c1 ,

and the general solution to the differential equation is

y(x) = x5u(x) = x5[c2 ln |x | + c1] = c1x5 + c2x5 ln |x | .

While just using reduction of order is recommended, you can show that, if your indicial
equation only has one solutionr , then

y1(x) = xr and y2(x) = xr ln |x |

will always be solutions to the differential equation (but why memorize something you won’t use
that much). Since they are clearly not constant multiples ofeach other, they form a fundamental
set for the differential equation. Thus, in this case,

y(x) = c1xr + c2xr ln |x |

will always be a general solution to the given Euler equation.
Verifying this claim is left to the interested reader (see exercise 19.3 on page 407).

Complex Values for r

Again, we start with an example.

!◮Example 19.2: Consider

x2y′′ − 3xy′ + 20y = 0 for x > 0 .
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Using y = xr , we get

0 = x2y′′ − 3xy′ + 20y

= x2
[

xr
]′′ − 3x

[

xr
]′ + 20

[

xr
]

= x2
[

r(r − 1)xr−2
]

− 3x
[

r xr−1
]

+ 20
[

xr
]

= xr
[

r2 − r − 3r + 20
]

,

which simplifies to
r2 − 4r + 20 = 0 .

The solution to this is

r = −(−4) ±
√

(−4)2 − 4(20)

2
= 4 ±

√
−64

2
= 2 ± i4 .

Thus, we have two distinct values forr , 2 + i4 and 2 − i4 . Presumably, then, we could
construct a general solution from

x2+i4 and x2−i4 ,

provided we had some idea as to just what “x to a complex power” meant.

So let’s figure out what “x to a complex power” means.
For exactly the same reasons as when we were solving constantcoefficient equations, the

complex solutions to the indicial equation will occur as complex conjugate pairs

r+ = λ + iω and r− = λ − iω ,

which, formally at least, yield

y+(x) = xr+ = xλ + iω and y−(x) = xr− = xλ − iω

as solutions to the original Euler equation. Now, assuming the standard algebraic rules remain
valid for complex powers4,

xλ ± iω = xλx±iω ,

and, for x > 0 ,

x±iω = eln|x |±iω = e±iω ln|x | = cos(ω ln |x |) ± i sin(ω ln |x |) .

So our two solutions can be written as

y+(x) = xλ
[

cos(ω ln |x |) + i sin(ω ln |x |)
]

and

y−(x) = xλ
[

cos(ω ln |x |) − i sin(ω ln |x |)
]

.

To get solutions in terms of only real-valued functions, essentially do what was done when
we had complex-valued roots to characteristic equations for constant-coefficient equations: Use
the fundamental set

{ y1, y2 }
4 They do.
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where
y1(x) = 1

2
y+(x) + 1

2
y−(x) = · · · = xλ cos(ω ln |x |)

and

y2(x) = 1

2i
y+(x) − 1

2i
y−(x) = · · · = xλ sin(ω ln |x |) .

Note that these are just the real and the imaginary parts of the formulas fory± = xλ±iω .
If you really wish, you can memorize what we just derived, namely:

If you get
r = λ ± iω

when assumingy = xr is a solution to an Euler equation, then

y1(x) = xλ cos(ω ln |x |) and y2(x) = xλ sin(ω ln |x |)

form a corresponding linearly independent pair of real-valued solutions to the dif-
ferential equation, and

y(x) = c1xλ cos(ω ln |x |) + c2xλ sin(ω ln |x |)

is a general solution in terms of just real-valued functions.

Memorizing these formulas is not recommended. It’s easy enough (and safer) to simply
re-derive the formulas forxλ±iω as needed, and then just take the real and imaginary parts as
our the two real-valued solutions.

!◮Example 19.3: Let us finish solving

x2y′′ − 3xy′ + 20y = 0 for x > 0 .

From above, we got the complex-power solutions

y±(x) = x2 ± i4 .

Rewriting this using the corresponding complex exponential, we get

y±(x) = x2x±i4 = x2eln|x |±i4

= x2e±i4 ln|x | = x2
[

cos(4 ln |x |) ± i sin(4 ln |x |)
]

.

Taking the real and imaginary parts of this then yields the corresponding linearly independent
pair of real-valued solutions to the differential equation,

y1(x) = x2 cos(4 ln |x |) and y2(x) = x2 sin(4 ln |x |) .

Thus,
y(x) = c1x2 cos(4 ln |x |) + c2x2 sin(4 ln |x |)

is a general solution in terms of just real-valued functions.
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19.3 Euler Equations of Any Order

The definitions and ideas just described for second-order Euler equations are easily extended to
analogous differential equations of any order. The naturalextension of the concept of a second-
order Euler differential equation is that of annth-order Euler equation, which is any differential
equation that can be written as

α0x N y(N ) + α1x N−1y(N−1) + · · · + αN−2x2y′′ + αN−1xy′ + αN y = 0

where theαk ’s are all constants (andα0 6= 0 ). We will further assume they are all real constants.
The basic ideas used to find the general solution anth-order Euler equation over(0,∞) are

pretty much the same as used to solve the second-order Euler equations:

1. Assume a solution of the form
y = y(x) = xr

wherer is a constant to be determined.

2. Plug the assumed formula fory into the differential equation and simplify. The result
will be an N th degree polynomial equation

A0r N + A1r N−1 + · · · + AN−1r + AN = 0 .

We’ll call this theindicial equation for the given Euler equation, and the polynomial on
the left will be called theindicial polynomial. It is easily shown that theAk ’s are all real
(assuming theαk ’s are real) and thatA0 = α0 . However, the relation between the other
Ak ’s and αk ’s will depend on the orderN of the original differential equation.

3. Solve the indicial equation. The same tricks used to help solve the characteristic equations
in chapter 18 can be used here. And, as with those characteristic equations, we will obtain
a list of all the different roots of the indicial polynomial,

r1 , r2 , r3 , . . . and rK ,

along with their corresponding multiplicities,

m1 , m2 , m3 , . . . and mK .

As noted in chapter 18,

m1 + m2 + m3 + · · · + mK = N .

What you do next with eachrk depends on whetherrk is real or complex, and on the
multiplicity mk of rk .

4. If r = rk is real, then there will be a corresponding linearly independent set ofm = mk

solutions to the differential equation. One of these, of course, will be y = xr . If this
root’s multiplicity m is greater than 1 , then a second corresponding solution to the Euler
equation is obtained by multiplying the first,xr , by ln |x | , just as in the second-order
case. This — multiplying the last solution found by ln|x | — turns out to be the pattern
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for generating the other solutions whenm = mk > 2 . That is, the set of solutions to the
differential equation corresponding tor = rk is

{

xr , xr ln |x | , xr (ln |x |)2 , . . . , xr (ln |x |)m−1
}

with m = mk . (We’ll verify this rigorously in the next section.)

5. If a root is complex, say,r = λ + iω , and has multiplicitym , then we know that this
root’s complex conjugater∗ = λ − iω is another root of multiplicitym . By the same
arguments given for real roots, we have that

{

xλ+iω , xλ+iω ln |x | , xλ+iω(ln |x |)2 , . . . , xλ+iω(ln |x |)m−1
}

with
{

xλ−iω , xλ−iω ln |x | , xλ−iω(ln |x |)2 , . . . , xλ−iω(ln |x |)m−1
}

forms a linearly independent set of 2m solutions to the Euler equation. To obtain the
corresponding set of real-valued solutions, we again use the fact that, forx > 0 ,

xλ±iω = xλx±iω = xλe±iω ln|x | = xλ
[

cos(ω ln |x |) ± i sin(ω ln |x |)
]

(19.1)

to obtain the alternative solutions sets
{

xλ cos(ω ln |x |) , xλ cos(ω ln |x |) ln |x | , xλ cos(ω ln |x |) (ln |x |)2 ,

. . . , xλ cos(ω ln |x |) (ln |x |)m−1
}

and
{

xλ sin(ω ln |x |) , xλ sin(ω ln |x |) ln |x | , xλ sin(ω ln |x |) (ln |x |)2 ,

. . . , xλ sin(ω ln |x |) (ln |x |)m−1
}

for the Euler equation.

6. Now form the set of solutions to the Euler equation consisting of the mk solutions
described above for each real rootrk , and the 2mk real-valued solutions described
above for each conjugate pair of rootsrk and rk

∗ . Since (as we saw in chapter 18) the
sum of the multiplicities equalsN , and since therk ’s are distinct, it will follow that
the set of solutions to the Euler equation, this will be a fundamental set of solutions for
our Euler equation. Thus, finally, a general solution to the given Euler equation can be
written out as an arbitrary linear combination of the functions in this set.

We will do two examples (skipping some of the tedious algebra).

!◮Example 19.4: Consider the third-order Euler equation

x3y′′′ − 6x2y′′ + 19xy′ − 27y = 0 for x > 0 .

Plugging in y = xr , we get

x3r(r − 1)(r − 2)xr−3 − 6x2r(r − 1)xr−2 + 19xr xr−1 − 27xr = 0 ,

which, after a bit of algebra, reduces to

r3 − 9r2 + 27r − 2r = 0 .
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This is the indicial equation for our Euler equation. You canverify that its factored form is

(r − 3)3 = 0 .

So the only root to our indicial polynomial isr = 3 , and it has multiplicity3 . As discussed
above, the corresponding set of solutions to the Euler equation is

{

x3 , x3 ln |x | , x3(ln |x |)2
}

,

and the corresponding general solution is

y = c1x3 + c2x3 ln |x | + c3x3(ln |x |)2 ,

!◮Example 19.5: Consider the fourth-order Euler equation

x4y(4) + 6x3y′′′ + 25x2y′′ + 19xy′ + 81y = 0 for x > 0 .

Plugging in y = xr , we get

x4r(r − 1)(r − 2)(r − 3)xr−4 + 6x3r(r − 1)(r − 2)xr−3

+ 25x2r(r − 1)xr−2 + 19xr xr−1 + 81xr = 0 ,

which simplifies to
r4 + 18r2 + 81 = 0 .

Solving this yields
r = ±3i with multiplicity 2 .

This corresponds to the real-valued Euler equation solutions

cos(3 ln |x |) , sin(3 ln |x | , cos(3 ln |x |) ln |x | and sin(3 ln |x | ln |x | .

The general solution, then, is

y = c1 cos(3 ln |x |) + c2 sin(3 ln |x | + c4 cos(3 ln |x |) ln |x | + c4 sin(3 ln |x | ln |x | .

19.4 The Relation Between Euler and Constant
Coefficient Equations

Let us suppose that

A0r N + A1r N−1 + · · · + AN−1r + AN = 0 (19.2)

is the indicial equation for someN th-order Euler equation

α0x N d N y

dx N
+ α1x N−1 d N−1y

dx N−1
+ · · · + αN−2x2 d2y

dx2
+ αN y = 0 . (19.3)
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Observe that polynomial equation (19.2) is also the characteristic equation for theN th-order
constant coefficient equation

A0
d N Y

dt N
+ A1

d N−1Y

dt N−1
+ · · · + AN−1

dY

dt
+ AN Y = 0 . (19.4)

(We’ve changed notation a little to avoid confusion.)
This means that, ifr is a solution to polynomial equation (19.2), then

xr and er t

are solutions, respectively, to above Euler equation and the above constant coefficient equation.
This suggests that these two differential equations are related to each other, possibly through a
substitution of the form

xr = er t .

Taking ther th root of both sides, this simplifies to

x = et or, equivalently, ln|x | = t .

Exploring this possibility further eventually leads to thefollowing lemma about the solutions to
the above differential equations:

Lemma 19.1
Let y(x) andY (t) be two functions, withy defined on(0,∞) , andY (t) defined on(−∞,∞) .
Assume they are related by the substitutionx = et (equivalently,ln |x | = t ); that is,

y(x) = Y (t) where x = et and t = ln |x | .

Then y is a solution to Euler equation (19.3) if and only ifY is a solution to constant coefficient
equation (19.3).

The proof of this lemma involves repeated chain rule computations such as

dy

dx
= d

dx
Y (t) = dt

dx

d

dt
Y (t) = d ln |x |

dx

d

dt
Y (t) = 1

x

dY

dt
= e−t dY

dt
. (19.5)

We’ll leave the details to the adventurous (see exercises 19.5, 19.6 and 19.7).
There are two noteworthy consequences of this lemma:

1. It gives us another way to solve Euler equations. To be specific: we can use the substitution
in the lemma to convert the Euler equation into a constant coefficient equation (witht as
the variable); solve that coefficient equation for its general solution (in terms of functions
of t ), and then use the substitution backwards to get the generalsolution to the Euler
equation (in terms of functions ofx ).5

2. We can now confirm the claim made (and used) in the previous section about solutions to
the Euler equation corresponding to a rootr of multiplicity m to the indicial equation.
After all if r is a solution of multiplicitym to equation (19.2), then we know that

{

er t , ter t , t2er t , . . . , tm−1er t
}

5 It may be argued that this method, requiring the repeated useof the chair rule, is more tedious and error-prone than
the one developed earlier, which only requires algebra and differentiation of xr . That would be a good argument.
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is a set of solutions to constant coefficient equation (19.4). The lemma then assures us
that this set, witht = ln |x | , is the corresponding set of solutions to Euler equation
(19.3). But, using this substitution,

tker t =
(

et
)r

tk = xr (ln |x |)k .

So the set of solutions obtained to the Euler equation is
{

xr , xr ln |x | , xr (ln |x |)2 , . . . , xr (ln |x |)m−1
}

,

just as claimed in the previous section.

Additional Exercises

19.1. Find the general solution to each of the following Euler equations on (0,∞) :

a. x2y′′ − 5xy′ + 8y = 0 b. x2y′′ − 2y = 0

c. x2y′′ − 2xy′ = 0 d. 2x2y′′ − xy′ + y = 0

e. x2y′′ − 5xy′ + 9y = 0 f. x2y′′ + 5xy′ + 4y = 0

g. 4x2y′′ + y = 0 h. x2y′′ − xy′ + 10y = 0

i. x2y′′ + 5xy′ + 29y = 0 j. x2y′′ + xy′ + y = 0

19.2. Solve the following initial-value problems:

a. x2y′′ − 6xy′ + 10y = 0 with y(1) = −1 and y′(1) = 7

b. 4x2y′′ + 4xy′ − y = 0 with y(4) = 0 and y′(4) = 2

c. x2y′′ − 11xy′ + 36y = 0 with y(1) = 1/2 and y′(1) = 2

d. x2y′′ − 3xy′ + 13y = 0 with y(1) = 9 and y′(1) = 3

19.3. Suppose that the indicial equation for a second-order Eulerequation only has one so-
lution r . Using reduction of order (or any other approach you think appropriate) show
that both

y1(x) = xr and y2(x) = xr ln |x |

are solutions to the differential equation on(0,∞) .

19.4. Find the general solution to each of the following third- andfourth-order Euler equations
on (0,∞) :

a. x3y′′′ + 2x2y′′ − 4xy′ + 4y = 0

b. x3y′′′ + 2x2y′′ + xy′ − y = 0

c. x3y′′′ − 5x2y′′ + 14xy′ − 18y = 0
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d. x4y(4) + 6x3y′′′ − 3x2y′′ − 9xy′ + 9y = 0

e. x4y(4) + 2x3y′′′ + x2y′′ − xy′ + y = 0

19.5. Confirm that the claim of lemma 19.1 holds whenN = 2 by considering the general
second-order Euler equation

αx2 d2y

dx2
+ βx

dy

dx
+ γ y = 0

and doing the following:

a. Find the corresponding indicial equation.

b. Convert the above Euler equation to a second-order, constant coefficient differential
equation using the substitutionx = et . Remember, this is equivalent tot = ln |x | .
(You may want to glance back at the chain rule computations inline (19.5).)

c. Confirm (by inspection!) that the characteristic equation for the constant coefficient
equation just obtained is identical to the indicial equation for the above Euler equation.

19.6. Confirm that the claim of lemma 19.1 holds whenN = 3 by considering the general
third-order Euler equation

α0x3 d3y

dx3
+ α1x2 d2y

dx2
+ α2x

dy

dx
+ α3y = 0

and doing the following:

a. Find the corresponding indicial equation.

b. Convert the above Euler equation to a second-order, constant coefficient differential
equation using the substitutionx = et .

c. Confirm that the characteristic equation for the constant coefficient equation just ob-
tained is identical to the indicial equation for the above Euler equation.

19.7. Confirm that the claim of lemma 19.1 holds whenN is any positive integer.


