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The Art and Science of Modeling with
First-Order Equations

For some, “modeling” is the building of small plastic replicas of famous ships; for others,
“modeling” means standing in front of cameras wearing sillyclothing; for us, “modeling” is
the process of developing sets of equations and formulas describing some process of interest.
This process may be the falling of a frozen duck, the changes in a population over time, the
consumption of fuel by a car traveling various distances, the accumulation of wealth by one
individual or company, the cooling of a cup of coffee, the electronic transmission of sound and
images from a television station to a home television, or anyof a huge number of other processes
affecting us. A major goal of modeling, of course, is to predict “how things will turn out” at
some point of interest, be it a point of time in the future or a position along the road. Along
with this, naturally, is often a desire to use the model to determine changes we can make to the
process to force things to turn out as we desire.

Of course, some things are more easily modeled mathematically than others. For example,
it will certainly be easier to mathematically describe the number of rabbits in a field than to
mathematically describe the various emotions of these rabbits. Part of the art of modeling is the
determination of which quantities the model will deal with (e.g., “number of rabbits” instead of
“emotional states”).

Another part of modeling is the balancing between developing as complete a model as
possible by taking into account all possible influences on the process as opposed to developing a
simple and easy to use model by the use of simplifying assumptions and simple approximations.
Attempting to accurately describe all possible influences usually leads to such a complicated set of
equations and formulas that the model (i.e., the set of equations and formulas we’ve developed) is
unusable. A model that is too simple, on the other hand, may lead to wildly inaccurate predictions,
and, thus, would also not be a useful model.

Here, we will examine various aspects of modeling using first-order differential equations.
This will be done mainly by looking at a few illustrative examples, though, in a few sections,
we will also discuss how to go about developing and using models with first-order differential
equations more generally.
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212 The Art and Science of Modeling with First-Order Equations

10.1 Preliminaries

Suppose we have a situation in which some measurable quantity of interest (e.g.: velocity of
a falling duck, number of rabbits in a field, gallons of fuel ina vehicle, amount of money in a
bank, temperature of a cup of coffee) varies as some basic parameter (such as time or position)
changes. For convenience, let’s assume the parameter is time and denote that parameter byt ,
as is traditional. Recall that, if

Q(t) = theamountof that measurable quantity at timet ,

then
d Q

dt
= therateat which Q varies ast varies .

If we can identify what controls this rate, and can come up with a formula F(t, Q) describing
how this rate depends ont and theQ , then

d Q

dt
= F(t, Q) .

gives us a first-order differential equation forQ which, with a little luck, can be solved to obtain
a general formula forQ in terms of t . At the very least, we will be able to construct this
equation’s slope field and sketch graphs ofQ(t) .

Our development of the “improved falling object model” in chapter 1.2 is a good example
of this sort of modeling. Go back to page 12 and take a quick look at it. There, the ‘measurable
quantity’ is the velocityv (in meters/second); the rate at which it varies with time,dv/dt , is the
acceleration, and we were able to determine a formulaF for this acceleration by determining
and adding together the accelerations due to gravity and airresistance,

F(t, v) = total acceleration

= acceleration due to gravity+ acceleration due to air resistance

= (−9.8) + (−κv)

where κ is some positive constant that would have to be determined byexperiment. This gave
us the first-order differential equation

dv

dt
= F(t, v) = −9.8 − κv ,

which we were later able to solve and analyze.
In what follows, we will develop models for several other situations. We will also, in section

10.5, give further advice on developing your own models withfirst-order differential equations.
Be sure to observe how we develop these models and to read the notes in section 10.5. You will
be developing more models in the exercises and, maybe later,in ‘real life’.
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10.2 A Rabbit Ranch
The Situation to be Modeled

Pretend we’ve been given a breeding pair of rabbits along with acres and acres of prime rabbit
range with no predators. Let us further assume this rabbit range is fenced in so that no rabbits
can escape or come in, and so that no predators can come in. We release the rabbits, planning to
return in a few years (say, five) to harvest rabbits for the Easter trade.

An obvious question isHow many rabbits will we have on our rabbit ranch in five years?

Setting Up the Model

Experienced modelers typically begin by drawing a simple, enlightening picture of the process
(if appropriate) and identifying the relevant variables (as we did for the “falling object model”
— see page 9). Since the author could not think of a particularly appropriate and enlightening
picture, we will skip the picture and go straight to identifying the obvious variables of interest.
They are ‘time’ and ‘the number of rabbits’, which we will naturally denote using the symbols
t and R , respectively. The timet can be measured in seconds, days, months, years, centuries,
etc. We will use months, witht = 0 being the time the rabbits were released. So,

t = number of months since the rabbits were released

and

R = R(t) = number of rabbits at timet .

Since we started with a pair of rabbits, the initial condition is

R(0) = 2 . (10.1)

Now, sincet is being measured in months,

d R

dt
= rate R varies ast varies

= change in the number of rabbits per month .

Because the fence prevents rabbits escaping or coming in, the change in the number of rabbits is
due entirely to the number of births and deaths in our rabbit population. Thus,

d R

dt
= change in the number of rabbits per month

= number of births per month− number of deaths per month .
(10.2)

Now we need to model the “number of births per month” and the “number of deaths per
month”. Starting with the birth process, and assuming that half the population are females, we
note that

number of births per month

= number of births per female rabbit per month

× number of female rabbits that month

= number of births per female rabbit per month×
1

2
R .
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(We are also assuming that all the females are capable of having babies, no matter what their
age. Well, these are rabbits; they marry young.)

It seems reasonable to assume the average number of births per female rabbit per month is
a constant. For future convenience, let

β =
1

2
× number of births per female rabbit per month .

This is the “monthly birthrate per rabbit” and allows us to write

number of births per month= β R . (10.3)

Checking a reliable reference on rabbits (any decent encyclopedia will do), it can be found that,
on the average, each female rabbit has 6 litters per year with5 bouncy baby bunnies in each litter.
Hence, since there are 12 months in a year,

β =
1

2
× number of births per female rabbit per month

=
1

2
×

1

12
× number of births per female rabbit per year

=
1

2
×

1

12
× 6 × 5 .

That is,

β =
5

4
. (10.4)

What about the death rate? Since there are no predators and plenty of food, it seems
reasonable to assume old age is the main cause of death. Againchecking a reliable reference
on rabbits, it can be found that the average life span for a rabbit is 10 years. Clearly, then, the
number of deaths per month will be negligible compared to thenumber of births. So we will
assume

number of deaths per month= 0 . (10.5)

Combining equations (10.2), (10.3) and (10.5), we obtain

d R

dt
= number of births per month− number of deaths per month

= β R − 0 .

That is,
d R

dt
= β R (10.6)

whereβ is the average monthly birthrate per rabbit.1

Of course, equation (10.6) does not just apply to the situation being considered here. The
same equation would have been obtained for the changing population of any creature having
zero death rate and a constant birthrateβ per unit time per creature. But the problem at hand
involves rabbits, and for rabbits, we derivedβ = 5/4 . This, the above differential equation, and
the fact that we started with two rabbits means thatR(t) must satisfy

d R

dt
=

5

4
R with R(0) = 2 .

This is our “model”.
1 In developing this equation, we equated an “instantaneous rate of change”,d R/dt , to a “change in the number of
rabbits per month”, and then found a formula for that “monthly change” based on the value ofR “at time t ” instead
of over the entire month. If this bothers you, see appendix 10.8 on page 231.
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Using Our Model

Our differential equation is

d R

dt
= β R with β =

5

4
.

This is a simple separable and linear differential equation. You can easily show that its general
solution is

R(t) = Aeβt .

Applying the initial condition,
2 = Aeβ·0

= A .

So the number of rabbits aftert months is given by

R(t) = 2eβt with β =
5

4
. (10.7)

Five years is 60 months. Using a calculator, we find that the number of rabbits after 5 years is

R(60) = 2e
5
4 ·60

= 2e75
≈ 7.47× 1032 .

That is a lot of rabbits. At about 3 kilograms each, the mass ofall the rabbits on the ranch will
then be approximately

2.2 × 1033 kilograms .

By comparison:
the mass of the Earth≈ 6 × 1024 kilograms

and

the mass of the Sun≈ 2 × 1030 kilograms .

So our model predicts that, in five years, the total mass of ourrabbits will be over a thousand
times that of our nearest star.

This does not seem like a very realistic prediction. Later inthis chapter, we will derive a
more complete (but less simple) model.

But first, let us briefly discuss a few other modeling situations involving differential equations
similar to the one derived here (equation (10.6)).

10.3 Exponential Growth and Decay

Whenever the rate of change of some quantityQ(t) is directly proportional to that quantity, we
automatically have

d Q

dt
= βQ

with β being the constant of proportionality. Since this simple relationship is inherent in many
processes of interest, it, along with with its general solution

Q(t) = Aeβt ,
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arises in a large number of important applications, most of which do not involve rabbits. If
β > 0 , then Q(t) increases rapidly ast increases, and we typically say we haveexponential
growth. If β < 0 , thenQ(t) shrinks to 0 fairly rapidly ast increases, and we typically say we
haveexponential decay. And if β = 0 , thenQ(t) remains constant — we just have equilibrium
solutions.

Simple Population Models

Suppose we are interested in how the population of some set ofcreatures or plants varies with
time. These may be rabbits on a ranch (as in our previous example) or yeast fermenting a vat
of grape juice or the people in some city or the algae growing in a pond. They may even be the
people in some country that are infected with and are helpingspread some contagious disease.
Whatever the individuals of this population happen to be, wecan letP(t) denote the total number
of these individuals at timet , and ask howP(t) varies with time (as we did in our “rabbit ranch”
example). If we further assume (as we did in our previous “rabbit ranch” example) that

1. the change inP(t) over a unit of time depends only on the number of “births” and
“deaths” in the population;2

2. the “average birth rate per individual per unit of time”β0 is constant,

and

3. the “average death rate per individual per unit of time”δ0 is constant (i.e., a constant
fraction δ0 of the population dies off during each unit of time);

then
d P

dt
= change in the number of individuals per unit time

= number of births per unit time− number of deaths per unit time

= β0P(t) − δ0P(t) .

Letting β be the “net birthrate per individual per unit time”,

β = β0 − δ0 ,

this reduces to
d P

dt
= β P(t) , (10.8)

the solution of which, as we already know, is

P(t) = P0eβt
= P0e(β0−δ0)t where P0 = P(0) .

If β0 > δ0 , then the model predicts that the population will grow exponentially. If β0 < δ0 ,
then the model predicts that the population will decline exponentially. And if β0 = δ0 , then the
model predicts that the population remains static.

This is a simple model whose accuracy depends on the validityof the three basic assumptions
made above. In many cases, these assumptions are often reasonably acceptable during the early

2 Precisely what “birth” or “death” means may depend on the creatures/plants in the population. For a microbe,
“birth” may be when a parent cell divides into two copies of itself. If the population is the set of people infected
with a particular disease, then “birth” occurs when a personcontracts the disease.
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stages of the process, and, initially, we do see exponentialgrowth of populations, say, of yeast
added to grape juice or of a new species of plants or animals introduced to a region where it
can thrive. As illustrated in our “rabbit ranch” example, however, this is too simple a model to
describe the long-term growth of most biological populations.

Natural Radioactive Decay

The effect of radioactive decay on the amount of some radioactive isotope can be described by
a model completely analogous to the general population model just discussed. Assume we start
with some amount (say, a kilogram) of some radioactive isotope of interest (say, uranium–235).
During any given length of time, there is a certain probability that any given atom of that material
will spontaneously decay into a smaller atom along with associated radiation and other atomic
and subatomic particles. Thus, the amount we have of that particular radioactive isotope will
decrease as more and more of the atoms decay (provided there is not some other material that
decays into the isotope of interest.)

Let’s assume we have some radioactive isotope of interest, and that there is no other radioac-
tive material decaying into that isotope. For convenience,let A(t) denote the amount of that
radioactive material at timet , and letδ be the fraction of the material that decays per unit time.
In essence, the decay of an atom is the death of that atom, and this δ is essentially the same as
the δ0 in the above population growth discussion. Virtually the same analysis done to obtain
equation (10.8) (but usingP instead of A , and noting thatβ0 = 0 since no new atoms of the
isotope are being “born”) then yields

d A

dt
= −δA(t) .

Solving this differential equation then gives us

A(t) = A0e−δt with A0 = A(0) . (10.9)

Because radioactive decay is a probabilistic event, and because there are typically huge
numbers of atoms in any sample of radioactive material, the laws of probability and statistics
ensure that this is usually a very accurate model over long periods of time (unlike the case with
biological populations).

The positive constantδ , called thedecay rate, is different for each different isotope. It is
large if the isotope is very unstable and a large fraction of the atoms decay in a given time period,
and it is small if the isotope is fairly stable and only a smallfraction of the atoms decay in the same
time period. In practice, the decay rateδ is usually described indirectly through thehalf-life
τ1/2 of the isotope, which is the time it takes for half of the original amount to decay. Using the
above formula forA(t) , you can easily verify thatτ1/2 and δ are related by the equation

δ × τ1/2 = ln 2 . (10.10)

?◮Exercise 10.1: Derive equation (10.10). Use formula (10.9) forA(t) and the fact that, by
the definition ofτ1/2 ,

A(τ1/2) =
1

2
A(0) .
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!◮Example 10.1: Cobalt-60 is a radioactive isotope of cobalt with a half-life of approximately
5.27 years.3 Using equation (10.10), we find that its (approximate) decayconstant is given by

δ =
ln 2

τ1/2
=

ln 2

5.27 (years)
≈ 0.1315 (per year) .

Combining this with formula (10.9) gives us

A(t) ≈ A0e−0.1315t with A0 = A(0) .

as the formula for the amount of undecayed cobalt remaining after t years.
Suppose we initially have 10 grams of cobalt-60. At the end ofone year, those10 grams

would have decayed to approximately

(10 gm.) × e−0.1315×1
≈ 8.77 grams of cobalt-60 .

At the end of two years, those 10 grams would have decayed to approximately

(10 gm.) × e−0.1315×2
≈ 7.69 grams of cobalt-60 .

And at the end of ten years, those 10 grams would have decayed to approximately

(10 gm.) × e−0.1315×10
≈ 2.68 grams of cobalt-60 .

10.4 The Rabbit Ranch, Again

Back to wrangling rabbits.

The Situation (and Problem)

Recall that we imagined ourselves having a fenced-in ranch enclosing many acres of prime rabbit
range. We start with a breeding pair of rabbits, and plan to return in five years. The question is
How many rabbits will we have then?

In section 10.2, we attempted to answer this question using afairly simple model we had just
developed. However, the predicted number of rabbits after five years (which had a corresponding
mass a thousand times greater than that of the Sun) was clearly absurd. That model did not account
for the problems arising when a population of rabbits grows too large. Let us now see if we can
derive a more realistic model.

3 Cobalt-60 has numerous medical applications, as well as having the potential as an ingredient in some particularly
nasty nuclear weapons. It is produced by exposing cobalt-59to “slow” neutrons, and decays to a stable nickel
isotope after giving off one electron and two gamma rays.
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A Better Model

Again, we let
R(t) = number of rabbits aftert months

with R(0) = 2 . We still have

d R

dt
= change in the number of rabbits per month

= number of births per month− number of deaths per month .
(10.11)

However, the assumptions that

number of deaths per month= 0 ,

and
number of births per month= β R

where
β = monthly birthrate per rabbit=

5

4
.

are too simplistic. As the population increases, the amountof range land (and, hence, food) per
rabbit decreases. Eventually, the population may become too large for the available fields to
support all the rabbits. Some will starve to death, and thosefemale rabbits that survive will be
malnourished and will give birth to fewer bunnies. In addition, overcrowding is conducive to the
spread of diseases which, in a population already weakened by hunger, can be devastating.

Clearly, we at least need to correct our formula for the number of deaths per month, because,
once overcrowding begins, we can expect a certain fraction of the population to die each month.
Letting δ denote that fraction,

number of deaths per month= fraction of the population that dies each month

× number of rabbits

= δR .

Keep in mind that this fractionδ , which we can call the monthly death rate per rabbit, will not
be constant. It will depend on just how overcrowded the rabbits are. In other words,δ will vary
with R , and, thus, should be treated as a function ofR , δ = δ(R) . Just howδ varies with R
is yet unknown, but it should be clear that

if R is small, then overcrowding is not a problem andδ(R) should be close to zero,

and

as R increases, then overcrowding increases and more rabbits start dying. So,δ(R)

should increase asR increases.

The simplest function ofR for δ satisfying the two above conditions is

δ = δ(R) = γD R

whereγD is some positive constant. This gives us

number of deaths per month= δR =
[

γD R
]

R = γD R2 .



220 The Art and Science of Modeling with First-Order Equations

What sort of “correction” should we now consider for

number of births per month= β R ?

Well, as with the monthly death rateδ , above, we should expect the monthly birth rate per rabbit,
β , to be a function of the number of rabbits,β = β(R) . Moreover:

If R is small, then overcrowding is not a problem andβ(R) should be close to its
ideal valueβ0 =

5/4 ,

and

as R increases, then more rabbits become malnourished, and females have fewer
babies each month. So,β(R) should decrease from its ideal value asR increases.

A simple formula describing this is obtained by subtractingfrom the ideal birth rate a simple
correction term proportional to the number of rabbits,

β = β(R) = β0 − γB R

whereβ0 = 5/4 is the ideal monthly birthrate per rabbit andγB is some positive constant.4 This
then gives us

number of births per month= β R =
[

β0 − γB R
]

R = β0R − γB R2 .

As with our simpler model, the one we are developing can be applied to populations of other
organisms by using the appropriate value for the ideal birthrate per organism,β0 . For rabbits,
we haveβ0 =

5/4 .
Combining the above formulas for the monthly number of births and deaths with the generic

differential equation (10.11) yields

d R

dt
= number of births per month− number of deaths per month

= β R − δR

= β0R − γB R2
− γD R2 ,

which, letting γ = γB − γD , simplifies to

d R

dt
= β0R − γ R2 (10.12)

where β0 = 5/4 is the ideal monthly birthrate per rabbit andγ is some positive constant.
Presumably,γ could be determined by observation (if this new model does accurately describe
the situation).

4 Yes, the birthrate becomes negative ifR becomes large enough, and negative birthrates are not realistic. But we
still trying for as simple a model as feasible — with luckR will not get large enough that the birthrate becomes
negative.
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Using the Better Model

Equation (10.12) is called thelogistic equationand was an important development in the study
of population dynamics. It is a relatively simple separableequation that can be solved without
too much difficulty. But let’s not, at least, not yet. Instead, let us first rewrite this equation by
factoring outγ R ,

d R

dt
= γ R

(

β0

γ
− R

)

.

From this it is obvious that our differential equation has two constant solutions,

R = 0 and R =
β0

γ
.

The first tells us that, if we start with no rabbits, then we getno rabbits in the future (no surprise
there). The second is more interesting. For convenience, let κ = β0/γ . Our differential equation
can then be written as

d R

dt
= γ R(κ − R) with γ =

β0

κ
, (10.13)

and the two constant solutions are

R = 0 and R = κ .

(We probably should note thatκ , as a ratio of positive constants, is a positive constant.)
While we are at it, let’s further observe that, if 0< R < κ , then

d R

dt
= γ R

︸︷︷︸

>0

(κ − R
︸ ︷︷ ︸

>0

) > 0 .

In other words, if 0< R < κ , then the population is increasing.
On the other hand, ifκ < R , then

d R

dt
= γ R

︸︷︷︸

>0

(κ − R
︸ ︷︷ ︸

<0

) < 0 .

That is, the population will be decreasing ifκ < R .
We can graphically represent these observations using the crude slope field sketched in figure

10.1a. This figure suggests that, over time, the number of rabbits will stabilize aroundκ . If there
are initially fewer thanκ rabbits (but at least some), then the rabbit population willincrease
towards a total ofκ rabbits. If there are initially more thanκ rabbits, then the population
will decrease towards a total ofκ rabbits. This prediction is reflected in the more carefully
constructed slope field in figure 10.1b. Becauseκ is the maximum number of rabbits that can
exist in the long term given the resources available,κ is often called thecarrying capacityof
the ‘system’ consisting of the rabbits and their environment. (Of course, if the carrying capacity
is too low, say,κ ≈ 0.5 then, realistically, all the rabbits will die.)

Finding the precise formula forR(t) will be left to you (exercise 10.7). What you will
show is that, in terms of the carrying capacityκ , ideal birthrateβ0 , and the initial population
R0 = R(0) ,

R(t) =
κ R0

R0 + (κ − R0)e−β0t
. (10.14)
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Figure 10.1: Slope Fields for Logistic Equation (10.13):(a) A minimal field for a generic
logistic equation and(b) a slope field for the logistic equation withκ = 100
and β0 = 1/10. The graphs of a few solutions have been roughly sketched on
each.

This formula reflects the fact that there are three basic parameters in our model: the ideal monthly
birth rateβ0 , the initial number of rabbitsR(0) , and the carrying capacity of the systemκ . The
first two we know or can figure out from basic biology. The last,κ , will have to be determined
“from experiment”. For example, we might return a year afterreleasing the original pair (at
t = 12 ), count the number of rabbits on the ranch,R(12) , and then use this value along with
the known values forR0 and β0 in formula (10.14) to create an equation forκ . Solving that
equation will then give usκ . This, of course, assumes that the model is fairly accurate —an
assumption that would require further experiment to verifyor disprove. But, at least the model’s
prediction regarding the population growth seems a good deal more reasonable than that made
by the simpler model in section 10.2.

10.5 Notes on the Art and Science of Modeling

Our current interest is in modeling situations in which the rate at which some quantity varies
is fairly well understood. In these sorts of problems, it is often “relatively easy” to develop a
first-order differential equation to serve as the basis for amathematical model for the situation.
We’ve seen several examples already, and will see more in thenext few sections. But now, let us
pause to discuss some of the steps and issues in developing and using such models.

First Steps in the Modeling Process

Naturally, one of your very first steps in modeling somethingshould be to learn whatever you
believe is needed for developing the model. Then identify and label the significant basic variables
and decide on the units associated with these variables. In our rabbit ranch problems, those
variables wereR and t (with associated unitsrabbitsandmonths, respectively); in the following,
we’ll use Q for the generic quantity of interest and assume it varies over time t .
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Next, write out everything you know using these variables. This includes any initial values
you may have for any of the variables. In our rabbit ranch problem, we did not know much at first,
only the initial value forR , R(0) = 2 . If you can draw an illuminating picture representing the
situation, do so and label it for easy reference.

Then turn your attention to deriving a differential equation that accurately models therateat
which Q varies with t , d Q/dt . Donotattempt to directly derive a formula forQ(t) , at least, not
with the sort of problems being considered here. We are now dealing with problems for which
it is much easier to first find a formulaF(t, Q) for d Q/dt , and then findQ(t) by solving the
resulting differential equation.

Developing the Differential Equation for the Model

Coming up with a usable differential equation

d Q

dt
= F(t, Q)

that accurately models howQ’s rate of change depends ont and Q is the most important, and,
for many, the hardest part of the of the modeling process. After all, as you now know, anyone
can solve a first-order differential equation (or, at least,construct a slope field for one). Coming
up with the right differential equation can be much more challenging.

Here are a few things you can do to make it less challenging:

Identify and Describe the Processes Driving the Model

Keep in mind thatd Q/dt is therate at which Q(t) changes ast changes. This rate depends on
the processes driving the situation, not on the particular value of Q at some particular time. In
particular, the value ofQ(0) is irrelevant in setting up the differential equation.

Once you’ve determined your variables and drawn your illuminating pictures, write out5

d Q

dt
= the change inQ per unit time

and then identify the different processes that cause thatQ to change. In our examples with
rabbits, these processes were “birth” and “death”, and we initially observed that

d R

dt
= change in the number of rabbits per month

= number of births per month− number of deaths per month .

Then we worked out how many births and deaths should be expected each month given that we
had R rabbits that month.

In general, you want to identify the different processes that causeQ(t) to increase (e.g.,
births and immigration into the region) and to decrease (e.g., deaths and emigration out of the
region). Each of these processes corresponds to a differentterm in F(t, Q) (remember toadd
those terms corresponding to processes that increaseQ , andsubtractthose terms corresponding
to processes that decreaseQ ). For example, ifQ(t) is the number of, say, people in a certain
region at timet , we may have

d Q

dt
= F(t, Q)

5 As noted in an earlier footnote, we are equating an “instantaneous rate of change”,d Q/dt , to a “change inQ per
unit time”, which, in turn, will be based on the values ofQ and t at a specific timet instead of over the unit
interval of time. For a more detailed analysis justifying this, see appendix 10.8 on page 231.
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where

F(t, Q) = Fbirth + Fimmig − Fdeath − Femig

with
Fbirth = number of births per unit time ,

Fimmig = number of number of people immigrating into the region per unit time ,

Fdeath = number of deaths per unit time ,

and

Femig = number of number of people emigrating out of the region per unit time .

Once you’ve identified the different terms making upF(t, Q) (e.g., the aboveFbirth , Fimmig ,
etc.); take each term, consider the process it is supposed todescribe, and try to come up with a
reasonable formula describing the change inQ during a unit time interval due to that process
alone. Often, that formula will involve justQ , itself. For example, in our first “rabbit ranch”
example (withR = Q ),

Fbirth = number of births per month

= number of births per female rabbit per month

× number of female rabbits that month

= · · ·

= β R with β =
5

4
.

Often, you will make ‘simplifications’ and ‘assumptions’ tokeep the model from becoming too
complicated. In the above formula forFbirth , for example, we did not attempt to account for
seasonal variations in birth rate, and we assumed that half the rabbit population were breeding
females. We also assumed a constant monthly birthrate and death rate per rabbit, no matter how
many rabbits we had.

Balance the Units

As already noted, one of the first steps in modeling a situation is to decide on the main variables and
to choose the units for measuring these variables. The subsequent computations and derivations
are all in terms of these units, and we can often avoid embarrassing mistakes by just keeping
track of our units and being sure that their use is consistent. In particular, the units implicit in any
equation must remain balanced; that is, each term in any equation must have the same associated
units as every other term in that equation.

For example, the basic quantities in our rabbit ranch modelsare R and t . Even though we
treated these as numbers, we knew that

R = number ofrabbits and t = time inmonths .

So the units associated withR and t are, respectively,rabbitsandmonths. Consequently, the
units associated with

d R

dt
= lim

1t→0

R(t + 1t) − R(t)

1t
= lim

1t→0

change in the number ofrabbits

change in time as measured inmonths
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are rabbits/month (i.e., rabbits per month), and every term in any formula ford R/dt must also have
rabbits/month as the associated units. If someone suggested a term that wasnot “rabbits per month”,
then that term would be wrong and should be immediately rejected. Thus, for example,

d R

dt
= Rt

is clearly wrong because the right side is describingrabbits×months, not rabbits/month.
The constants used in our derivations also have associated units. The monthly birth rate per

rabbit,
β = number of rabbits born per month per rabbit on the ranch

=

(

number ofrabbitsborn

month

)

perrabbit on the ranch

=
number ofrabbitsborn

month× rabbit
,

has associated units1/month (since the units ofrabbitscancel out), and if we had wanted to be a
bit more explicit, we would have written equation (10.4) on page 214 as

β =
5

4

(

1

month

)

instead of just

β =
5

4
.

Often, you will not see the units being explicitly noted throughout the development and use
of a model. There are several possible reasons for this:

1. If the formulas and equations are correctly developed, thenthe units in theses formulas
and equations naturally remain balanced. The modeler knowsthis and trusts his or her
skill in modeling.

2. The writer assumes the readers can keep track of the units themselves.

3. The writer is lazy or needs to save space.

There is much to be said in favor of explicitly giving the units associated with every element of
every formula and equation. It helps prevent stupid mistakes and may help clarify the meaning
of some of formulas for the reader (and for the model builder). We will do this, somewhat, in the
next major example. Beginning modelers are strongly encouraged to keep track of the units in
every step as they develop their own equations. At the very least, stop every so often and check
that the units in the equations balance. If not, you did something wrong — go back, find your
error, and correct it.

Oh yes, one more thing about “units”: Be sure that anyone who is going to read your work
or use any model you’ve developed knows the units you are using.6

6 In 1999, the Mars Climate Orbiter crashed into Mars instead of orbiting the planet because the Orbiter’s software
gave instructions in terms of the imperial system (which measures force in pounds) while the hardware assumed
the metric system (which measures force in newtons – with 1 pound≈ 4.45 newtons). This failure to communicate
the units being used caused an embarrassing end to a space project costing over 300 million dollars.



226 The Art and Science of Modeling with First-Order Equations

Testing and Using the Model

Once you’ve developed a differential equation modeling theway a quantity of interestQ(t)
varies, you will normally want to solve that differential equation or otherwise analyze it to see
what it says aboutQ(t) for various choices oft . If the situation being modeled is fairly simple
and straightforward, and your modeling skills are adequate, then your model can probably be
trusted to give fairly accurate predictions.

In practice, it is usually wise to check and see if predictions based on this model are reasonable
before announcing your new model to the world. After all, it is quite possible that some of your
‘simplifications’ and ‘assumptions’ overly simplified yourmodel and caused important issues
to be ignored. That certainly happened with our first rabbit ranch model in which assuming
constant the birth and death rates resulted in a model predicting far more rabbits in five years
than possible.

If your predictions are not reasonable, go back, revisit your derivations, and see where a
more careful modeling of the individual processes leads. Innecessary, learn more about the
processes themselves.7 This should lead to a refined model forQ(t) that, in turn, leads to more
reasonable projections as to the behavior ofQ(t) . The differential equation will probably be
more complicated, but that is the price you pay for a better, more accurate model.

Of course, you should not automatically assume that ‘apparently reasonable’ predictions are
accurate. If possible, compare results predicted by the model to “real world” data. You may need
to do this anyway to determine the values of some of the constants in your model. Hopefully, the
results predicted and the real world data will agree well enough that you can feel confident that
your model is sufficiently accurate for the desired applications. If not, refine your model further.

By the way, in using your model, keep in mind the simplifications and assumptions made in
deriving it so that you have some idea as to the limitations ofthis model.

10.6 Mixing Problems

In a “mixing problem”, some substance is continually being added to some container in which
the substance is mixed with some other material, and with theresulting mixture being constantly
drained off at some rate. This container may be a large tank, alake, or the system of veins and
arteries in a body; and the substance being added may be some chemical, pollutant, or medicine
being added to the liquid in the tank, the water in the lake, orthe blood in the body. These
problems are favorites of authors of differential equationtexts because they can be modeled
fairly easily using the basic observation that (usually)

the rate the amount of substance in the container changes

= the rate the substance is added− the rate the substance is drained off .

We will do one simple mixing problem, and then briefly mentionsome possible variations.

7 This author once read a paper describing a ‘new’ model for “laser interaction with a solid material”. Using this
model, you could then show that any solid can be chilled to absolute zero by suitably heating it with a laser — a rather
dubious result. That paper’s author should have better tested his model and learned more about thermodynamics.
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Tank with 500 gallons of mix

90% alcohol-water mix flows in at 2 gallons/minute

Tank mixture
flows out at 2
gallons/minute

Figure 10.2: Figure illustrating a simple mixing problem.

A Simple Mixing Problem
The Situation to Be Modeled

We start out with a large tank containing 500 gallons of pure water. Each minute thereafter, two
gallons of a alcohol-water mix is added, and two gallons of the mixture in the tank is drained.
The alcohol-water mix being added is 90 percent alcohol. Throughout this entire process, we
assume the mixture in the tank is thoroughly and uniformly mixed. The problem is to develop
a formula describing the amount of alcohol in the tank at any given time. In particular, let’s
determine if and when the mixture in the tank is 50 percent alcohol.

Setting Up the Model

In this case, a simple, illustrative picture for the processis easily drawn. It is in figure 10.2. We
will let

t = number of minutes since we started adding the alcohol-watermix

and

y = y(t) = gallons of pure alcohol in the tank at timet .

Since we started with a tank containing pure water (no alcohol), the initial condition is

y(0) = 0 .

Our derivation of the differential equation modeling the change in y starts with the obser-
vation that

dy

dt
= change in the amount of alcohol in the tank per minute minute

= rate alcohol is added to the tank− rate alcohol is drained from the tank .

Since we are adding 2 gallons per minute of a 90 percent alcohol mix,

rate alcohol is added to the tank= 2

(

gallons of input mix

minute

)

×
90

100

(

gallons of alcohol

gallons of input mix

)

=
9

5

(

gallons of alcohol

minute

)

.
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In determining how much is being drained away, we must determine the concentration of alcohol
in the tank’s mixture at any given time, which is simply the total amount of alcohol in the tank
at that time (i.e.,y(t) gallons) divided by the total amount of the mixture in the tank (which,
because we drain off as much as we add, remains constant at 500gallons). So,

rate alcohol is drained from the tank= 2

(

gallons of tank mix

minute

)

× amount of alcohol per gallon of tank mix

= 2

(

gallons of tank mix

minute

)

×
y(t) (gallons of alcohol)

500(gallons of tank mix)

=
y(t)

250

(

gallons of alcohol

minute

)

.

Combining the above gives us

dy

dt
= rate alcohol is added to the tank− rate alcohol is drained from the tank

=
9

5
−

y(t)

250

(

gallons of alcohol

minute

)

.

Thus, the initial-value problem thaty = y(t) must satisfy is

dy

dt
=

9

5
−

y

250
with y(0) = 0 . (10.15)

Using the Model

Factoring out1/250 on the right side of our differential equation yields

dy

dt
=

1

250
(450 − y) .

From this we see that
y = 450

is the only constant solution. Moreover,

dy

dt
=

1

250
(450 − y) > 0 if y < 450 ,

and
dy

dt
=

1

250
(450 − y) < 0 if y > 450 .

So, we should expect the graphs of the possible solutions to this differential equation to be
something like the curves in figure 10.3. In other words, no matter what the initial condition is,
we should expecty(t) to approach 450 ast → ∞ .

Fortunately, the differential equation at hand is fairly simple. It (the differential equation
in initial-value problem (10.15)) is both separable and linear, and, using either the method we
developed for separable equations or the method we developed for linear equations, you can
easily show that

y(t) = 450 − Ae−t/250
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450

Y

Region where
dy

dt
> 0

Region where
dy

dt
< 0

0
0

T

Figure 10.3: Crude graphs of solutions to the simple mixing problem from figure 10.2 based
on the sign ofdy/dt .

is the general solution. Note that, ast → ∞ ,

y(t) = 450 − Ae−t/250
→ 450 − A · 0 = 450 ,

just as figure 10.3 suggests. Consequently, no matter how much alcohol is originally in the tank,
eventually there will be nearly 450 gallons of alcohol in thetank. Since the tank holds 500
gallons of mix, the concentration of the alcohol in the mix will eventually be nearly450/500 = 9/10

(i.e., 90 percent of the liquid in the tank will be alcohol).
For our particular problem,y(0) = 0 . So,

0 = y(0) = 450 − Ae−0/250
= 450 − A .

Hence, A = 450 and
y(t) = 450 − 450e−t/250 .

Finally, recall that we wanted to know when the mixture in thetank is 50 percent alcohol.
This will be the time when half the liquid in the tank (i.e., 250 gallons) is alcohol. Lettingτ
denote this time, we must have

250 = y(τ ) = 450 − 450e−τ/250

H⇒ 450e−τ/250
= 450 − 250

H⇒ e−τ/250
=

200

450
=

4

9

H⇒ −
τ

250
= ln

(

4

9

)

= − ln

(

9

4

)

.

So the mixture in the tank will be half alcohol at time

τ = 250 ln

(

9

4

)

≈ 202.7(minutes) .
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Other Mixing Problems

All sorts of variations of the problem just discussed can be visualized:

1. Instead of adding an alcohol-water mix, we may be adding a mixture of so many ounces
of some chemical (such as sugar or salt) dissolved in the water (or other solvent).

2. The flow rate into the tank may be different from the drainage flow rate. In this case,
the volume of the mixture in the tank will be changing, and that will affect how the
concentration in the tank is computed.

3. We may have the problem considered in our simple mixing problem, but with some of
the drained flow being diverted to a machine that magically converts a certain fraction of
the alcohol to water, and the flow from that machine being dumped back into the tank.
(Think of that machine as the tank’s ‘liver’.)

4. Instead of adding an alcohol-water mix, we may be adding a certain quantity of some
microorganism (yeast, e-coli bacteria, etc.) in a nutrientsolution. Then we would have
to consider a mixture/population dynamics model to also account for the growth of the
microorganism in the tank, as well as the in-flow and drainage.

5. And so on … .

10.7 Simple Thermodynamics

Bring a hot cup of coffee into a cool room,and, in time, the coffee cools down to room temperature.
Put a similar hot cup of coffee into a refrigerator, and you will discover that the coffee cools
down faster. Let’s try to describe this cooling process a little more precisely.

To be a little more general, let us simply assume we have some object (such as a hot cup of
coffee or a cold glass of water) that we place in a room in whichthe air is at temperatureTroom .
To keep matters simple, assumeTroom remains constant. LetT = T(t) be the temperature at
time t of the object we placed in the room. As timet goes on, we expectT to approachTroom .
Now consider

dT

dt
= rate at whichT approachesTroom as timet increases .

It should seem reasonable that this rate at any instant of time t depends just on the difference
between the temperature of the object and the temperature ofthe room,T − Troom ; that is

dT

dt
= F(T − Troom) . (10.16)

for some functionF . Moreover,

1. If T − Troom = 0 , then the object is the same temperature as the room. In thiscase, we
do not expect the object’s temperature to change. Hence, we should havedT/dt = 0 when
T = Troom .
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2. If T − Troom is a large positive value, then the object is much warmer thanthe room. We
then expect the object to be rapidly cooling; that is,T should be a rapidly decreasing
function of t . HencedT/dt should be large and negative.

3. If T − Troom is a large negative value, then the object is much cooler thanthe room. We
then expect the object to be rapidly warming; that is,T should be a rapidly increasing
function of t . HencedT/dt should be large and positive.

In terms of the functionF on the right side of equation (10.16), these three observations mean

T − Troom = 0 H⇒ F(T − Troom) = 0 ,

T − Troom is a large positive value H⇒ F(T − Troom) is a large negative value

and

T − Troom is a large negative value H⇒ F(T − Troom) is a large positive value .

The simplest choice ofF satisfying these three conditions is

F(T − Troom) = −κ(T − Troom)

whereκ is some positive constant. Plugging this into equation (10.16) yields

dT

dt
= −κ(T − Troom) . (10.17)

This equation is often known asNewton’s law of heating and cooling. The positive constant
κ describes how easily heat flows between the object and the air, and must be determined by
experiment.

Equation (10.17) states that the change in the temperature of the object is proportional to the
difference in the temperatures of the object and the room. It’s not exactly the same as equation
(10.8) on page 216 (unlessTroom = 0 ), but it is quite similar in spirit. We’ll leave its solution
and further discussion as exercises for the reader.

10.8 Appendix: Approximations That Are Not
Approximations

In our first rabbit ranch model, (after assuming a death rate of zero), our derivation of the model
can, essentially, be described by

d R

dt
= number of births per month= β R(t)

where
β = monthly birth rate per rabbit .

Those who are comfortable with calculations involving rates should be comfortable with this.
Others, however, may be concerned that we have two approximations here: The first is in
approximating the derivatived R/dt (an ’‘instantaneous rate of change at timet ”) by the monthly
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rate of change. The second is in describing this monthly rateof change in terms ofR(t) , the
number of rabbits at the instant of timet , even though the number of rabbits clearly changes
over a month.

Let us reassure those concerned readers by looking at this derivation a little more carefully:
We start by recalling the definition of the derivative ofR at time t :

d R

dt
= lim

1t→0

1R

1t

where

1R = R(t + 1t) − R(t) = changein R as time changes fromt to t + 1t .

Of course, the ‘R(t + 1t) − R(t) ’ formula for 1R is pretty useless since we don’t have the
formula for R . However, we can approximate1R via

1R = bunnies born as time changes fromt to t + 1t

≤ monthly birth rate per rabbit

× maximum number of rabbits at any one time betweent and t + 1t

× length of time (in months) betweent and t + 1t

= β Rmax1t

where

Rmax = maximum number of rabbits at any one time betweent and t + 1t .

Note that

lim
1t→0

Rmax = maximum number of rabbits at any one time betweent and t + 0

= number of rabbits at timet

= R(t) .

Consequently,
d R

dt
= lim

1t→0

1R

1t
≤ lim

1t→0
β Rmax = β R(t) .

Similar arguments with

Rmin = minimum number of rabbits at any one time betweent and t + 1t

yields
d R

dt
≥ lim

1t→0
β Rmin = β R(t) .

Together the two above inequalities involvingd R/dt tells us that

β R(t) ≤
d R

dt
≤ β R(t)

which, of course, means that
d R

dt
= β R(t) ,

just as we originally derived.
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More generally, this sort of analysis can be used to justify letting

d Q

dt
=

1Q

1t

where 1t is the unit time interval in whatever units we are using, and then deriving a formula
for 1Q/1t in terms of t and Q(t) , just as we do in our examples, and just as you should do in
the exercises.

Additional Exercises

10.2. Do the following using formula (10.7) on page 215 from the simple model for the rabbit
population on our rabbit ranch:

a. Find the approximate number of rabbits on the ranch after oneyear.

b. How long does it take for the number of rabbits to increase

i. from 2 to 4? ii. from 4 to 8? iii. from 8 to 16?

c. How long does it take for the number of rabbits to increase

i. from 2 to 20? ii. from 5 to 50? iii. from 10 to 100?

d. Approximately how long does it take for the mass of the rabbits on the ranch to equal
the mass of the Earth?

10.3. (Epidemiology)Imagine the following situation:

A stranger infected with a particularly contagious strain of the sniffles enters
a city. Let I (t) be the number of people in the city infected with the sniffles
t days after the stranger entered the city. Assume that only the stranger has
the sniffles on day0 , and that the number of people with the sniffles increases
exponentially thereafter (as derived in the simple population growth model
in section 10.3). Assume further that 50 people have the sniffles on the tenth
day after the stranger entered the city, .

Let I (t) be the number of people in the city with sniffles on dayt .

a. What is the formula forI (t) ?

b. How many people have the sniffles on day 20?

c. Approximately how long until 250,000 people in the city havethe sniffles?

10.4. Assume thatA(t) = A0e−δt is the amount of some radioactive substance at timet
having a half-lifeτ1/2 .

a. Verify that, for each value oft (not just t = 0 ),

A(t + τ1/2) =
1

2
A(t) .
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b. Verify that the formulaA(t) = A0e−δt can be rewritten as

A(t) = A0

(
1

2

)t/τ1/2
.

10.5. Cesium-137 is a radioactive isotope of cesium with a half-life of about 30 years.

a. Find the corresponding decay constantδ for cesium-137.

b. Suppose we have a bottle (which we never open) containing 20 grams of cesium-137.
Approximately how many grams of cesium-137 will still be in the bottle

i. after 10 years? ii. after 25 years? iii. after 100 years?

10.6. (Carbon-14 dating)A little background:

Most of the carbon in living tissue comes, directly or indirectly, from the
carbon dioxide in the air. A tiny fraction (about one part pertrillion) of this
carbon is the radioactive isotope carbon-14 (which has a half-life of approx-
imately 5,730 years). The rest of the carbon is not radioactive. As a result,
about one trillionth of the carbon in the tissues of a living plant or animal is
that radioactive form of carbon. This ratio of carbon-14 to nonradioactive
carbon in the air and living tissue has remained fairly constant8 because the
rate at which carbon-14 is created (through an interaction of cosmic radia-
tion with the nitrogen in the upper atmosphere) matches the rate at which it
decays.

At death, however, the plant or animal stops absorbing carbon, and the
tiny amount of carbon-14 in its tissues begins to decrease due to radioactive
decay. By measuring the current ratio of carbon-14 to the nonradioactive
carbon in a tissue sample (say, a piece of old bone or wood), and then
comparing this ratio to the ratio in comparable living tissue, a good estimate
of fraction of the carbon-14 that has decayed can be made. Using that and
our model for radioactive decay, the age of the bone or wood can then be
approximated.

Using the above information:

a. Find the (approximate) decay constantδ for carbon-14.

b. Suppose a piece of wood came from a tree that diedt years ago. Approximately what
percentage of the carbon-14 that was in piece of wood when thetree died still remains
undecayed if

i. t = 10 years? ii. t = 100years? iii. t = 1000years?

iv. t = 5000years? v. t = 10000years? vi. t = 50000years?

c. Suppose a skeleton of a person found in an ancient grave contains 30 percent of the
carbon-14 normally found in (equally sized) skeletons of living people. Approxi-
mately how long ago did this person die?

8 but not perfectly constant — see a good article on carbon-14 dating.
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d. The wood in the ornate funeral mask of the Egyptian pharaoh Rootietootiekoomin9 is
found to contain 60 percent of the carbon-14 originally in the wood. Approximately
how long ago did Rootietootiekoomin die?

e. Let A be the amount of carbon-14 measured in a tissue sample (e.g.,an old bone or
piece of wood), and letA0 be the amount of carbon-14 in the tissue when the plant or
creature died. Derive a formula for the approximate length of time since that plant’s
or creature’s demise in terms of the ratioA/A0 .

10.7. Consider the “better model” for the rabbit population in section 10.4.

a. Solve the logistic equation derived there (equation (10.13) on page 221), and verify
that the solution can be written as given in formula (10.14) on page 221.

b. Assume the same values for the initial number of rabbits and ideal birth rate as assumed
in section 10.4,

R(0) = 2 and β0 =
5

4
.

Also assume that our rabbit ranch has a carrying capacityκ of 10,000,000 rabbits
(it’s a big ranch). How many rabbits (approximately) does our “better model” predict
will be on our ranch

i. at the end of the first 6 months?

ii. at the end of the first year? (Compare this to the number predicted by the simple
model in exercise 10.2 a, and to the carrying capacity.)

iii. at the end of the second year? (Compare this to the carrying capacity.)

c. Solve formula (10.14) on page 221 for the carrying capacityκ in terms of R0 , R(t) ,
β and t .

d. Using the formula for the carrying capacity just derived (and assuming the ideal birth
rate β0 =

5/4 , as before), determine the approximate carrying capacity of a rabbit
ranch under each of the following conditions:

i. You have 1,000 rabbits 6 months after starting with a single breeding pair.

ii. You have 2,000 rabbits 6 months after starting with a single breeding pair.

10.8. Suppose we have a rabbit ranch and have begun harvesting rabbits. Let

R(t) = number of rabbits on the rancht months after beginning harvesting

and assume the following:

1. The monthly birth rate per rabbit,β , is 5/4 (as we derived).

2. We have no problems with overpopulation (i.e., for all practical purposes, we
can assume the natural death rate is0 .)

3. Each month we harvest500 rabbits. (Assume this is done “over the month”, so
the rabbits are still reproducing as we are harvesting.)

9 from a fictional dynasty
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a. Derive the differential equation forR(t) based on the above assumptions.

b. Find any equilibrium solutions to your differential equation (this may surprise you),
and, using crude slope fields as we did in class, analyze how the rabbit population
varies over time, based on how many we had when we first began harvesting.

c. Solve the differential equation. Get your final answer in terms of t and R0 = R(0) .

10.9. Repeat the previous problem, only, instead of harvesting 500 rabbits a month, harvest
25 percent of the rabbits on the ranch each month.

10.10. Again, assume we have a rabbit ranch, and let

R(t) = number of rabbits on the ranch aftert months.

Taking into account the problems that arise when the population is too large,we obtained
the differential equation

d R

dt
= β R − γ R2

where β is the monthly birth rate per rabbit (which we figured was5/4 ) and γ was
some positive constant that would have to be determined later.

This differential equation was obtained assuming we were not harvesting rabbits.
Assume, instead, that we are harvestingh rabbits each month. How do we change the
above differential equation to reflect this if

a. we harvest a constant numberh0 of rabbits each month?

b. we harvest one fourth of all the rabbits on the ranch each month?

10.11. Consider the following situation:

Mullock the Barbarian begins a campaign of self-enrichmentwith a horde
of 200 vicious warriors. Each week he loses 5 percent of his horde to the
unavoidable accidents that occur while sacking and pillaging. Fortunately,
the horde’s lifestyle of wanton violence and mindless destruction attracts 50
new warriors to the horde each week.

Let y(t) be the number of warriors in Mullock’s hordet weeks after starting the
campaign.

a. Derive the differential equation describing howy(t) changes each week. Is there also
an initial value given?

b. To what size does the horde eventually grow? (Use equilibrium solutions and graphical
methods to answer this. Don’t actually solve the initial-value problem.)

c. Solve the initial-value problem from the first part.

d. How long does it take Mullock’s horde to reach 90 percent of its final size?
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10.12. (mixing) Consider the following mixing problem:

We have a large tank initially containing 1,000 gallons of pure water. We
begin adding a alcohol-water mix at a rate of 3 gallons per minute. This
alcohol-water mix being added is 75 percent alcohol. At the same time, the
mixture in the tank is drained at a rate of 3 gallons per minute. Throughout
this entire process, the mixture in the tank is thoroughly and uniformly mixed.

Let y(t) be the number of gallons of pure alcohol in the tankt minutes after we started
adding the alcohol-water mix.

a. Find the differential equation fory(t) .

b. Sketch a crude slope field for the differential equation justobtained, and find any
equilibrium solutions.

c. Using the differential equation just obtained, find the formula for y(t) .

d. Approximately how many gallons of alcohol are in the tank at

i. t = 10? ii. t = 60? iii. t = 1000?

e. Approximately when will the mixture in the tank be half alcohol?

10.13. Redo exercise 10.12, but assuming the tank initially contains 900 gallons of pure water
and 100 gallons of alcohol.

10.14. Consider the following mixing problem:

We have a tank initially containing 5000 gallons of pure water, and start
adding saltwater (containing 2 ounces of salt per gallon of water) at the rate
of 2 gallons per minute. At the same time, the resulting mixture in the tank
is drained at the rate 2 gallons per minute. As usual, the mixture in the tank
is thoroughly and uniformly mixed at all times.

Let y(t) be the number of ounces of salt in the tank att minutes after we started adding
the saltwater.

a i. Find the differential equation fory(t) .

ii. Sketch a crude slope field for the differential equation justobtained, and find any
equilibrium solutions.

iii. Using the differential equation just obtained along with any given initial values, find
the formula for y(t) .

b. Approximately how many ounces of salt are in the tank at

i. t = 10? ii. t = 50? iii. t = 100?

c. Approximately when will the concentration of the salt in thetank be 1 ounce of salt
per gallon of water?

10.15. Redo exercise 10.14, but assuming that a device has been attached to the tank that, each
minute, filters out half the salt in a single gallon from the mixture in the tank.
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10.16. Consider the following variation of the mixing problem in exercise 10.12:

We have a large tank initially containing 500 gallons of purewater, and start
adding saltwater (containing 2 ounces of salt per gallon of water) at the rate
of 2 gallons per minute. At the same time, the resulting mixture in the tank
is drained at the rate3 gallons per minute. As usual, assume the mixture in
the tank is thoroughly and uniformly mixed at all times.

Note that the tank is being drained faster that it is being filled.

Let y(t) the number of ounces of salt in the tank att minutes after we started adding
the saltwater.

a. What is the formula for the volume of the liquid in the tankt minutes after we started
adding the saltwater.

b i. Find the differential equation fory(t) . (Keep in mind that the concentration of salt
in the outflow at timet will depend both on both the amount of saltandthe volume
of the liquid in the tank at that time.)

ii. Using the differential equation just obtained along with any given initial values, find
the formula for y(t) .

c. Approximately how many ounces of salt are in the tank at

i. t = 10? ii. t = 60? iii. t = 100?

d i. When will there be exactly 1 gallon of saltwater in the tank?

ii. Approximately how much salt will be in that gallon of saltwater?

10.17. (heating/cooling)Consider the following situation:

At 2 o’clock in the afternoon, the butler reported discovering the dead body
of his master, Lord Hakky d’Sack, in the Lord’s personal winecellar. The
Lord had apparently been bludgeoned to death with a bottle ofRip’le 04.
At 4 o’clock, the forensics expert arrived and measured the temperature of
the body. It was 90 degrees at that time. One hour later, the body had cooled
down to 80 degrees. It was also noted that the wine cellar was maintained at
a constant temperature of 50 degrees.

Should the butler be arrested for murder? (Base your answer on the time of death as
determined from the above information, Newton’s law of heating and cooling and the
fact that a reasonably healthy person’s body temperature isabout 98.2 degrees.)


