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The Art and Science of Modeling with
First-Order Equations

For some, “modeling” is the building of small plastic repigcof famous ships; for others,
“modeling” means standing in front of cameras wearing giligthing; for us, “modeling” is
the process of developing sets of equations and formulagitda®g some process of interest.
This process may be the falling of a frozen duck, the changespopulation over time, the
consumption of fuel by a car traveling various distances,abcumulation of wealth by one
individual or company, the cooling of a cup of coffee, theclenic transmission of sound and
images from a television station to a home television, ordmyhuge number of other processes
affecting us. A major goal of modeling, of course, is to poedhow things will turn out” at
some point of interest, be it a point of time in the future orasipon along the road. Along
with this, naturally, is often a desire to use the model t@deine changes we can make to the
process to force things to turn out as we desire.

Of course, some things are more easily modeled mathengticah others. For example,
it will certainly be easier to mathematically describe thenter of rabbits in a field than to
mathematically describe the various emotions of thesetsaal®art of the art of modeling is the
determination of which quantities the model will deal withd., “number of rabbits” instead of
“emotional states”).

Another part of modeling is the balancing between develpgia complete a model as
possible by taking into account all possible influences emtiocess as opposed to developing a
simple and easy to use model by the use of simplifying assomgpand simple approximations.
Attempting to accurately describe all possible influensemily leads to such a complicated set of
equations and formulas that the model (i.e., the set of @nsand formulas we've developed) is
unusable. Amodelthatistoo simple, on the other hand, nsatlewildly inaccurate predictions,
and, thus, would also not be a useful model.

Here, we will examine various aspects of modeling using-trger differential equations.
This will be done mainly by looking at a few illustrative exples, though, in a few sections,
we will also discuss how to go about developing and using sodih first-order differential
equations more generally.
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212 The Art and Science of Modeling with First-Order Equations

10.1 Preliminaries

Suppose we have a situation in which some measurable quahiitterest (e.g.: velocity of
a falling duck, number of rabbits in a field, gallons of fueldrvehicle, amount of money in a
bank, temperature of a cup of coffee) varies as some basaoneder (such as time or position)
changes. For convenience, let’'s assume the parameteréstichdenote that parameter by
as is traditional. Recall that, if

Q) = theamountof that measurable quantity at tinte ,

then
dQ
dt
If we can identify what controls this rate, and can come upnaiformula F (t, Q) describing
how this rate depends anand theQ, then
dQ

= therateat which Q varies ast varies

gives us a first-order differential equation f@ which, with a little luck, can be solved to obtain
a general formula forQ in terms oft. At the very least, we will be able to construct this
equation’s slope field and sketch graphs@ft) .

Our development of the “improved falling object model” inagher 1.2 is a good example
of this sort of modeling. Go back to page 12 and take a quick &idt. There, the ‘measurable
quantity’ is the velocityv (in meters/second); the rate at which it varies with tirfé; , is the
acceleration, and we were able to determine a forntuléor this acceleration by determining
and adding together the accelerations due to gravity aneésistance,

F(,v) = total acceleration
= acceleration due to gravity- acceleration due to air resistance
= (—9.8) + (—«v)

where k is some positive constant that would have to be determineskpgriment. This gave
us the first-order differential equation

d

d—’t’ = F(t,v) = -98 — xv ,
which we were later able to solve and analyze.

In what follows, we will develop models for several otheusiions. We will also, in section
10.5, give further advice on developing your own models viirgi-order differential equations.
Be sure to observe how we develop these models and to readté®ein section 10.5. You will
be developing more models in the exercises and, maybeitatezal life’.
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10.2 A Rabbit Ranch
The Situation to be Modeled

Pretend we've been given a breeding pair of rabbits alonly adtes and acres of prime rabbit
range with no predators. Let us further assume this rabbgeaas fenced in so that no rabbits
can escape or come in, and so that no predators can come irelédse the rabbits, planning to
return in a few years (say, five) to harvest rabbits for thedtdasade.

An obvious question islow many rabbits will we have on our rabbit ranch in five years?

Setting Up the Model

Experienced modelers typically begin by drawing a simptdigltening picture of the process

(if appropriate) and identifying the relevant variables Y& did for the “falling object model”

— see page 9). Since the author could not think of a partilyuégopropriate and enlightening
picture, we will skip the picture and go straight to idenitiy the obvious variables of interest.
They are ‘time’ and ‘the number of rabbits’, which we will na&lly denote using the symbols

t and R, respectively. The tim& can be measured in seconds, days, months, years, centuries,
etc. We will use months, with = 0 being the time the rabbits were released. So,

t = number of months since the rabbits were released
and
R = R(t) = number of rabbits at timé

Since we started with a pair of rabbits, the initial conditie

RO = 2 . (10.1)
Now, sincet is being measured in months,
(Z—? = rate R varies ast varies

= change in the number of rabbits per month

Because the fence prevents rabbits escaping or comingeichtinge in the number of rabbits is
due entirely to the number of births and deaths in our ralipugation. Thus,

drR _ change in the number of rabbits per month
dt (10.2)

= number of births per month- number of deaths per month

Now we need to model the “number of births per month” and thanther of deaths per
month’ Starting with the birth process, and assuming tladftthe population are females, we
note that

number of births per month

= number of births per female rabbit per month
x number of female rabbits that month

number of births per female rabbit per momh; R
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(We are also assuming that all the females are capable afididabies, no matter what their
age. Well, these are rabbits; they marry young.)

It seems reasonable to assume the average number of birtfeyade rabbit per month is
a constant. For future convenience, let

B = % x number of births per female rabbit per month

This is the “monthly birthrate per rabbit” and allows us tdter
number of births per month= R . (10.3)

Checking a reliable reference on rabbits (any decent eopgdia will do), it can be found that,
on the average, each female rabbit has 6 litters per yeabwittuncy baby bunnies in each litter.
Hence, since there are 12 months in a year,

B = = x number of births per female rabbit per month
X %2 x number of births per female rabbit per year

1
x1—2><6><5

NI NI Nl

That s,
5

B = 3 (10.4)
What about the death rate? Since there are no predators anty gif food, it seems
reasonable to assume old age is the main cause of death. &usiking a reliable reference
on rabbits, it can be found that the average life span for hiré10 years. Clearly, then, the
number of deaths per month will be negligible compared tontlvber of births. So we will

assume

number of deaths per monte 0 . (10.5)
Combining equations (10.2), (10.3) and (10.5), we obtain
(:Tlt? = number of births per month- number of deaths per month
=BR -0
That is, iR
G = BR (10.6)

where 8 is the average monthly birthrate per rabbit.

Of course, equation (10.6) does not just apply to the sitndtieing considered here. The
same equation would have been obtained for the changinggiapuof any creature having
zero death rate and a constant birthrgtger unit time per creature. But the problem at hand
involves rabbits, and for rabbits, we derivgd= %;. This, the above differential equation, and

the fact that we started with two rabbits means tRét) must satisfy
dR 5 .
Frile ZR with R(0) =2

This is our “model”.

in developing this equation, we equated an “instantaneatasaf change’,d Rit, toa “change in the number of
rabbits per month’; and then found a formula for that “moptifiange” based on the value Bf “at time t " instead
of over the entire month. If this bothers you, see appendi® &6 page 231.
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Using Our Model
Our differential equation is

dR . 5
H_’BR with ﬂ_z

This is a simple separable and linear differential equathou can easily show that its general
solution is
R(t) = A"

Applying the initial condition,
2 = A0 = A

So the number of rabbits aftérmonths is given by

Rt = 2¢®  with B =g . (10.7)

Five years is 60 months. Using a calculator, we find that theber of rabbits after 5 years is
R(60) = 20160 — 2675 ~ 7.47 x 10%2

That is a lot of rabbits. At about 3 kilograms each, the masaldhe rabbits on the ranch will
then be approximately
2.2 x 10*® kilograms

By comparison:
the mass of the Earthe 6 x 10?* kilograms

and
the mass of the Sume 2 x 10°° kilograms

So our model predicts that, in five years, the total mass ofallits will be over a thousand
times that of our nearest star.

This does not seem like a very realistic prediction. Latethis chapter, we will derive a
more complete (but less simple) model.

Butfirst, let us briefly discuss a few other modeling situagimvolving differential equations
similar to the one derived here (equation (10.6)).

10.3 Exponential Growth and Decay

Whenever the rate of change of some quan€gt) is directly proportional to that quantity, we

automatically have
dQ
E - :8Q

with 8 being the constant of proportionality. Since this simplatienship is inherent in many
processes of interest, it, along with with its general sotut

QM) = A" |
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arises in a large number of important applications, most lottv do not involve rabbits. If
B > 0, then Q(t) increases rapidly at increases, and we typically say we hasponential
growth If 8 < 0,thenQ(t) shrinksto O fairly rapidly ag increases, and we typically say we
haveexponential decayAnd if 8 = 0, thenQ(t) remains constant — we just have equilibrium
solutions.

Simple Population Models

Suppose we are interested in how the population of some seeatures or plants varies with
time. These may be rabbits on a ranch (as in our previous drqumpyeast fermenting a vat
of grape juice or the people in some city or the algae growing pond. They may even be the
people in some country that are infected with and are helgimgad some contagious disease.
Whatever the individuals of this population happento becarelet P (t) denote the total number
of these individuals at timé, and ask howP(t) varies with time (as we did in our “rabbit ranch”
example). If we further assume (as we did in our previousbiitatanch” example) that

1. the change inP(t) over a unit of time depends only on the number of “births” and
“deaths” in the populatiof;

2. the “average birth rate per individual per unit of timgg is constant,
and
3. the “average death rate per individual per unit of tin%&g”is constant (i.e., a constant
fraction §p of the population dies off during each unit of time);

then
P . T _
C;—t = change in the number of individuals per unit time

= number of births per unit time- number of deaths per unit time
= BoP(t) — P (1)

Letting 8 be the “net birthrate per individual per unit time’,

B = PBo— d ,
this reduces to dp
5 = BP(t) (10.8)

the solution of which, as we already know, is
P(t) = P’ = Ppelfo'  where Py = P(0)

If Bo > dg, then the model predicts that the population will grow exgrially. If 8o < &g,
then the model predicts that the population will declineangntially. And if 8o = 8o, then the
model predicts that the population remains static.

Thisis a simple model whose accuracy depends on the vadiftitye three basic assumptions
made above. In many cases, these assumptions are oftenabbsacceptable during the early

2 Precisely what “birth” or “death” means may depend on thaitnes/plants in the population. For a microbe,
“birth” may be when a parent cell divides into two copies sEif. If the population is the set of people infected
with a particular disease, then “birth” occurs when a pexsmntracts the disease.
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stages of the process, and, initially, we do see exponamaith of populations, say, of yeast
added to grape juice or of a new species of plants or animalsdinced to a region where it
can thrive. As illustrated in our “rabbit ranch” examplewaver, this is too simple a model to
describe the long-term growth of most biological populasio

Natural Radioactive Decay

The effect of radioactive decay on the amount of some ratii@isotope can be described by
a model completely analogous to the general population hjoskediscussed. Assume we start
with some amount (say, a kilogram) of some radioactive {@otuf interest (say, uranium—235).
During any given length of time, there is a certain prob&pthat any given atom of that material
will spontaneously decay into a smaller atom along with aisged radiation and other atomic
and subatomic particles. Thus, the amount we have of thétpkar radioactive isotope will
decrease as more and more of the atoms decay (provided sheoe some other material that
decays into the isotope of interest.)

Let's assume we have some radioactive isotope of intemedthat there is no other radioac-
tive material decaying into that isotope. For convenietete A(t) denote the amount of that
radioactive material at time, and let§ be the fraction of the material that decays per unit time.
In essence, the decay of an atom is the death of that atomh&ndl is essentially the same as
the 8y in the above population growth discussion. Virtually thensaanalysis done to obtain
equation (10.8) (but usindg® instead of A, and noting thai8y = 0 since no new atoms of the
isotope are being “born”) then yields

dA
a9t = —§A(t)
Solving this differential equation then gives us

At) = A  with Ay = A0 . (10.9)

Because radioactive decay is a probabilistic event, andusecthere are typically huge
numbers of atoms in any sample of radioactive material, diaes lof probability and statistics
ensure that this is usually a very accurate model over lonigg®of time (unlike the case with
biological populations).

The positive constand, called thedecay rateis different for each different isotope. Itis
large if the isotope is very unstable and a large fractiohefitoms decay in a given time period,
and itis smallif the isotope is fairly stable and only a srfralttion of the atoms decay in the same
time period. In practice, the decay radeis usually described indirectly through thalf-life
11,2 Of the isotope, which is the time it takes for half of the onigiamount to decay. Using the
above formula forA(t) , you can easily verify that,,, and § are related by the equation

8 X T2 = In2 . (10.10)

> Exercise10.1: Derive equation (10.10). Use formula (10.9) fAtt) and the fact that, by
the definition ofzy 5,

AtD) = A0
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»Example10.1: Cobalt-60 is a radioactive isotope of cobalt with a haks-bf approximately
5.27 years. Using equation (10.10), we find that its (approximate) dexastant is given by
In2 In2

= ——— =~ 0.1315 (peryear)

8 = ~
T1/2 5.27 (years)

Combining this with formula (10.9) gives us
A(t) ~ Age 01313 with Ag = A(0)

as the formula for the amount of undecayed cobalt remairfieg & years.
Suppose we initially have 10 grams of cobalt-60. At the enohefyear, thos&0 grams
would have decayed to approximately

0.1315x1

(10gm) x e~ ~ 8.77 grams of cobalt-60

At the end of two years, those 10 grams would have decayecproamately

—0.1315x2

(10gm) x € ~ 7.69 grams of cobalt-60

And at the end of ten years, those 10 grams would have decaygbtoximately

—0.1315x10

(10gm) x € ~ 2.68 grams of cobalt-60

10.4 The Rabbit Ranch, Again

Back to wrangling rabbits.

The Situation (and Problem)

Recall that we imagined ourselves having a fenced-in ranclosing many acres of prime rabbit
range. We start with a breeding pair of rabbits, and plantirman five years. The question is
How many rabbits will we have then?

In section 10.2, we attempted to answer this question udaigyasimple model we had just
developed. However, the predicted number of rabbits afteyears (which had a corresponding
mass athousand times greater than that of the Sun) was/@éarrd. That model did not account
for the problems arising when a population of rabbits graveslarge. Let us now see if we can
derive a more realistic model.

3 Cobalt-60 has numerous medical applications, as well daatp#ive potential as an ingredient in some particularly
nasty nuclear weapons. It is produced by exposing cobalto-58low” neutrons, and decays to a stable nickel
isotope after giving off one electron and two gamma rays.
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A Better Model

Again, we let
R(t) = number of rabbits aftet months

with R(0) = 2. We still have

dR = change in the number of rabbits per month

dt (10.11)
= number of births per month- number of deaths per month

However, the assumptions that
number of deaths per monte 0 ,

and
number of births per month= S8R
where 5
B = monthly birthrate per rabbit= 2

are too simplistic. As the population increases, the amofirénge land (and, hence, food) per
rabbit decreases. Eventually, the population may becomdatge for the available fields to
support all the rabbits. Some will starve to death, and tfesele rabbits that survive will be
malnourished and will give birth to fewer bunnies. In adutitiovercrowding is conducive to the
spread of diseases which, in a population already weakenhdrger, can be devastating.

Clearly, we at least need to correct our formula for the nurobdeaths per month, because,
once overcrowding begins, we can expect a certain fractittimegpopulation to die each month.
Letting § denote that fraction,

number of deaths per montk fraction of the population that dies each month

x number of rabbits
= R

Keep in mind that this fractiod , which we can call the monthly death rate per rabbit, will not
be constant. It will depend on just how overcrowded the tatdrie. In other wordsj will vary
with R, and, thus, should be treated as a functiorRgf§ = §(R) . Just hows varies with R

is yet unknown, but it should be clear that

if R issmall, then overcrowding is not a problem af{dR) should be close to zero,
and

as R increases, then overcrowding increases and more raldnitslging. So,5(R)
should increase aR increases.

The simplest function oR for § satisfying the two above conditions is
§ = 3(R) = yoR
where yp is some positive constant. This gives us

number of deaths per monts R = [ypR]R = ypR?
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What sort of “correction” should we now consider for
number of births per monthk= SR ?

Well, as with the monthly death rate, above, we should expect the monthly birth rate per rabbit,
B, to be a function of the number of rabbit8,= 8(R) . Moreover:

If R is small, then overcrowding is not a problem afidR) should be close to its
ideal valuefg = %4,

and

as R increases, then more rabbits become malnourished, andeeimave fewer
babies each month. S@,(R) should decrease from its ideal value Rsincreases.

A simple formula describing this is obtained by subtractiram the ideal birth rate a simple
correction term proportional to the number of rabbits,

B = B(R) = o — yeR

where By = % is the ideal monthly birthrate per rabbit ang is some positive constaftThis
then gives us

number of births per montk= AR = [Bo — ¥eR|R = BoR — ysR?

As with our simpler model, the one we are developing can bdiexpfo populations of other
organisms by using the appropriate value for the ideal tzitéhper organismgy . For rabbits,
we havefy = Y.

Combining the above formulas for the monthly number of lsiethd deaths with the generic
differential equation (10.11) yields

dR

Frile number of births per month- number of deaths per month

— BR — SR
= BoR — ysR* — ypR?

which, letting y = yg — yp , simplifies to
— = AR — yR? (10.12)
where o = % is the ideal monthly birthrate per rabbit and is some positive constant.

Presumablyy could be determined by observation (if this new model doesrately describe
the situation).

4 Yes, the birthrate becomes negativeRfbecomes large enough, and negative birthrates are nattieaBut we
still trying for as simple a model as feasible — with luék will not get large enough that the birthrate becomes
negative.
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Using the Better Model

Equation (10.12) is called tHegistic equatiorand was an important development in the study
of population dynamics. It is a relatively simple separaseation that can be solved without
too much difficulty. But let’s not, at least, not yet. Inste&at us first rewrite this equation by

factoring outy R,
dR Bo
- — yR(IE =
dt Y ( y )

From this it is obvious that our differential equation has wonstant solutions,

_ o
14

R=0 and R

The first tells us that, if we start with no rabbits, then wemetabbits in the future (no surprise
there). The second is more interesting. For conveniente, e %, . Our differential equation
can then be written as

dR Bo

— = yYR&k-R with y=— , (10.13)
dt K

and the two constant solutions are
R=0 and R =«

(We probably should note that, as a ratio of positive constants, is a positive constant.)
While we are at it, let’s further observe that, ifOR < «, then
dr = yRk—R) > 0
dt —_— ——
>0 >0

In other words, if O< R < «, then the population is increasing.
On the other hand, ik < R, then
d—R = yRk—R) < O
dt — —
>0 <0

That is, the population will be decreasingdf< R.

We can graphically represent these observations usinguble slope field sketched in figure
10.1a. Thisfigure suggests that, over time, the number bftsaill stabilize aroundc . If there
are initially fewer thanx rabbits (but at least some), then the rabbit population wdtease
towards a total ofx rabbits. If there are initially more thar rabbits, then the population
will decrease towards a total of rabbits. This prediction is reflected in the more carefully
constructed slope field in figure 10.1b. Becausés the maximum number of rabbits that can
exist in the long term given the resources availakleis often called thecarrying capacityof
the ‘system’ consisting of the rabbits and their environtmé@f course, if the carrying capacity
is too low, say,x ~ 0.5 then, realistically, all the rabbits will die.)

Finding the precise formula foR(t) will be left to you (exercise 10.7). What you will
show is that, in terms of the carrying capacity ideal birthratefy, and the initial population
Ro = R(0),

Kk Ro
Ro + (k — Ro)eFet

Rt) = (10.14)
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Figure 10.1: Slope Fields for Logistic Equation (10.13a) A minimal field for a generic
logistic equation andb) a slope field for the logistic equation with = 100
and Bo = Y10. The graphs of a few solutions have been roughly sketched on
each.

This formula reflects the fact that there are three basiapeaters in our model: the ideal monthly
birth rate 8, the initial number of rabbit$R(0) , and the carrying capacity of the systam The
first two we know or can figure out from basic biology. The last,will have to be determined
“from experiment’. For example, we might return a year aftdeasing the original pair (at
t = 12), count the number of rabbits on the ran&12) , and then use this value along with
the known values folR; and B, in formula (10.14) to create an equation fer Solving that
equation will then give usc . This, of course, assumes that the model is fairly accuratn—
assumption that would require further experiment to vesifdisprove. But, at least the model’'s
prediction regarding the population growth seems a gootrdeee reasonable than that made
by the simpler model in section 10.2.

10.5 Notes on the Art and Science of Modeling

Our current interest is in modeling situations in which theerat which some quantity varies
is fairly well understood. In these sorts of problems, itfien “relatively easy” to develop a

first-order differential equation to serve as the basis foraghematical model for the situation.
We've seen several examples already, and will see more imetkifew sections. But now, let us
pause to discuss some of the steps and issues in develogingizug such models.

First Steps in the Modeling Process

Naturally, one of your very first steps in modeling somettshguld be to learn whatever you
believe is needed for developing the model. Then identifliabel the significant basic variables
and decide on the units associated with these variablesurlmabbit ranch problems, those
variables wereR andt (with associated unitebbitsandmonthsrespectively); in the following,
we’ll use Q for the generic quantity of interest and assume it varies e t .
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Next, write out everything you know using these variabldsisTncludes any initial values
you may have for any of the variables. In our rabbit ranch fgmobwe did not know much atfirst,
only the initial value forR, R(0) = 2. If you can draw an illuminating picture representing the
situation, do so and label it for easy reference.

Then turn your attention to deriving a differential equatibat accurately models thate at
which Q varies witht , 9Qg;. Do notattempt to directly derive a formula fap(t) , at least, not
with the sort of problems being considered here. We are n@hrdgwith problems for which
it is much easier to first find a formul& (t, Q) for 9%y, and then findQ(t) by solving the
resulting differential equation.

Developing the Differential Equation for the Model

Coming up with a usable differential equation

dQ

that accurately models ho@'’s rate of change depends ¢rand Q is the most important, and,
for many, the hardest part of the of the modeling processerAdl, as you now know, anyone
can solve a first-order differential equation (or, at leashstruct a slope field for one). Coming
up with the right differential equation can be much more lemagjing.

Here are a few things you can do to make it less challenging:

Identify and Describe the Processes Driving the Model

Keep in mind that!%q; is therate at which Q(t) changes a$ changes. This rate depends on
the processes driving the situation, not on the particudareszof Q at some particular time. In
particular, the value ofQ(0) is irrelevant in setting up the differential equation.
Once you've determined your variables and drawn your ilhating pictures, write o8t
dQ
dt
and then identify the different processes that cause thab change. In our examples with
rabbits, these processes were “birth” and “death’; and vtialily observed that

dR
dt

= the change inQ per unit time

= change in the number of rabbits per month
= number of births per month- number of deaths per month

Then we worked out how many births and deaths should be eegbeeich month given that we
had R rabbits that month.

In general, you want to identify the different processes taase Q(t) to increase (e.g.,
births and immigration into the region) and to decrease ,(dgaths and emigration out of the
region). Each of these processes corresponds to a diffiementin F(t, Q) (remember tadd
those terms corresponding to processes that incrégsndsubtractthose terms corresponding
to processes that decreaQg). For example, ifQ(t) is the number of, say, people in a certain

region at timet , we may have

dQ

5 As noted in an earlier footnote, we are equating an “insteeuas rate of changéj,'Q/dt , to a “change inQ per
unit time’ which, in turn, will be based on the values @ and t at a specific timet instead of over the unit
interval of time. For a more detailed analysis justifyintstisee appendix 10.8 on page 231.
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where
F(t’Q) = I:birth + I:immig - I:death - I:emig

with
Foith = number of births per unittime
Fimmig = number of number of people immigrating into the region pet time
Fgeath = number of deaths per unit time
and
Femig = number of number of people emigrating out of the region pértume

Once you've identified the differentterms makinglegt, Q) (e.g., the abovéyrn , Fimmig
etc.); take each term, consider the process it is suppostebtibe, and try to come up with a
reasonable formula describing the changeldnduring a unit time interval due to that process
alone. Often, that formula will involve jus@, itself. For example, in our first “rabbit ranch”
example (withR = Q),

Fuitn = number of births per month
= number of births per female rabbit per month
x number of female rabbits that month

— BR  with g=2>

4
Often, you will make ‘simplifications’ and ‘assumptions’keep the model from becoming too
complicated. In the above formula fd#,, , for example, we did not attempt to account for
seasonal variations in birth rate, and we assumed thathealabbit population were breeding
females. We also assumed a constant monthly birthrate ait dee per rabbit, no matter how
many rabbits we had.

Balance the Units

As already noted, one of the first steps in modeling a sitnadito decide on the main variables and
to choose the units for measuring these variables. The gubsecomputations and derivations
are all in terms of these units, and we can often avoid embsimg mistakes by just keeping
track of our units and being sure that their use is consistemtarticular, the units implicit in any
equation must remain balanced; that is, each term in anytieguaust have the same associated
units as every other term in that equation.

For example, the basic quantities in our rabbit ranch maalel®k andt . Even though we
treated these as numbers, we knew that

R = number ofrabbits and t = timeinmonths .

So the units associated witR andt are, respectivelyabbitsandmonths Consequently, the
units associated with

dR . R(t + At) — R(t) . change in the number oébbits
= lim = lim

dt ~ At—o0 At At—0 change in time as measurednonths
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are ravbits. . (i.e., rabbits per month), and every term in any formula$8s; must also have
rabbity | h as the associated units. If someone suggested a term thabwaiabbits per month’,
then that term would be wrong and should be immediately tegecThus, for example,

dR

is clearly wrong because the right side is descrilvaigits x months not 200t ..
The constants used in our derivations also have associatisd Tthe monthly birth rate per
rabbit,
B = number of rabbits born per month per rabbit on the ranch

_ (number ofrabbitsborn

perrabbit on the ranch
month

number ofrabbitsborn
monthx rabbit

has associated unifénont (since the units ofabbitscancel out), and if we had wanted to be a
bit more explicit, we would have written equation (10.4) agp 214 as

5 1
b= 4 (month)

instead of just

Often, you will not see the units being explicitly noted thghout the development and use
of a model. There are several possible reasons for this:

1. If the formulas and equations are correctly developed, themnits in theses formulas
and equations naturally remain balanced. The modeler ktluewsnd trusts his or her
skill in modeling.

2. The writer assumes the readers can keep track of the unitstiees.
3. The writer is lazy or needs to save space.

There is much to be said in favor of explicitly giving the witssociated with every element of
every formula and equation. It helps prevent stupid mistakel may help clarify the meaning
of some of formulas for the reader (and for the model buildéf will do this, somewhat, in the
next major example. Beginning modelers are strongly eragmd to keep track of the units in
every step as they develop their own equations. At the vast|stop every so often and check
that the units in the equations balance. If not, you did sbingtwrong — go back, find your
error, and correct it.

Oh yes, one more thing about “units”; Be sure that anyone wlgming to read your work
or use any model you've developed knows the units you aresin

61n 1999, the Mars Climate Orbiter crashed into Mars instdaattuiting the planet because the Orbiter’s software
gave instructions in terms of the imperial system (which snees force in pounds) while the hardware assumed
the metric system (which measures force in newtons — withuhg@e: 4.45 newtons). This failure to communicate
the units being used caused an embarrassing end to a spgse posting over 300 million dollars.
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Testing and Using the Model

Once you've developed a differential equation modelingwiag a quantity of interesQ(t)
varies, you will normally want to solve that differentialieiion or otherwise analyze it to see
what it says aboufQ(t) for various choices of . If the situation being modeled is fairly simple
and straightforward, and your modeling skills are adequatn your model can probably be
trusted to give fairly accurate predictions.

Inpractice, itis usually wise to check and see if predictibased on this model are reasonable
before announcing your new model to the world. After allsigiite possible that some of your
‘simplifications’ and ‘assumptions’ overly simplified yourodel and caused important issues
to be ignored. That certainly happened with our first rabditich model in which assuming
constant the birth and death rates resulted in a model pigli@r more rabbits in five years
than possible.

If your predictions are not reasonable, go back, revisitrydmrivations, and see where a
more careful modeling of the individual processes leadsndeessary, learn more about the
processes themselvédhis should lead to a refined model f@(t) that, in turn, leads to more
reasonable projections as to the behavioiQt). The differential equation will probably be
more complicated, but that is the price you pay for a betterenaccurate model.

Of course, you should not automatically assume that ‘appigneeasonable’ predictions are
accurate. If possible, compare results predicted by theemtodreal world” data. You may need
to do this anyway to determine the values of some of the cotsstayour model. Hopefully, the
results predicted and the real world data will agree weluginathat you can feel confident that
your model is sufficiently accurate for the desired appidces. If not, refine your model further.

By the way, in using your model, keep in mind the simplificai@nd assumptions made in
deriving it so that you have some idea as to the limitatiorthisfmodel.

10.6 Mixing Problems

In a “mixing problem’; some substance is continually beidged to some container in which
the substance is mixed with some other material, and withethi@ting mixture being constantly
drained off at some rate. This container may be a large talakea or the system of veins and
arteries in a body; and the substance being added may be $@mécal, pollutant, or medicine
being added to the liquid in the tank, the water in the laketherblood in the body. These
problems are favorites of authors of differential equatiexts because they can be modeled
fairly easily using the basic observation that (usually)

the rate the amount of substance in the container changes

= the rate the substance is addedthe rate the substance is drained off

We will do one simple mixing problem, and then briefly mentsmme possible variations.

7 This author once read a paper describing a ‘new’ model faetanteraction with a solid material” Using this
model, you could then show that any solid can be chilled tolalts zero by suitably heating it with alaser —arather
dubious result. That paper’s author should have bettexdddgs model and learned more about thermodynamics.
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90% alcohol-water mix flows in at 2 gallons/minute

Tank with 500 gallons of mix

Tank mixture
flows out at 2
gallons/minute

Figure 10.2: Figure illustrating a simple mixing problem.

A Simple Mixing Problem
The Situation to Be Modeled

We start out with a large tank containing 500 gallons of puagew Each minute thereafter, two
gallons of a alcohol-water mix is added, and two gallons efrtfixture in the tank is drained.
The alcohol-water mix being added is 90 percent alcohol.olighout this entire process, we
assume the mixture in the tank is thoroughly and uniformlxedi The problem is to develop
a formula describing the amount of alcohol in the tank at amgrgtime. In particular, let’s
determine if and when the mixture in the tank is 50 percerdrait

Setting Up the Model

In this case, a simple, illustrative picture for the prodessasily drawn. Itis in figure 10.2. We
will let

t = number of minutes since we started adding the alcohol-waiter
and

y = y(t) = gallons of pure alcohol in the tank at tinte .

Since we started with a tank containing pure water (no aljotie initial condition is

y@© =0

Our derivation of the differential equation modeling theoge iny starts with the obser-
vation that

dy

P change in the amount of alcohol in the tank per minute minute

= rate alcohol is added to the tank rate alcohol is drained from the tank

Since we are adding 2 gallons per minute of a 90 percent alcoixo

rate alcohol is added to the tank 2 (gallons of input mlx) 90 ( gallons of aIcohoI))

X —_—
minute 100 \ gallons of input mi

__ 9 (gallons of alcoho
5 minute
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In determining how much is being drained away, we must deterthe concentration of alcohol
in the tank’s mixture at any given time, which is simply théatamount of alcohol in the tank
at that time (i.e.,y(t) gallons) divided by the total amount of the mixture in thekté@which,
because we drain off as much as we add, remains constant ga860s). So,

rate alcohol is drained from the tank 2 (gallons of tank m|>>

minute

x amount of alcohol per gallon of tank mix

> gallons of tank mi o y(t) (gallons of alcohol
minute 500(gallons of tank mix

250 minute
Combining the above gives us

dy

9t = rate alcohol is added to the tank rate alcohol is drained from the tank

y(t) (gallons of alcoho)

9
5 250 minute
Thus, the initial-value problem that = y(t) must satisfy is

dy 9 Y . _
Pl 350 with y0) =0 . (10.15)

Using the Model

Factoring outYzso on the right side of our differential equation yields

dy 1
From this we see that
y = 450

is the only constant solution. Moreover,

dy 1 .
and
dy 1 :
rrii —250(450 y) <0 if y> 450

So, we should expect the graphs of the possible solutionkisodifferential equation to be
something like the curves in figure 10.3. In other words, nétenavhat the initial condition is,
we should expect/(t) to approach 450 as— oo.

Fortunately, the differential equation at hand is fairlynple. It (the differential equation
in initial-value problem (10.15)) is both separable aneéin and, using either the method we
developed for separable equations or the method we dewkfopdinear equations, you can
easily show that

y(t) = 450 — Ae /20
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Y d
Y~ o0
450
. d
Region wi T
% T

Figure 10.3: Crude graphs of solutions to the simple mixing problem frayanrfé 10.2 based
on the sign ofdYq; .

is the general solution. Note that, s> oo,
y(t) = 450 — Ae V20 . 450 — A.0 = 450 |,

just as figure 10.3 suggests. Consequently, no matter how aedaghol is originally in the tank,
eventually there will be nearly 450 gallons of alcohol in thek. Since the tank holds 500
gallons of mix, the concentration of the alcohol in the mi¥ @ventually be nearly*%go = %0
(i.e., 90 percent of the liquid in the tank will be alcohol).

For our particular problemy(0) = 0. So,

0 = y(0) = 450 — Ae 20 — 450 — A

Hence, A = 450 and
y(t) = 450 — 450e71/2%0

Finally, recall that we wanted to know when the mixture in taek is 50 percent alcohol.
This will be the time when half the liquid in the tank (i.e.,®§allons) is alcohol. Letting
denote this time, we must have

250 = y(r) = 450 — 450e/250

— 4507 7/?%0 — 450 — 250
200 4
-7/250 _ <°Y _ &
= € 450 ~ 9

— —— =1n 4) —In 9
250 9/ — 4
So the mixture in the tank will be half alcohol at time

T = 250In(%> ~ 2027 (minutes
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Other Mixing Problems

All sorts of variations of the problem just discussed canisaalized:

1. Instead of adding an alcohol-water mix, we may be adding auréof so many ounces
of some chemical (such as sugar or salt) dissolved in theri@tether solvent).

2. The flow rate into the tank may be different from the drainagerftate. In this case,
the volume of the mixture in the tank will be changing, andt thdl affect how the
concentration in the tank is computed.

3. We may have the problem considered in our simple mixing groblbut with some of
the drained flow being diverted to a machine that magicaltweds a certain fraction of
the alcohol to water, and the flow from that machine being deoipack into the tank.
(Think of that machine as the tank’s ‘liver’.)

4. Instead of adding an alcohol-water mix, we may be adding &icequantity of some
microorganism (yeast, e-coli bacteria, etc.) in a nutrgatttion. Then we would have
to consider a mixture/population dynamics model to alsmantfor the growth of the
microorganism in the tank, as well as the in-flow and drainage

5. Andsoon....

10.7 Simple Thermodynamics

Bring a hot cup of coffee into a cool room, and, intime, thd@etools down to room temperature.
Put a similar hot cup of coffee into a refrigerator, and yoll discover that the coffee cools
down faster. Let’s try to describe this cooling processtkelinore precisely.

To be a little more general, let us simply assume we have sdaeetqsuch as a hot cup of
coffee or a cold glass of water) that we place in a room in wiiehair is at temperatur€qom.
To keep matters simple, assurigom remains constant. Lef = T(t) be the temperature at
time t of the object we placed in the room. As tinhegoes on, we expecE to approachT,oom.
Now consider

dT . . .
T rate at whichT approachedqom as timet increases

It should seem reasonable that this rate at any instant ef tidepends just on the difference
between the temperature of the object and the temperattine cbom, T — Toom; that is
dT

50 = FT = Toom (10.16)

for some functionF . Moreover,

1. If T — Toom= 0, then the objectis the same temperature as the room. loakés we
do not expect the object’s temperature to change. Hencehowddshave® /g, = 0 when
T= Troom-
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2. If T —Tom is alarge positive value, then the object is much warmer thamoom. We
then expect the object to be rapidly cooling; thatTs,should be a rapidly decreasing
function of t . Hence"/y; should be large and negative.

3. If T —Twom is alarge negative value, then the object is much coolertth@room. We
then expect the object to be rapidly warming; thatTsshould be a rapidly increasing
function of t . Hence/s; should be large and positive.

In terms of the functionF on the right side of equation (10.16), these three obsenstnean
T—Tioom =0 = FT —-Toom) =0 ,

T — Troom IS @ large positive value —  F(T — T,oom) IS a large negative value
and
T — Troom IS a large negative value —  F(T — Toom) IS a large positive value

The simplest choice of satisfying these three conditions is
F(T — Troom) = —«(T — Troom)

wherek is some positive constant. Plugging this into equationl(@Qyields

daT

E = —k(T — Toom) - (10'17)

This equation is often known ddewton’s law of heating and coolingThe positive constant
x describes how easily heat flows between the object and thareirmust be determined by
experiment.

Equation (10.17) states that the change in the temperdtthre object is proportional to the
difference in the temperatures of the object and the roosindit exactly the same as equation
(10.8) on page 216 (unlesBoom = 0), but it is quite similar in spirit. We'll leave its solutio
and further discussion as exercises for the reader.

10.8 Appendix: Approximations That Are Not
Approximations

In our first rabbit ranch model, (after assuming a death ratem), our derivation of the model
can, essentially, be described by
dR .
il number of births per month= BR(t)
where
B = monthly birth rate per rabbit

Those who are comfortable with calculations involving sasbould be comfortable with this.
Others, however, may be concerned that we have two apprtgimsahere: The first is in
approximating the derivativéRy; (an “instantaneous rate of change at titrf@ by the monthly
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rate of change. The second is in describing this monthlyahtthange in terms oR(t), the
number of rabbits at the instant of tinie even though the number of rabbits clearly changes
over a month.

Let us reassure those concerned readers by looking at thvatiten a little more carefully:
We start by recalling the definition of the derivative Bf at time't :

dR i AR

— = liIm
dt At—>0 At

where
AR = R(t + At) — R(t) = changein R astime changes frommto t + At

Of course, the R(t + At) — R(t)’ formula for AR is pretty useless since we don't have the
formula for R. However, we can approximat& R via

AR

bunnies born as time changes frdnto t + At

< monthly birth rate per rabbit

x maximum number of rabbits at any one time betwéeand t + At
x length of time (in months) betweenandt + At

= /8 RmaxAt
where

Rmnax = maximum number of rabbits at any one time betwéeand t + At

Note that
AIitm0 Rmnax = maximum number of rabbits at any one time betw¢esmdt + O
= number of rabbits at timé
= R(t)
Consequently,
dR . AR

Gt = a5 =AM ARma = BR()

Similar arguments with
Rmin = minimum number of rabbits at any one time betwdeand t + At

yields

dR .
9t = A“tTO,BRmin = BR(1)

Together the two above inequalities involvifAfq; tells us that

d
RO < 5 < pR)

which, of course, means that

dR
rrali BR®) ,

just as we originally derived.
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More generally, this sort of analysis can be used to justifijrig
dQ _ AQ
dt At
where At is the unit time interval in whatever units we are using, ar&htderiving a formula

for 2, interms oft and Q(t), just as we do in our examples, and just as you should do in
the exercises.

Additional Exercises

10.2. Do the following using formula (10.7) on page 215 from the@ignrmodel for the rabbit
population on our rabbit ranch:

a. Find the approximate number of rabbits on the ranch after/eae
b. How long does it take for the number of rabbits to increase

i. from2to4? ii. from 4 to 87? iii. from 8 to 167?
c. How long does it take for the number of rabbits to increase

i. from2to20? ii. from5 to50? iii. from 10 to 100?

d. Approximately how long does it take for the mass of the radiit the ranch to equal
the mass of the Earth?

10.3. (Epidemiology)imagine the following situation:

A stranger infected with a particularly contagious strdithe sniffles enters
acity. Let| (t) be the number of people in the city infected with the sniffles
t days after the stranger entered the city. Assume that oslgttanger has
the sniffles on day , and that the number of people with the sniffles increases
exponentially thereafter (as derived in the simple poporiagrowth model

in section 10.3). Assume further that 50 people have théesiiin the tenth
day after the stranger entered the city, .

Let | (t) be the number of people in the city with sniffles on day
a. What is the formula fon (t) ?

b. How many people have the sniffles on day 207

c. Approximately how long until 250,000 people in the city halre sniffles?

10.4. Assume thatA(t) = Aje™® is the amount of some radioactive substance at time
having a half-lifety .

a. Verify that, for each value of (notjustt =0),

At +110) = %A(t)
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b. Verify that the formulaA(t) = Aqe™' can be rewritten as

At) = A()(;)%uz

10.5. Cesium-137 is a radioactive isotope of cesium with a h&faf about 30 years.
a. Find the corresponding decay constantor cesium-137.

b. Suppose we have a bottle (which we never open) containingag2gof cesium-137.
Approximately how many grams of cesium-137 will still be fretbottle

i. after 10 years? ii. after25 years? iii. after 100 years?

10.6. (Carbon-14 datingA little background:

Most of the carbon in living tissue comes, directly or indiifg from the
carbon dioxide in the air. A tiny fraction (about one part piélion) of this
carbon is the radioactive isotope carbon-14 (which hasfdifabf approx-
imately 5,730 years). The rest of the carbon is not radieacts a result,
about one trillionth of the carbon in the tissues of a livirlgm or animal is
that radioactive form of carbon. This ratio of carbon-14 émradioactive
carbon in the air and living tissue has remained fairly can&ibecause the
rate at which carbon-14 is created (through an interactf@osmic radia-
tion with the nitrogen in the upper atmosphere) matchesdteeat which it
decays.

At death, however, the plant or animal stops absorbing cardad the
tiny amount of carbon-14 in its tissues begins to decreaséaltadioactive
decay. By measuring the current ratio of carbon-14 to thegadioactive
carbon in a tissue sample (say, a piece of old bone or wood),tlzn
comparing this ratio to the ratio in comparable living tissa good estimate
of fraction of the carbon-14 that has decayed can be madegUlsat and
our model for radioactive decay, the age of the bone or woaodthvan be
approximated.

Using the above information:
a. Find the (approximate) decay constanfor carbon-14.

b. Suppose a piece of wood came from a tree that tligdars ago. Approximately what
percentage of the carbon-14 that was in piece of wood whendbelied still remains
undecayed if

i. t =10years? ii. t=100years? iii. t =1000years?
iv. t =5000/ears? v. t = 10000Q/ears? vi. t =50000/ears?

c. Suppose a skeleton of a person found in an ancient graveiesi®a percent of the
carbon-14 normally found in (equally sized) skeletons wifilj people. Approxi-
mately how long ago did this person die?

8 put not perfectly constant — see a good article on carbonatifgl
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d. The wood in the ornate funeral mask of the Egyptian pharaafhi®ootiekoomif is
found to contain 60 percent of the carbon-14 originally i@ wood. Approximately
how long ago did Rootietootiekoomin die?

e. Let A be the amount of carbon-14 measured in a tissue samplege.gld bone or
piece of wood), and lef, be the amount of carbon-14 in the tissue when the plant or
creature died. Derive a formula for the approximate lendtimee since that plant’s
or creature’s demise in terms of the rafiq,, .

10.7. Consider the “better model” for the rabbit population intgat 10.4.

a. Solve the logistic equation derived there (equation (10atBpage 221), and verify
that the solution can be written as given in formula (10.I#page 221.

b. Assume the same values for the initial number of rabbits @eal birth rate as assumed

in section 10.4,

RO) = 2 and By = Z

Also assume that our rabbit ranch has a carrying capacitf 10,000,000 rabbits
(it's a big ranch). How many rabbits (approximately) does‘twetter model” predict
will be on our ranch

i. atthe end of the first 6 months?

ii. at the end of the first year? (Compare this to the number extilty the simple
model in exercise 10.2 a, and to the carrying capacity.)

iii. atthe end of the second year? (Compare this to the carryparis.)

c. Solve formula (10.14) on page 221 for the carrying capaciip terms of Ry, R(t),
B andt.

d. Using the formula for the carrying capacity just derivedd@assuming the ideal birth
rate By = %, as before), determine the approximate carrying capaéity rabbit
ranch under each of the following conditions:

i. You have 1,000 rabbits 6 months after starting with a singgeding pair.
ii. You have 2,000 rabbits 6 months after starting with a singgedling pair.

10.8. Suppose we have a rabbit ranch and have begun harvestiritsrdbst
R(t) = number of rabbits on the ranchmonths after beginning harvesting

and assume the following:

1. The monthly birth rate per rabbif , is % (as we derived).

2. We have no problems with overpopulation (i.e., for all picatpurposes, we
can assume the natural death rat® i}

3. Each month we harve&00 rabbits. (Assume this is done “over the month’) so
the rabbits are still reproducing as we are harvesting.)

9 from a fictional dynasty
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a. Derive the differential equation foR(t) based on the above assumptions.

b. Find any equilibrium solutions to your differential equmti(this may surprise you),
and, using crude slope fields as we did in class, analyze hewathbit population
varies over time, based on how many we had when we first begaadig.

c. Solve the differential equation. Get your final answer imgoft andRy, = R(0).

10.9. Repeat the previous problem, only, instead of harvestirigr&bbits a month, harvest
25 percent of the rabbits on the ranch each month.

10.10. Again, assume we have a rabbit ranch, and let
R(t) = number of rabbits on the ranch aftermonths.

Taking into account the problems that arise when the pojpal&ttoo large, we obtained
the differential equation

dRrR 2
where B is the monthly birth rate per rabbit (which we figured was and y was
some positive constant that would have to be determined late

This differential equation was obtained assuming we weteéaovesting rabbits.
Assume, instead, that we are harvestingabbits each month. How do we change the
above differential equation to reflect this if

a. we harvest a constant numbles of rabbits each month?

b. we harvest one fourth of all the rabbits on the ranch each mfont

10.11. Consider the following situation:

Mullock the Barbarian begins a campaign of self-enrichnveitht a horde
of 200 vicious warriors. Each week he loses 5 percent of hidéhto the
unavoidable accidents that occur while sacking and pitlggiFortunately,
the horde'’s lifestyle of wanton violence and mindless desion attracts 50
new warriors to the horde each week.

Let y(t) be the number of warriors in Mullock’s horde weeks after starting the
campaign.

a. Derive the differential equation describing hgut) changes each week. Is there also
an initial value given?

b. Towhatsize does the horde eventually grow? (Use equilibsiolutions and graphical
methods to answer this. Don't actually solve the initialtegoroblem.)

c. Solve the initial-value problem from the first part.

d. How long does it take Mullock’s horde to reach 90 percentfiital size?
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10.12. (mixing) Consider the following mixing problem:

We have a large tank initially containing 1,000 gallons ofeowater. We
begin adding a alcohol-water mix at a rate of 3 gallons perutein This
alcohol-water mix being added is 75 percent alcohol. At Hraetime, the
mixture in the tank is drained at a rate of 3 gallons per miniliteoughout
this entire process, the mixture in the tank is thoroughtjramformly mixed.

Let y(t) be the number of gallons of pure alcohol in the tankinutes after we started
adding the alcohol-water mix.

a. Find the differential equation foy(t) .

b. Sketch a crude slope field for the differential equation plstained, and find any
equilibrium solutions.

c. Using the differential equation just obtained, find the fataifor y(t) .

d. Approximately how many gallons of alcohol are in the tank at
i. t=107 ii. t=607 iii. t =1000?

e. Approximately when will the mixture in the tank be half alcoh

10.13. Redo exercise 10.12, but assuming the tank initially caist@D0 gallons of pure water
and 100 gallons of alcohol.

10.14. Consider the following mixing problem:

We have a tank initially containing 5000 gallons of pure wa#ad start
adding saltwater (containing 2 ounces of salt per gallonatew at the rate
of 2 gallons per minute. At the same time, the resulting miin the tank
is drained at the rate 2 gallons per minute. As usual, theuraxh the tank
is thoroughly and uniformly mixed at all times.

Let y(t) be the number of ounces of salt in the tank aminutes after we started adding
the saltwater.

a I. Find the differential equation foy(t) .

ii. Sketch a crude slope field for the differential equation pitiined, and find any
equilibrium solutions.

iii. Using the differential equation just obtained along witlg given initial values, find
the formula fory(t) .

b. Approximately how many ounces of salt are in the tank at
i. t=107 ii. t=507? iii. t=100?
c. Approximately when will the concentration of the salt in @@k be 1 ounce of salt
per gallon of water?

10.15. Redo exercise 10.14, but assuming that a device has beehetttto the tank that, each
minute, filters out half the salt in a single gallon from thetuare in the tank.
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10.16. Consider the following variation of the mixing problem ineggise 10.12:

We have a large tank initially containing 500 gallons of pweger, and start
adding saltwater (containing 2 ounces of salt per gallonatew) at the rate

of 2 gallons per minute. At the same time, the resulting mixtarthé tank

is drained at the rat@ gallons per minute. As usual, assume the mixture in
the tank is thoroughly and uniformly mixed at all times.

Note that the tank is being drained faster that it is beingdill

Let y(t) the number of ounces of salt in the tanktatninutes after we started adding
the saltwater.

a. Whatis the formula for the volume of the liquid in the tankninutes after we started
adding the saltwater.

b i. Find the differential equation foy(t) . (Keep in mind that the concentration of salt
in the outflow at timet will depend both on both the amount of saftdthe volume
of the liquid in the tank at that time.)

ii. Using the differential equation just obtained along witlg given initial values, find
the formula fory(t) .

c. Approximately how many ounces of salt are in the tank at
i. t=107 ii. t=607? iii. t=100?
d i. When will there be exactly 1 gallon of saltwater in the tank?

ii. Approximately how much salt will be in that gallon of saltee?

10.17. (heating/cooling)Consider the following situation:

At 2 o’clock in the afternoon, the butler reported discomgrihe dead body
of his master, Lord Hakky d’Sack, in the Lord’s personal waedlar. The
Lord had apparently been bludgeoned to death with a bottRipie 04.
At 4 o’clock, the forensics expert arrived and measuredeheperature of
the body. It was 90 degrees at that time. One hour later, tthg bad cooled
down to 80 degrees. It was also noted that the wine cellar veaistained at
a constant temperature of 50 degrees.

Should the butler be arrested for murder? (Base your answéreotime of death as
determined from the above information, Newton'’s law of lrepand cooling and the
fact that a reasonably healthy person’s body temperataeagt 98.2 degrees.)



