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Abstract

We study traveling wave solutions for Holling–Tanner type predator–prey models, where the predator 
equation has a singularity at zero prey population. The traveling wave solutions here connect the prey only 
equilibrium (1, 0) with the unique constant coexistence equilibrium (u∗, v∗). First, we give a sharp ex-
istence result on weak traveling wave solutions for a rather general class of predator–prey systems, with 
minimal speed explicitly determined. Such a weak traveling wave (u(ξ), v(ξ)) connects (1, 0) at ξ = −∞
but needs not connect (u∗, v∗) at ξ = ∞. Next we modify the Holling–Tanner model to remove its singular-
ity and apply the general result to obtain a weak traveling wave solution for the modified model, and show 
that the prey component in this weak traveling wave solution has a positive lower bound, and thus is a weak 
traveling wave solution of the original model. These results for weak traveling wave solutions hold under 
rather general conditions. Then we use two methods, a squeeze method and a Lyapunov function method, 
to prove that, under additional conditions, the weak traveling wave solutions are actually traveling wave 
solutions, namely they converge to the coexistence equilibrium as ξ → ∞.
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1. Introduction

The Holling–Tanner model is an important and well studied predator–prey model in the liter-
ature. Its simplified dimensionless form is

Ut = U(1 − U) − αUm

1 + βUm
V, Vt = rV

(
1 − V

U

)
, (1.1)

where U(t) and V (t) are the population sizes of prey and predator respectively, and the param-
eters α, m and r are positive, with β nonnegative. Here the predation rate in the prey equation is 
governed by the so called Holling type functional response. Unlike in the conventional predator–
prey models such as the Lotka–Volterra model, etc., the growth rate of the predator in (1.1) does 
not depend on predation rate explicitly, but rather obeys the logistic growth with the carrying 
capacity proportional to the prey population (with the proportional constant normalized to 1). 
Clearly, such an equation emphasizes the intra-specific competition among predators. The model 
was derived in Leslie [24], Leslie and Gower [25], May [31], and has been analyzed both for 
its mathematical properties (such as the local and global stabilities of the prey-only equilibrium 
(1, 0) and coexistence equilibrium (u∗, v∗), the existence and nonexistence of limit cycles, etc.) 
and its efficacy in describing real ecological systems such as mite/spider mite, hare/lynx, spar-
row/sparrow hawk, etc. (see [12,14,15,17,18,20,37] and the references therein).

When investigating the spatial distributions of the predator and prey species, one is led to the 
study of the diffusive version of the Holling–Tanner model:

Ut = d1�U + U(1 − U) − αUm

1 + βUm
V, Vt = d2�V + rV

(
1 − V

U

)
, x ∈ �, t > 0. (1.2)

In the case that the underlying domain � is bounded and there is no population flux across 
the boundary ∂�, the dynamics of the model has been extensively studied. The topics include 
the local and global stabilities of the constant equilibria (1, 0) and (u∗, v∗), the existence and 
non-existence of non-constant positive equilibria, Turing instability, Hopf bifurcation, etc. See, 
e.g., [6,8,14,17,18,34,35] and the references therein for details.

We are interested in the case that � is the whole space Rn. In such a situation, an important 
topic is to understand the invasion of the predator into the prey habitat and the invasion speed. 
This leads to the study of traveling wave solutions of (1.2) that connect the equilibria (1, 0) and 
(u∗, v∗), and it is widely believed that the minimal wave speed of the waves gives the invasion 
speed (see [4,10,27] and the references therein).

Although there is extensive research on traveling wave solutions of various predator–prey 
models, very few cover the case of (1.2), where the singularity (at U = 0) in the predator equation 
causes extra difficulties. Some special cases of (1.2) (with � = R

N ) have been investigated in 
[3,13]. In [13], the problem is studied when m = 1 and both diffusion coefficients d1 and d2 are 
sufficiently small, while in [3] the authors focus on the special case m = 1 and β = 0.



7784 S. Ai et al. / J. Differential Equations 263 (2017) 7782–7814
This research is partly motivated by [7], where the general case of (1.2) is considered, and 
the invasion speed is established without knowing the existence of traveling waves. It is shown 
in [7] that the invasion profile can be approximated by certain generalized transition waves, a 
notion introduced by Berestycki and Hamel [2] to describe traveling-wave-like transition phe-
nomena. Such generalized transition waves include traveling waves as special cases but whether 
the generalized transition waves in [7] are actually traveling waves is an open problem.

In this paper we aim to obtain a better understanding of the traveling wave solutions of (1.2). 
As we will explain in detail below, some parts of our arguments can cover rather general systems 
of predator–prey type, while special properties of the nonlinear functions in (1.2) will be used 
in the other parts. In view of possible applications elsewhere, we will present results that cover 
more general cases when it is convenient to do so. One general system including (1.2) as a special 
case to be considered here is given by

Ut = d1�U + B(U) − f (U)V, Vt = d2�V + rV

(
1 − V

U

)
, (1.3)

which we call a generalized Holling–Tanner predator–prey model. Clearly both (1.2) and (1.3)
are special cases of the following more general system

Ut = d1�U + F(U,V ), Vt = d2�V + G(U,V ), x ∈R
n, t > 0. (1.4)

A traveling wave solution of (1.4) is a special solution (U(x, t), V (x, t)) taking the form

U(x, t) = u(x · ν + ct), V (x, t) = v(x · ν + ct),

where ν ∈R
n is a unit vector denoting the direction of wave propagation, x · ν is the usual inner 

product in Rn, c > 0 is the wave speed, and (u(ξ), v(ξ)) with ξ = x · ν + ct satisfies, after the 
scalings

ξ/
√

d1 → ξ, c/
√

d1 → c, d2/d1 → d, (1.5)

the ODE system

cu′ = u′′ + F(u, v), cv′ = dv′′ + G(u,v), ξ ∈ R, (1.6)

and ⎧⎨
⎩

0 < u(ξ) ≤ 1, 0 < v(ξ) ≤ v0, ∀ ξ ∈ R,

(u,u′, v, v′)(−∞) = E0 := (1,0,0,0),

(u,u′, v, v′)(∞) = E∗ := (u∗,0, v∗,0),

(1.7)

where v0 > 0 is a constant.
From the viewpoint of dynamical systems, a traveling wave solution corresponds to a hete-

roclinic orbit of (1.6) in the phase space R4 of (u, u′, v, v′) that connects the two equilibria E0
and E∗ (with the extra requirement that u and v are positive). The existence of such a hetero-
clinic orbit is equivalent to the nonempty intersection of the unstable manifold Wu(E0) and the 
stable manifold Ws(E∗). In the well known paper [9], Dunbar proved the existence of traveling 
waves to a special predator–prey model in two steps. The first step is to show the existence of 
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the so-called weak traveling waves that satisfy all the conditions in (1.7) except the boundary 
condition at ξ = ∞, and the second step is to show that these weak traveling waves converge to 
E∗ as ξ → ∞.

Dunbar’s proof of the first step is complex, which involves detailed analysis of the dynamics 
of the orbits lying in the unstable manifold Wu(E0) and an application of a shooting argument 
that needs the homotopy theory in R4. Subsequently his method has been generalized and im-
proved by many authors (see e.g., [1,5,16,19,21,22,29]). In particular, Huang [22] developed a 
new shooting argument which not only simplifies Dunbar’s argument, but also produces a result 
on the existence of weak traveling waves for much more general predator–prey systems. Both 
Dunbar’s and Huang’s dynamical systems approaches depend on geometrical and topological 
properties in R4. (Other topological approaches, such as the use of the Conley index theory, can 
be found in [11,32].) On the other hand, there is an analytical approach to prove the existence of 
weak traveling waves in the literature that is based on the combination of lower and upper solu-
tions and the Schauder fixed point theorem (see [8,23,28,30,38–40] and the references therein). 
Though this approach sometimes does not produce results as general as that in [22], it has its 
own strengths: the upper and lower solutions employed are simple, so the proofs involved are 
less complex; the approach can be generalized to nonlocal predator–prey systems (such as those 
with delays [30,39]), etc.

The second step in Dunbar’s proof relies on Lyapunov functions and LaSalle’s invariance 
principle. These techniques have been used as a general approach in the literature, and unlike in 
step one where rather general systems can be handled, here the detailed techniques vary greatly 
from model to model, and many general cases are still not covered.

In this paper, we will follow a similar two steps approach. Theorem 2.1 is our first main result 
in step one on weak traveling wave solutions, which covers very general predator–prey systems 
of the form (1.4). However, it does not apply directly to the Holling–Tanner type models (1.2) and 
(1.3), since the reaction function rv(1 − v

u
) in the predator equation has a singularity at u = 0. 

To overcome this difficulty, we will replace this function by a smooth function rv(1 − v
σε(u)

) for 
(u, v) ∈ [0, ∞) × [0, ∞), where

σε(u) =
{

u, if u ≥ ε,

u + εe
1

u−ε , if 0 ≤ u < ε,
(1.8)

with ε > 0 sufficiently small, and apply our general theorem to obtain weak traveling waves 
(uε, vε) for the modified system. We then prove that uε has a positive lower bound δ independent 
of small ε > 0, which ensures that (uε, vε) is indeed a weak traveling wave solution of (1.3). 
We thus obtain our second main result Theorem 2.2, which in particular covers (1.2) with the 
parameters satisfying m ≥ 1, α > 0, β ≥ 0 and r > 0. Our choice of σε(u) in (1.8) is purely 
based on the mathematical argument; it has no biological meaning, and the particular choice is 
not important.

In step two, we will focus on the generalized Holling–Tanner model (1.3). We show that under 
additional conditions, the weak traveling waves in Theorem 2.2 are actually traveling waves. To 
prove this, apart from a Lyapunov function method, we will further develop and use a squeeze 
method introduced in [7]. As a result, we obtain two main theorems, namely, Theorems 3.1 and 
3.3, proved by these two different methods, on the existence of traveling waves for (1.3). Applied 
to the Holling–Tanner model (1.2) with m = 1 and m = 2 respectively, they yield different sets of 
conditions on α and β for the existence of traveling waves (see Theorems 3.2 and 3.4), suggesting 
that both methods have their own advantages.
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The rest of the paper is organized as follows. In Section 2, we consider weak traveling waves 
for (1.4) and (1.3), with main results Theorems 2.1 and 2.2. In Section 3, we use a squeeze 
method and a Lyapunov function method, respectively, to prove that under additional conditions, 
the weak traveling waves of (1.3) established in Theorem 2.2 are actually traveling waves (see 
Theorems 3.1 and 3.3). The results are subsequently applied to the Holling–Tanner model (1.2)
with m = 1 and m = 2 (see Theorems 3.2 and 3.4). In the Appendix, we give a detailed proof of 
Theorem 2.1 by an upper and lower solution approach.

In the rest of the paper, we are only concerned with traveling wave solutions (u(ξ), v(ξ)) with 
ξ ∈ R. For convenience, we shall use x to replace the variable ξ .

2. Weak traveling waves

In this section, we first present an existence and nonexistence result for weak traveling waves 
for a very general predator–prey system, and then apply it to (1.3) through a perturbation argu-
ment.

2.1. Weak traveling waves for a general predator–prey system

In this subsection, we shall establish the existence of weak traveling wave solutions for a 
general predator–prey system of the form (1.6).

Theorem 2.1. Let F and G be locally Lipschitz continuous on [0, ∞) × [0, ∞), and let 
F(1,0) = 0 and Gv(1, 0, ) exist with Gv(1, 0) = r > 0.

(i) Assume that there exists v0 > 0 such that

⎧⎨
⎩

G(u,0) = 0, G(u, v0) ≤ 0, ∀u ∈ [0,1],
G(u, v) ≤ rv, ∀ (u, v) ∈ [0,1] × [0, v0],
G ∈ C2([1 − δ,1] × [0, δ]) for some small δ > 0;

and

{
F(u,0) ≥ −M0(1 − u) for u ∈ [0,1] and some 0 ≤ M0 < min{d,1}r,
F (0, v) ≥ 0, F (1, v) ≤ 0, ∀v ∈ [0, v0].

Then for every c ≥ c∗ := √
4dr , (1.6) admits a solution (u, v) satisfying

⎧⎨
⎩

0 < u(x) ≤ 1, 0 < v(x) ≤ v0, ∀x ≤ 0,

0 ≤ u(x) ≤ 1, 0 ≤ v(x) ≤ v0, ∀x > 0,

(u,u′, v, v′)(−∞) = E0.

(2.1)

Furthermore, u′ and v′ are bounded on R, and

⎧⎨
⎩

u(x) > 0 in R if F(0, v) = 0, ∀v ∈ [0, v0],
u(x) < 1 in R if F(1, v) < 0, ∀v ∈ (0, v0],
v(x) < v in R if G(u,v ) < 0, ∀u ∈ [0,1].
0 0
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(ii) Assume that G is C1 in a neighborhood of (1, 0) and G(u, 0) = 0 for (u, 0) in this neigh-
borhood. Then for 0 < c <

√
4dr , (1.6) does not have a solution (u(x), v(x)) connecting (1, 0)

as x → −∞ and satisfying v(x) > 0 for sufficiently negative x.

Remark 1.

(i) The speed c∗ = √
4dr is referred to as the minimal wave speed. Using the scalings in (1.5), 

this minimal speed c∗ becomes 
√

4d2r for the system (1.4), which does not depend on the 
diffusion coefficient d1 of the prey species.

(ii) The assumptions G(u, 0) = 0 for u ∈ [0, 1] and G ∈ C2([1 − δ, 1] × [0, δ]) for some small 
δ > 0 imply that

G(u,v) ≥ rv − K[1 − u + v]v, ∀ (u, v) ∈ [1 − δ,1] × [0, δ], (2.2)

where K = max{|Guv(u, v)|, |Gvv(u, v)| : (u, v) ∈ [1 − δ, 1] × [0, δ]}. Indeed, using 
G(u, 0) = 0 for u ∈ [0, 1] and the fundamental theorem of calculus (FTC) we have, for 
(u, v) ∈ [1 − δ, 1] × [0, δ],

G(u,v) = vg(u, v) =: v
1∫

0

Gv(u, θv) dθ, g(1,0) = Gv(1,0) = r.

Applying the FTC again yields, for (u, v) ∈ [1 − δ, 1] × [0, δ],

g(u, v) = r + (u − 1)

1∫
0

gu(θ1u + 1 − θ1, θ1v)dθ1 + v

1∫
0

gv(θ1u + 1 − θ1, θ1v)dθ1, (2.3)

where gu(u, v) = ∫ 1
0 Guv(u, θv) dθ and gv(u, v) = ∫ 1

0 Gvv(u, θv)θ dθ . Clearly this implies 
(2.2)

(iii) In part (i) of the above theorem, the assumption G ∈ C2([1 − δ, 1] × [0, δ]) can be replaced 
by

G(u,v) ≥ rv − K[(1 − u)σ + vσ ]v, ∀ (u, v) ∈ [1 − δ,1] × [0, δ] (2.4)

for some δ ∈ (0, 1), σ ∈ (0, 1] and K > 0.
(iv) The linear growth assumption G(u, v) ≤ rv is the key to the minimal speed being equal 

to 
√

4dr . If G is in C2([0, 1] × [0, v0]), then (2.3) holds for (u, v) ∈ [0, 1] × [0, v0], from 
which we deduce that a sufficient condition for this linear growth condition to hold is

Guv(u, v) ≥ 0, Gvv(u, v) ≤ 0, ∀ (u, v) ∈ [0,1] × [0, v0].

(v) The condition on F(u, 0) (the rate of change of prey population without the presence of 
predator) in Theorem 2.1 (i) allows F(u, 0) to change signs over [0, 1], such as those in 
models with the strong Allee effect [33]. This condition weakens the condition F(u, 0) ≥ 0
for u ∈ [0, 1] required in [22].
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Theorem 2.1 could perhaps be proved by modifications of the arguments in [22], though we 
assume less smoothness on F and G and weaker condition on F(u, 0) than [22]. In the Appendix, 
we give a complete proof using an upper and lower solution argument.

In the next subsection, we will apply Theorem 2.1 to the generalized Holling–Tanner model 
(1.3). Though we will not go into the details, we would like to point out that it also applies to 
many other models, such as the following ones:

Beddington–DeAngelis model ([22]).

⎧⎪⎨
⎪⎩

u′′ − cu′ + u(1 − u) − αuv

a + mu + nv
= 0,

dv′′ − cv′ +
(

− μ1 − μ2v + βu

a + mu + nv

)
v = 0,

where α > 0, β > 0, a ≥ 0, m ≥ 0, n ≥ 0, μ1 > 0, μ2 ≥ 0 are constant and μ2 + n > 0.
Yodzis model ([22]).

⎧⎪⎪⎨
⎪⎪⎩

u′′ − cu′ + u(1 − u) − αu2v

1 + mu2
= 0,

dv′′ − cv′ + v
(

− μ1 − μ2v + βu2

1 + mu2

)
= 0,

where α > 0, β > 0, m ≥ 0, μ1 > 0, μ2 > 0 are constant.
SIS model ([26]).

⎧⎪⎨
⎪⎩

S′′ − cS′ + 1 − S − βSI

S + I
+ θγ I = 0,

dI ′′ − cI ′ + βSI

S + I
− γ I = 0,

where β > 0, γ > 0, and θ ∈ (0, 1] are constant.
Leslie–Gower model with strong Allee effect ([33]).

⎧⎨
⎩

u′′ − cu′ + 1

b
u(1 − u)(u − b) − βuv = 0,

dv′′ − cv′ + rv(1 − v

u
) = 0,

where β > 0, b ∈ (0, 1), and r > 0 are constant.

2.2. Weak traveling waves for the generalized Holling–Tanner model

For our analysis to follow it is convenient to write the reduced traveling wave system for (1.3)
in the following form:

u′′ − cu′ + g(u)[h1(u) − h2(u)v] = 0, dv′′ − cv′ + rv
(

1 − v

u

)
= 0, (2.5)

where r > 0, and we assume that g, h1, h2 satisfy
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(A0) :
⎧⎨
⎩

g, h1, h2 ∈ C[0,∞); gh1, gh2 are locally Lipschitz continuous on [0,∞);
g(u) > 0, h1(u) ≥ 0, ∀u ∈ (0,1];
g(0) = 0, h1(0) > 0, h1(1) = 0, h2(1) > 0.

Theorem 2.2. Assume (A0). For c < 2
√

dr , there is no weak traveling wave solution of (2.5). 
For any c ≥ 2

√
dr , (2.5) has at least one weak traveling wave solution (u, v) satisfying (2.1)

with v0 = 1; moreover, u(x) ≥ δ0 for x ∈ R, and for any 0 < δ < δ0, v(x) > δ for x ≥ x0 and 
some x0 ∈ R, where δ0 > 0 is defined in (2.7).

Proof. We first consider the modified system

u′′ − cu′ + g(u)[h1(u) − h2(u)v] = 0, dv′′ − cv′ + rv

(
1 − v

σε(u)

)
= 0, (2.6)

where c ≥ 2
√

dr and σε(u) is defined in (1.8) with ε > 0 small. Let F(u, v) = g(u)[h1(u) −
h2(u)v] and G(u, v) = rv[1 − v/σε(u)]. It is straightforward to verify that all the conditions in 
Theorem 2.1 with v0 = 1 are satisfied, and hence there is a weak traveling wave solution (uε, vε)

of (2.6) satisfying (2.1) and 0 < uε(x) < 1 and 0 < vε(x) < 1 for all x ∈ R. Applying Lemma 2.3
below we conclude that for any 0 < δ < δ0 and sufficiently small ε > 0, uε(x) > δ for all x ∈ R

and vε(x) > δ for x ≥ x0 and some x0 ∈ R. Consequently σε(uε) ≡ uε , and (u, v) := (uε, vε) is 
a weak traveling wave solution of (2.5) with the properties as stated in Theorem 2.2. �
Lemma 2.3. Assume (A0). Let

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

M1 = sup{g(u)(|h2(u)| − h1(u))/u : 0 < u ≤ 1},
ρ+

1 :=
(
c +

√
c2 + 4M1

)
/2,

M2 = r/d + c
(
|1/d − 1| + 1

)
ρ+

1 + 2M1.

Let

δ0 := sup

{
u ∈ (0,1) : sup

0≤s≤u

(
h1(s) − dM2

r
s|h2(s)|

)
> 0

}
. (2.7)

Then for any 0 < δ < δ0, there is ε0 > 0 such that for every 0 < ε < ε0, if (uε, vε) is a weak 
traveling wave solution of (2.6), then uε(x) > δ for x ∈ R, and vε(x) > δ for x ≥ x0 and some 
x0 ∈ R.

Proof. Denote

σ(u) := σε(u), F (u, v) = g(u)[h1(u) − h2(u)v], G(u, v) = rv(1 − v

σ(u)
).

Let (u(x), v(x)) be a weak traveling wave solution of (2.6). Note that 0 < u(x) ≤ 1 and 0 <
v(x) ≤ 1 for all x ∈ R. Since h1(0) > 0, we have δ0 > 0; since h2(1) > 0 and h1(1) = 0, we have 
M1 > 0 and −F(u(x), v(x))/u(x) ≤ M1 for x ∈R. We complete the proof in 5 steps.
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Step 1. Show that |u
′(x)|

u(x)
≤ ρ+

1 for all x ∈R.

Let ρ1 = u′/u. Using the equation satisfied by u we have

ρ′
1 = u′′

u
− ρ2

1 = cρ1 − F(u, v)

u
− ρ2

1 ≤ cρ1 + M1 − ρ2
1 . (2.8)

We claim that |ρ1(x)| ≤ ρ+
1 for all x. Since ρ1(−∞) = 0 and ρ+

1 is a positive constant solution 
of ρ′ = cρ + M1 − ρ2, it follows from the comparison theorem that ρ1(x) < ρ+

1 for all x ∈ R. 
Similarly, if ρ1 < −ρ+

1 occurs at some x0, then letting ρ(x) be the solution of ρ′ = cρ +M1 −ρ2

with ρ(x0) = ρ1(x0), and using the comparison theorem gives ρ1(x) ≤ ρ(x) for x ≥ x0. Note that 
cρ(x0) −M1 −ρ2(x0) < c(−ρ+

1 ) +M1 − (−ρ+
1 )2 < 0 implies ρ(x) → −∞ as x → x1 for some 

finite value x1 > x0. It follows that ρ1(x) → −∞ as x → x2 for some x2 ∈ (x0, x1], contradicting 
the fact that ρ1(x) is defined for all x ∈R. We thus conclude that |u′|/u = |ρ1| < ρ+

1 on R.

Step 2. Show that v
′(x)

v(x)
≤
(
c − √

c2 − 4dr
)

/(2d) for x ∈ R.

To show this, we note that, in the (v, v′) plane, the vector field determined by the v-equation in 

(2.6) on the line segment v′ = kv, 0 < v < 1, k =
(
c − √

c2 − 4dr
)

/(2d) points upward across 
this line, because

v′′

v′ = cv′ − G(u,v)

dkv
>

ckv − rv

dkv
= ck − r

dk
= k.

This implies that v′(x)
v(x)

< k for x ∈ R, for otherwise there would exist x0 such that v′(x)
v(x)

≥ k, and 

so v′(x)
v(x)

> k for all x > x0, yielding v(x) > v(x0)e
k(x−x0) → ∞ as x → ∞, contradicting the 

fact that v(x) < 1 for all x.

Step 3. Show that v(x)
σ (u(x))

≤ dM2
r

for x ∈R.

Let ρ = v
σ(u)

. We calculate

ρ′ = v′

σ(u)
− (σ (u))′v

(σ (u))2
=
(

v′

v
− (σ (u))′

σ(u)

)
ρ, (2.9)

and

ρ′′ =
(v′

v
− (σ (u))′

σ(u)

)
ρ′ +

[v′′

v
− σ ′(u)u′′

σ(u)
− σ ′′(u)u′ 2

σ(u)
−
(

v′

v

)2

+
(

(σ (u))′

σ(u)

)2 ]
ρ

=
(

v′

v
− σ ′(u)u′

σ(u)

)
ρ′ +

[ c

d

v′

v
− r

d
(1 − ρ) − c

σ ′(u)u′

σ(u)
+ σ ′(u)F (u, v)

σ (u)

− σ ′′(u)u′ 2

σ(u)
−
(

v′

v

)2

+
(

(σ (u))′

σ(u)

)2 ]
ρ

=
(v′

− (σ (u))′ )
ρ′ +

[ c
(

ρ′
+ σ ′(u)u′)

− r + r
ρ − c

σ ′(u)u′
v σ(u) d ρ σ(u) d d σ(u)
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+ σ ′(u)F (u, v)

σ (u)
− σ ′′(u)u′ 2

σ(u)

]
ρ −

(v′

v
+ (σ (u))′

σ(u)

)
ρ′

=
( c

d
− 2(σ (u))′

σ(u)

)
ρ′ +

[ r

d
ρ − r

d
+ c

(
1

d
− 1

)
σ ′(u)u′

σ(u)

+ σ ′(u)F (u, v)

σ (u)
− σ ′′(u)u′ 2

σ(u)

]
ρ. (2.10)

To continue the proof we need the estimates for σ(u) and its derivatives. Note that

σ ′(u) =
{

1, if u ≥ ε,

1 − ε

(u−ε)2 e
1

u−ε , if 0 ≤ u < ε,

σ ′′(u) =
{

0, if u ≥ ε,
ε

(u−ε)4 [1 + 2(u − ε)]e 1
u−ε , if 0 ≤ u < ε,

and

σ ′′′(u) =
{

0, if u ≥ ε,

− ε

(u−ε)6 [1 + 6(u − ε) + 6(u − ε)2]e 1
u−ε , if 0 ≤ u < ε.

It follows that, for u > 0 (taking ε > 0 further smaller if necessary),

max{u, εe−1/ε} ≤ σ(u) ≤ u + ε, 0 < σ ′(u) ≤ 1, 0 ≤ σ ′′(u) ≤ σ ′′(0) < 1, (2.11)

so that

σ ′(u)

σ (u)
≤ 1

u
,

σ ′′(u)

σ (u)
≤ 1

u
≤ 1

u2
.

Now using these estimates and

0 < v(x) < 1,

[
u′(x)

u(x)

]2

≤ (ρ+
1 )2 = cρ+

1 + M1,
F (u(x), v(x))

u(x)
≥ −M1 for all x,

and the definitions of M1 and M2 defined in the lemma, we obtain

ρ′′ >
( c

d
− 2(σ (u))′

σ(u)

)
ρ′ +

[ r

d
ρ − r

d
− c

∣∣∣ 1
d

− 1
∣∣∣ |u′|

u
− M1 − u′ 2

u2

]
ρ

>
( c

d
− 2(σ (u))′

σ(u)

)
ρ′ +

( r

d
ρ − M2

)
ρ. (2.12)

Multiplying (2.12) by the integration factor Q(x) := σ 2(u)e−cx/d we get for x ∈R,

[Q(x)ρ′(x)]′ > Q(x)
[ r

ρ(x) − M2

]
ρ(x). (2.13)
d
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We now show that ρ(x) < dM2/r for x ∈ R. Assume that this is false. Since ρ(−∞) = 0, 
there is a smallest x0 such that ρ(x0) = dM2/r and ρ′(x0) ≥ 0. It follows from (2.13) and 
Q(x) > 0 that ρ′(x) > 0 and ρ(x) > dM2/r for x > x0 so that the right hand side of (2.13)
is positive, and so Q(x)ρ′(x) > Q(x0)ρ

′(x0), which yields, for x > x0,

ρ′(x) >
Q(x0)

Q(x)
ρ′(x0) = σ 2(u(x0))

σ 2(u(x))
ec(x−x0)/dρ′(x0) ≥ σ 2(u(x0))ρ

′(x0)e
c(x−x0)/d .

This implies that ρ′(x) > 0 for x > x0 and ρ(x) → ∞ as x → ∞.
On the other hand, ρ′(x) > 0 for x > x0 implies v′(x)

v(x)
− σ ′(u(x))u′(x)

σ (u(x))
> 0 from (2.9). Recall 

that

|σ ′(u(x))u′(x)|
σ(u(x))

≤ |u′(x)|
u(x)

≤ ρ+
1 , ∀x ∈R.

It follows that

v′(x)

v(x)
>

σ ′(u(x))u′(x)

σ (u(x))
> −ρ+

1 for x > x0.

Combining with the estimate v
′(x)

v(x)
< c

2d
from Step 2 we obtain

|v′(x)|
v(x)

< M3 := max
{
ρ+

1 ,
c

2d

}
for x > x0.

Using these estimates we obtain, for x > x0,

∣∣∣∣
(

c

d
− 2(σ (u))′

σ(u)

)
ρ′
∣∣∣∣=
∣∣∣∣
(

c

d
− 2σ ′(u)u′

σ(u)

)(
v′

v
− σ ′(u)u′

σ(u)

)∣∣∣∣ρ ≤ M4 ρ

with

M4 :=
( c

d
+ 2ρ+

1

)
(M3 + ρ+

1 ).

We may now use (2.12) to obtain

ρ′′ >
( r

d
ρ − M5

)
ρ, M5 := M4 + M2.

Since limx→∞ ρ(x) = ∞, there is x1 > x0 such that r
d
ρ(x) > 2M5 for x > x1, hence for 

x > x1, ρ′′(x) > r
2d

ρ2(x), and so by multiplying by ρ′(x) > 0 on this inequality and then inte-
grating we obtain

(ρ′)2(x) > (ρ′(x0))
2 + r

3d
[ρ3(x) − ρ3(x1)].

Since ρ(x) → ∞ as x → ∞, we may take x2 > x1 such that for x > x2, the right hand side 

of the above inequality is bigger than r ρ3(x), yielding ρ′(x) > 1
√

r ρ3/2(x) for x > x2. This 
4d 2 d
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inequality implies that ρ(x) blows up in finite time after x2, which contradicts the definition of ρ. 
This contradiction shows ρ(x) < dM2/r for all x ∈R.

Step 4. Show that u(x) > δ for x ∈R.

Write the equation for u as u′′ − cu′ + F(u, v) = 0. Suppose for contradiction that u(x) ≤ δ

for some x ∈R. Then since u(−∞) = 1 there is a smallest x0 such that u(x0) = δ and u′(x0) ≤ 0. 
Since v(x) ≤ dM2

r
σ (u(x)) = dM2

r
u(x0) from Step 3 (here we take ε < δ), we deduce u′′(x0) =

cu′(x0) −F(δ, v(x0)) < 0 from the choice of δ and (2.7), from which we conclude that u(x) < δ, 
u′(x) < 0, and u′′(x) < 0 for all x > x0. This implies u′(x) < u′(x0 + 1) < 0 for x > x0 + 1 and 
so u(x) → −∞ as x → ∞, a contradiction. This shows u(x) > δ for x ∈ R.

Step 5. Show that there exists x0 ∈R such that v(x) > δ for all x ≥ x0.

This can be proved in the same way as in the proof of Claim 0 in the proof of Theorem 3.1, 
where γ1 there is replaced by δ. Since it is more convenient and natural to present the proof there 
in view of the context, we are not giving the details here. �

If we take

g(u) = u

1 + βum
, h1(u) = (1 − u)(1 + βum), h2(u) = αum−1, (2.14)

then (2.5) becomes

u′′ − cu′ + u(1 − u) − αum

1 + βum
v = 0, dv′′ − cv′ + rv(1 − v

u
) = 0, (2.15)

which is the reduced traveling wave system for (1.2). Clearly (A0) is satisfied when m ≥ 1, α > 0
and β ≥ 0. Moreover, g(1)h2(1) > 0. We thus have

Corollary 2.4. Suppose m ≥ 1, α > 0, r > 0 and β ≥ 0. Then for c < 2
√

dr , (2.15) has no weak 
traveling wave solution; for every c ≥ 2

√
dr , (2.15) has at least one weak traveling wave solution 

(u, v) satisfying (2.1) with v0 = 1; moreover, u(x) ≥ δ0 for x ∈ R, and for any 0 < δ < δ0, 
v(x) > δ for x ≥ x0 and some x0 ∈ R, where δ0 > 0 is defined in (2.7) with g, h1, h2 given in 
(2.14).

3. Traveling waves

In this section we focus on the generalized Holling–Tanner model (1.3). We show that under 
additional conditions, the weak traveling waves in Theorem 2.2 are actually traveling waves, that 
is, they converge to the coexistence equilibrium (u∗, v∗) as x → ∞. We will use two different 
methods. In subsection 3.1 we use a squeeze method, while in subsection 3.2 a Lyapunov function 
method is used. The obtained results are applied to the Holling–Tanner model (1.2) with m = 1
and m = 2 respectively, and we will compare the results arising from the two different methods 
at the end of subsection 3.2.
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3.1. Convergence of weak traveling waves by a squeeze method

In this subsection, we prove the following result for (2.5) by a squeeze method based on one 
introduced in [7], and then apply it to the Holling–Tanner model (2.15).

Theorem 3.1. Assume (A0) and that h1(u) > 0 and h2(u) > 0 for u ∈ (0, 1). Let h(u) := h1(u)
h2(u)

for u ∈ (0, 1] satisfy:

(A1) there is a unique u∗ ∈ (0, 1) such that h(u∗) = u∗;
(A2) lim supu→0+ h(u) > 1;
(A3) for some positive integer k0, the 2k0-th iteration h2k0(u) of h(u) does not have any fixed 

point in the interval (0, 1) other than u = u∗.

Then for every c ≥ 2
√

dr , the system (2.5) has a traveling wave solution (u, v) satisfying (1.7)
with v0 = 1 and v∗ = u∗. Furthermore, max{δ0, γ1} ≤ u(x) < 1 and 0 < v(x) < 1 for x ∈ R with 
γ1 := min{u ∈ (0, 1) : h(u) = 1} and δ0 is given in Theorem 2.2. For c < 2

√
dr , (2.5) does not 

have a traveling wave solution.

Proof. Let (u, v) be a weak traveling wave solution of (2.5) from Theorem 2.2. Then necessarily 
c ≥ 2

√
dr . Since u(x) > 0, it follows that (u(x), v(x)) for x ∈ R satisfies

u′′ − cu′ + g0(u)[h(u) − v] = 0, dv′′ − cv′ + rv

u
(u − v) = 0, (3.1)

where g0(u) = g(u)h2(u).
Using the assumption (A2) and h(u) > 0 for u ∈ (0, 1) and h(1) = 0, we define a sequence 

{γn}∞n=−1 as follows: γ−1 = 0, γ0 = 1, and, for k = 0, 1, 2, · · · ,

γ2k+1 = inf{u > γ2k−1 : h(u) < γ2k} = min{u > γ2k−1 : h(u) = γ2k},
γ2k+2 = sup{u < γ2k : h(u) > γ2k+1} = max{u < γ2k : h(u) = γ2k+1}.

It follows that {γ2k} is strictly decreasing and {γ2k+1} is strictly increasing. Using (A1) and (A3)

we have

lim
n→∞γn = u∗ exists, and 0 = γ−1 < γ1 < γ3 < · · · < u∗ < · · · < γ2 < γ0 = 1.

Note that in the case that h is strictly monotone decreasing on [0, 1], we have

γ−1 = 0, γn = h(γn+1), ∀n = −1,0,1, · · · .

We use the mathematical induction to prove the following squeezing lemma, which is the core 
of the squeeze method.

Lemma A. There exists an increasing sequence {xn}∞n=0 with xn → ∞ as n → ∞ such that, for 
x ≥ xn (n = 0, 1, 2, · · · )

γ2n+1 < u(x) < γ2n, γ2n+1 < v(x) < γ2n. (3.2)
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In the proof of Lemma A below, we will use the following fact several times: If a function 
f ∈ L1[T , ∞) has a constant sign and a bounded derivative on [T , ∞), T ∈ R, then f (∞) =
limx→∞ f (x) = 0. One could also use a PDE argument similar to that in [7] to prove Lemma A. 
The proof below uses an ODE approach, which might have independent interest.

Proof of (3.2) with n = 0. From Theorem 2.1 and g(1)h2(1) > 0 we already have 
0 < u(x) < 1, 0 < v(x) < 1 for x ∈R, and u(−∞) = 1, v(−∞) = 0.

We show that u(x) > γ1 for all x ∈R (recall that h(γ1) = 1). Assume this is false. Then there 
is a smallest T02 ∈ R such that u(T02) = γ1 and u′(T02) ≤ 0. Since 0 < v < 1 we have u′′ ≤
g0(u)[v − h(u)] = g0(u)[v − 1] < 0 at x = T02. From this and the fact h(s) > 1 for s ∈ (0, γ1)

we conclude using the first equation in (3.1) that u′′(x) < 0, u′(x) < 0 and u(x) < γ1 for all 
x < T02, yielding u(x) → −∞ as x → ∞, a contradiction. Hence, u(x) > γ1 for all x ∈ R.

We next show that v(x) > γ1 for all large x, say x ≥ x0. As will become clear below, the key 
is to prove the following claim.

Claim 0. There exists x0 ∈ R such that v(x0) > γ1.

Assume that Claim 0 is false. Then v(x) ≤ γ1 for all x ∈R. We discuss two possibilities.
Case 1. Assume there exists T03 ∈ R such that v′(T03) ≤ 0. Now using the v equation dv′′ =

cv′+ rv
u

(v−u) and v−u < v−γ1 ≤ 0 we derive v′′(x) < 0, v′(x) < 0 for all x > T03, concluding 
v(x) → −∞ as x → ∞, a contradiction.

Case 2. Assume that v′(x) > 0 for all x ∈ R. Then we would have 0 < v(∞) ≤ γ1 and 
v′(∞) = 0. We integrate the v equation over [0, ∞) to get

−dv′(0) = c[v(∞) − v(0)] +
∞∫

0

rv

u
(v − u)dx,

so that 
∫∞

0
rv
u

(v − u) dx < ∞. Since v(x)
u(x)

> v(x) > v(0) for x > 0, and v(x) − u(x) ≤ γ1 −
u(x) < 0, it follows that (v − u) ∈ L1[0, ∞). Since (v − u) < 0 and its derivative is bounded on 
[0, ∞), we have limx→∞(v−u)(x) = 0 so that u(∞) exists with u(∞) = v(∞). Since u(x) > γ1
and v(x) ≤ γ1 for x ∈ R (by the contradiction assumption), we necessarily have u(∞) =
v(∞) = γ1.

Now using the variation of constants formula for the u equation (u′)′ − cu′ = g0(u)(v −h(u))

and the L’Hopital’s rule we derive, as x → ∞,

cu′(x) → g0(u(∞))[h(u(∞)) − v(∞)] = g0(γ1)(γ0 − γ1) > 0,

which implies that u(∞) = ∞, a contradiction.
We have thus proved Claim 0. It is now easy to show v(x) > γ1 for all x > x0. Otherwise 

there is the smallest T04 > x0 such that v(T04) = γ1 and v′(T04) ≤ 0. Then the same argument 
used in the proof of Case 1 shows that v(x) → −∞ as x → ∞, a contradiction. Thus we have 
showed that

γ1 < u(x) < 1 ∀x ∈R, γ1 < v(x) < 1 ∀x > x0,

which is (3.2) with n = 0.

Proof of (3.2) for n ≥ 1 by induction. Assume that (3.2) holds for n = k with integer k ≥ 0. 
We now show that it holds for n = k + 1. We divide the proof into four steps. Namely,
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Step 1. Show that there exists T1 > xk such that u(x) < γ2k+2 for all x ≥ T1.
Step 2. Show that there exists T2 > T1 such that v(x) < γ2k+2 for all x ≥ T2.
Step 3. Show that there exists T3 > T2 such that u(x) > γ2k+3 for all x ≥ T3.
Step 4. Show that there exists T4 > T3 such that v(x) > γ2k+3 for all x ≥ T4.
After these four steps are completed, we may take xk+1 := T4 to see that (3.2) holds for 

n = k + 1, as we wanted. We now carry out these steps.

Step 1. The key to complete this step is to prove the following claim.
Claim 1: There exists T1 > xk such that u(T1) < γ2k+2.
Assume by contradiction that the claim is false. Then we have u(x) ≥ γ2k+2 and h(u(x)) ≤

h(γ2k+2) = γ2k+1 (by the definition of γ2k+2) for x ≥ xk . There are two possible cases.
Case 1. There exists a T11 ≥ xk such that u′(T11) ≥ 0. Then we have, at x = T11,

u′′ = cu′ + g0(u)[v − h(u)] ≥ g0(u)(v − γ2k+1) > 0,

from which we derive u′′(x) > 0 and u′(x) > 0 for all x > T11, yielding u(x) → ∞ as x → ∞, 
a contradiction.

Case 2. u′(x) < 0 for all x ≥ xk . Then u(∞) exists with u(∞) ≥ γ2k+2. Since u′′ is bounded 
and u′ ∈ L1[0, ∞), it follows that u′(∞) = 0. If u(∞) > γ2k+2, then since v(x) > γ2k+1 for 
x > xk , we have u′′ > cu′ + g0(u)[γ2k+1 − h(u(x))] ≥ cu′ + M1 for x > xk , where

M1 = min
u(∞)≤u≤γ2k

g0(u)[γ2k+1 − h(u)] > 0,

and an integration over [xk, x] gives u′(x) − cu(x) > u′(xk) − cu(xk) + M1(x − xk) and so 
u′(x) > M1(x − xk)/2 for all x > xk , yielding u(x) → ∞ as x → ∞, a contradiction. Hence we 
must have u(∞) = γ2k+2.

Now we show that v(∞) = h(u(∞)) = h(γ2k+2) = γ2k+1. To see this, we integrate the u
equation over [xk, ∞) to get

−u′(xk) = c(γ2k+2 − u(xk)) +
∞∫

xk

g0(u)(v − h(u)) dx,

which implies 
∫∞
xk

g0(u)(v − h(u)) dx < ∞. Since h(u) ≤ γ2k+1 for u ∈ [γ2k+2, γ2k] and 

g0(u) > 0 in (0, 1], it follows that (v − h(u)) ∈ L1[xk, ∞). As (v − h(u))(x) ≥ 0 for x > xk

and its derivative is bounded, we may conclude that limx→∞(v − h(u))(x) = 0 so that v(∞) =
h(u(∞)) = γ2k+1.

Using the variation of constants formula for the v equation (v′)′ − cv′ = rv
u

(v − u) and the 
L’Hopital’s rule we derive

cv′(x) → rv(∞)

u(∞)
[u(∞) − v(∞)] = rγ2k+1

γ2k+2
[γ2k+2 − γ2k+1] > 0,

which implies v(∞) = ∞, a contradiction. This completes our proof of Claim 1.
We are now ready to show that u(x) < γ2k+2 for all x ≥ T1. If this is false, then Claim 1 

implies there is T12 > T1 such that u′(T12) ≥ 0 and u(T12) = γ2k+2, and the same argument used 
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in the proof of Case 1 shows that u′′(x) > 0, u′(x) > 0, and u(x) > γ2k+2 for all x > T12, yielding 
u(x) → ∞ as x → ∞, a contradiction. This completes Step 1.

Step 2. Similar to step 1, the key part in this step is to show
Claim 2: There is T2 > T1 such that v(T2) < γ2k+2.
Assume that the claim is false. Then v(x) ≥ γ2k+2 for all x ≥ T1. We discuss two possible 

cases.
Case 1. There is a T21 ≥ T1 such that v′(T21) ≥ 0. Then using u(x) < γ2k+2 for x ≥ T1 we 

have, at x = T21,

dv′′ = cv′ + rv

u
(v − u) ≥ rv

u
(γ2k+2 − u) > 0,

from which we derive v′′(x) > 0 and v′(x) > 0 for all x > T21, yielding v(x) → ∞ as x → ∞, 
a contradiction.

Case 2. v′(x) < 0 for all x ≥ T1. Then we have v(∞) ≥ γ2k+2 and v′(∞) = 0. We integrate 
the v equation over [T1, ∞) to obtain

−dv′(T1) = c[v(∞) − v(T1)] +
∞∫

T1

rv

u
(v − u)dx.

Thus, 
∫∞
T1

rv
u

(v − u) dx < ∞ and consequently 
∫∞
T1

(v − u) dx < ∞. Since (v − u) ≥ 0 and its 
derivative is bounded on [T1, ∞), it follows that limx→∞(v − u)(x) = 0 so that u(∞) exists 
with u(∞) = v(∞). Since u(x) < γ2k+2 and v(x) ≥ γ2k+2 for x > T1, it follows that u(∞) =
v(∞) = γ2k+2.

Then using the variation-constants formula for the u equation (u′)′ − cu′ = g0(u)(v − h(u))

and the L’Hopital’s rule we derive

cu′(x) → g0(u(∞))[h(u(∞)) − v(∞)] = g0(γ2k+2)(γ2k+1 − γ2k+2) < 0,

which implies that u(∞) = −∞, a contradiction. This proves Claim 2.
We now make use of Claim 2 to show that v(x) < γ2k+2 for x ≥ T2. If this is false, then 

Claim 2 implies there is T22 > T2 such that v′(T22) ≥ 0 and v(T22) = γ2k+2, and the same ar-
gument used in the proof of Case 1 shows that v′′(x) > 0, v′(x) > 0, and v(x) > γ2k+2 for all 
x > T22, yielding v(x) → ∞ as x → ∞, a contradiction. This concludes Step 2.

Since Steps 3 and 4 can be carried out similarly, the details are left to the interested reader. 
This completes the proof of Lemma A.

We now continue the proof of Theorem 3.1. Since limn→∞ γn = u∗, it follows from Lemma A
that limx→∞(u(x), v(x)) = (u∗, u∗). Then applying the variation of constants formulas for both 
equations in (3.1) and the L’Hopital’s rule we obtain limx→∞(u′(x), v′(x)) = (0, 0). This shows 
limx→∞(u, u′, v, v′)(x) = E∗. Consequently, (u, v) is a traveling wave solution of (2.5), and the 
proof of Theorem 3.1 is complete. �
Remark 2. The above squeeze method extends that in [7] to a more general situation. In [7], it 
is claimed that limn→∞ γn = u∗ under the assumptions (A1) and (A2) only. We explain below 
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that even with a monotone decreasing function h(u) as in [7], assumption (A3) is still required 
for this claim to be true in general. Clearly, we have γ2k+1 ↗ γ∗ and γ2k ↘ γ ∗ for some γ∗
and γ ∗ in [0, 1], both being fixed points of the composition function h(h(u)). In the case that h
is decreasing on [0, 1], we also have γ∗ ≤ u∗ ≤ γ ∗. The following example shows that without 
(A3), it is possible that γ∗ < u∗ < γ ∗. Given s ∈ (0, 1) and ε > 0 small, let h be a smooth 
decreasing function on [0, 1] satisfying h(u) = 2s − u for s − ε ≤ u ≤ s + ε, h(u) > 2s − u for 
0 ≤ u < s − ε, and h(u) < 2s − u for u > s + ε. It is not hard to verify that for this function h, 
γ∗ = s − ε, γ ∗ = s + ε, and u∗ = s.

We now apply Theorem 3.1 to the Holling–Tanner model (2.15). We only examine the cases 
m = 1 and m = 2 which correspond to the Holling type II and III functional responses respec-
tively.

Theorem 3.2. For every c ≥ 2
√

dr , (2.15) has a traveling wave solution (u, v) satisfying

δ0 ≤ u < 1, 0 < v < 1, (u,u′, v, v′)(x) =
{

(1,0,0,0), if x = −∞,

(u∗,0, u∗,0), if x = ∞,
(3.3)

in the following cases:

(i) m = 1, 0 < α < 1 and β ≥ 0;
(ii) m = 2, and

{α > 0, 0 ≤ β < 3} or {0 < α < β2/3(3 − β1/3), 0 < β < 27}. (3.4)

Moreover, in case (i), we have the following explicit expressions for u∗ and γ1:

u∗ = 2√
(β − 1 − α)2 + 4β + 1 + α − β

, γ1 = 2(1 − α)√
(β − 1)2 + 4β(1 − α) + 1 − β

. (3.5)

Proof. Note that (2.15) can be written in the forms of (2.5) and (3.1) with g(u), h1(u) and h2(u)

given in (2.14) and

g0(u) = αum

1 + βum
, h(u) = 1

αum−1
(1 − u)(1 + βum). (3.6)

It is readily checked that (A0), (A1) and (A2) hold, and h1(u) > 0 and h2(u) > 0 for u ∈ (0, 1)

for any m ≥ 1. Below we check that (A3) holds with k0 = 1 for cases (i) and (ii) separately. We 
only consider the case β > 0 since the verifications in both cases are trivial when β = 0.

Case (i). In this case we have h(u) = 1
α
[1 + (β − 1)u − βu2] from (3.6). α < 1 implies that 

h(0) = 1
α

> 1. Since h is a quadratic function with h′(u) = 1
α
[(β − 1) − 2βu], we see that it 

has a maximum at û = β−1
2β

∈ (−∞, 1/2). So if β ≤ 1, then h′(u) < 0 for u > 0 and hence h is 
strictly decreasing in [0, 1]; if β > 1, then h is increasing in [0, û] and decreasing in [û, 1]. Since 
h(0) > 1, in either case we see that h(u) = u and h(u) = 1 have unique solutions u = u∗ ∈ (0, 1)

and u = γ1 ∈ (0, 1) respectively, with the formulas given in (3.5).
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To show (A3), we let p(u) = h(h(u)) − u. Since

h(h(u)) = 1

α

{
1 + 1

α
(β − 1)[1 + (β − 1)u − βu2] − β

α2
[1 + (β − 1)u − βu2]2

}
,

it follows that p(u) is a polynomial of degree 4 with p(±∞) = −∞. Since h(0) = 1
α

> 1, 
we have p(0) = h( 1

α
) < h(1) < 0. Since h(− 1

β
) = 0, we have p(− 1

β
) = h(0) + 1

β
= 1

α
+ 1

β
> 0. 

Since h(1) = 0, we have p(1) = h(0) −1 = 1
α

−1 > 0. We thus conclude that p has two negative 
roots lying in the intervals (−∞, − 1

β
) and (− 1

β
, 0) respectively, and two positive roots lying in 

the intervals (0, 1) and (1, ∞) respectively. Consequently, h(h(u)) has a unique fixed point in 
(0, 1) which must be u∗. Thus (A3) holds.

Case (ii). We have

h(u) = 1

αu

(
1 − u + βu2 − βu3

)
= 1

α

(1

u
− 1 + βu − βu2

)
,

h(h(u)) = 1

αh(u)

[
1 − h(u) + βh(u)2 − βh(u)3

]
.

Thus, any fixed point u ∈ (0, 1) of the function h(h(u)) satisfies

1 − h(u) + βh(u)2 − βh(u)3 = αh(u)u = 1 − u + βu2 − βu3,

that is, [u − h(u)] − β[u2 − h(u)2] + β[u3 − h(u)3] = 0. If u is a fixed point of h(h(u)) other 
than u∗, by (A2) we have h(u) �= u and hence we can divide the above identity by u − h(u) to 
obtain

[1 − βu + βu2] − βh(u)[1 − u − h(u)] = 0. (3.7)

Assume the first set of conditions in (ii) holds, i.e., α > 0 and 0 < β < 3. Assume by con-
tradiction that h(h(u)) has a fixed point ū ∈ (0, 1) different from u∗. Since ū ∈ (0, 1) we have 
h(ū)(1 − ū − h(ū)) ≤ (1 − ū)2/4. It follows from (3.7) that

[1 − βū + βū2] = βh(ū)[1 − ū − h(ū)] ≤ β

4
(1 − ū)2 = β

4
(1 − 2ū + ū2).

Simplifying gives 3ū2 + 2ū + 4/β − 1 ≤ 0. However, the condition β < 3 implies that this 
inequality does not hold. Hence (A3) holds.

Now we assume the second set of the conditions in (ii) holds. Noting that

h′(u) = 1

α

(
− 1

u2
+ β − 2βu

)
, h′′(u) = 2

α

( 1

u3
− β

)
,

we see that h′(0) = −∞ and h′(u) reaches its global maximum over the interval (0, ∞) at 
ũ = β−1/3 with h′(ũ) = (β − 3β2/3)/α. The assumption in this case implies that h′(ũ) < −1. 
Thus, h′(u) < −1 for u ∈ (0, ∞), so that h(u) is strictly decreasing on (0, ∞) with h(u) > 0
for u ∈ (0, 1), and so d

du
h(h(u)) = h′(h(u))h′(u) > 1 for u ∈ (0, 1). This yields that h(h(u))

cannot have two different fixed points in (0, 1), and thus (A3) holds. This completes the proof of 
Theorem 3.2. �
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3.2. Convergence of weak traveling waves by Lyapunov functions

In this subsection, we use a Lyapunov function and LaSalle’s invariance principle to prove the 
following result, and then apply it to the Holling–Tanner model (1.2).

Theorem 3.3. Assume (A0) and

(A′
1): h1(u) − h2(u)u = 0 has a unique solution u∗ ∈ (0, 1), h2(u

∗) > 0;

(A′
2): [h1(u) − h1(u

∗)](u − u∗) < 0, [h2(u) − h2(u
∗)](u − u∗) ≥ 0, ∀ u ∈ (0, 1] \ {u∗};

(A′
3): u∗g(u) − u(u − u∗)g′(u) > 0, ∀ u ∈ (0, 1].

Then, the system (2.5) has a traveling wave solution (u, v) satisfying (1.7) with v0 = 1 and 
v∗ = u∗ for every c ≥ 2

√
dr . It has no such solutions when c < 2

√
dr .

Proof. Let (u, v) be a weak traveling wave solution of (2.5). By Theorem 2.2, there are δ > 0
and x0 > 0 such that u(x) > δ for x ∈R and v(x) > δ for x > x0. Using a similar argument to the 
proof of Step 1 in the proof of Lemma 2.3 we can show that |u′(x)|/u(x) and |v′(x)|/v(x) are 
bounded for x ∈ R, and hence there is M > 0 such that |u′(x)| ≤ M and |v′(x)| ≤ M for x ∈ R. 
This implies that the orbit (u, u′, v, v′)(x) lies in the set �δ =: [δ, 1] × [−M, M] × [δ, 1] ×
[−M, M] for x > x0. To show that (u, u′, v, v′)(x) → (u∗, 0, v∗, 0) as x → ∞, we define a 
Lyapunov function L on (0, 1] ×R × (0, 1] ×R by

L(u,u′, v, v′) = cH(u, v) − ∂H

∂u
u′ − d

∂H

∂v
v′,

where

H(u,v) =
u∫

u∗

u − u∗

ug(u)
du + h2(u

∗)
r

v∫
v∗

v − v∗

v
dv.

Along the orbits of (2.5) with x > x0 we have

d

dx
L =

[∂H

∂u
F(u, v) + ∂H

∂v
G(u, v)

]
− ∂2H

∂u2
(u′)2 − d

∂2H

∂v2
(v′)2, (3.8)

where F(u, v) = g(u)[h1(u) − h2(u)v], G(u, v) = rv(1 − v
u
). Below we show that under the 

assumptions of the theorem,

[∂H

∂u
F(u, v) + ∂H

∂v
G(u, v)

]
< 0, ∀(u, v) ∈ (0,1] × (0,1] \ {(u∗, v∗)}, (3.9)

and

∂2H

∂u2
> 0,

∂2H

∂v2
> 0, ∀(u, v) ∈ (0,1] × (0,1] \ {(u∗, v∗)}. (3.10)

First we rewrite F(u, v) and G(u, v):



S. Ai et al. / J. Differential Equations 263 (2017) 7782–7814 7801
F(u, v) = g(u)[h1(u) − h1(u
∗) − h2(u)v + h2(u

∗)v∗)]
= g(u)[h1(u) − h1(u

∗) − (h2(u) − h2(u
∗))v − h2(u

∗)(v − v∗)],

and

G(u,v) = rv

u
[(u − u∗) − (v − v∗)].

Then, for 0 < u ≤ 1 and 0 < v ≤ 1,

∂H

∂u
F(u, v) + ∂H

∂v
G(u, v) = u − u∗

ug(u)
F (u, v) + h2(u

∗)(v − v∗)
rv

G(u, v)

= u − u∗

u

[
h1(u) − h1(u

∗) − [h2(u) − h2(u
∗)]v − h2(u

∗)(v − v∗)
]

+ h2(u
∗)

u
(v − v∗)

[
(u − u∗) − (v − v∗)

]

≤ 1

u

{
(h1(u) − h1(u

∗))(u − u∗) − h2(u
∗)(v − v∗)2

}
. (by (A′

2)) (3.11)

By (A′
2), (3.9) follows.

For 0 < u ≤ 1 and 0 < v ≤ 1, we have 
∂2H

∂v2
= h2(u

∗)v∗

rv2
> 0, and by (A′

3)

∂2H

∂u2
= ug(u) − (u − u∗)[g(u) + ug′(u)]

u2g2(u)
= u∗g(u) − u(u − u∗)g′(u)

u2g2(u)
> 0.

Thus, (3.10) follows.
It follows from (3.8), (3.9) and (3.10) that d

dx
L(u, u′, v, v′) ≤ 0 for (u, u′, v, v′) ∈ �δ , and 

equality holds only at E∗. Applying LaSalle’s invariance principle gives (u, u′, v, v′)(x) → E∗
as x → ∞. This proves Theorem 3.3. �

Next we apply Theorem 3.3 to the Holling–Tanner model (2.15), and prove the following:

Theorem 3.4. The conclusions of Theorem 3.2 hold in the following cases:
(i) m = 1, β ≥ 0, and

0 < α < ᾱ :=
{

1 + (3+2β)β
2+β

, if 0 ≤ β ≤ √
2,

β
β−1 , if β >

√
2.

(3.12)

(ii) m = 2, β ≥ 0, and

0 < α < ᾱ :=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(1 + β)
[

2
(1−β)2 + β

2

]
, if 0 ≤ β ≤ 1

3 ,

28β

(
1 − 1

3
√

3β

)
, if 1

3 < β < 3,

h1(û)
, if β > 3,
û2
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where h1(u) = (1 − u)(1 + βu2) and

û = 1

3

(
1 + 2

√
1 − 3

β

)
. (3.13)

Proof. We show that all the assumptions in Theorem 3.3 are satisfied. The assumptions 
(A0), (A′

1) and the second inequality in (A′
2) are easily verified for m ≥ 1 with g, h1 and h2

given in (2.14). It remains to verify (A′
3) and the first inequality in (A′

2). We do so only for β > 0
since the verifications in both cases are trivial for β = 0.

Case (i). In this case we have h1(u) = (1 − u)(1 + βu), which is a quadratic function with 
its maximum achieved at ū = 1

2 − 1
2β

. Thus, if β ≤ 1, then h1 is strictly decreasing in (0, ∞) so 
that (h1(u) − h1(u

∗))(u − u∗) < 0 for u ∈ (0, 1) \ {u∗}. Assume now β > 1. Note that (h1(u) −
h1(u

∗))(u − u∗) < 0 for u ∈ (0, 1) \ {u∗} is equivalent to

h1(u) > h1(u
∗), ∀u ∈ (0, u∗), h1(u) < h1(u

∗), ∀u ∈ (u∗,1).

From the graph of h1 we see that these inequalities are equivalent to h1(u
∗) < h1(0) = 1. This 

reduces to, by the definition of h1, (β −1)u∗ −β(u∗)2 < 0, that is βu∗ > β −1. Now the formula 
for u∗ gives 

√
(β − α − 1)2 + 4β > β + α − 1, and simplifying this inequality yields α <

β
β−1 . 

Thus we have showed that the first inequality in (A′
2) holds if either α > 0 and 0 ≤ β ≤ 1 or 

0 < α <
β

β−1 and β > 1.
To verify (A′

3), we note that

g(u) = u

1 + βu
, g′(u) = 1

(1 + βu)2
,

u∗g(u) − u(u − u∗)g′(u) = u

(1 + βu)2
[2u∗ + (βu∗ − 1)u].

So for (A′
3) to hold, it suffices to have (2 + β)u∗ > 1, which combined with the formula of u∗

reduces to

2(2 + β)√
(β − α − 1)2 + 4β + (α + 1 − β)

> 1,

that is, 3(1 + β) − α >
√

(β − α − 1)2 + 4β . After simplifying this inequality we find that it is 
equivalent to

α < 1 + (3 + 2β)β

2 + β
= 1 + 2β − β

2 + β
.

Finally, using the fact that for β ≥ 1,

β ≤ 1 + (3 + 2β)β ⇐⇒ β ≥ √
2,
β − 1 2 + β
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we conclude that the condition (3.12) implies (A′
3) and the first inequality in (A′

2). This com-
pletes the proof for case (i).

Case (ii). In this case we have

h1(u) = (1 − u)(1 + βu2) = 1 − u + βu2 − βu3,

h′
1(u) = −1 + 2βu − 3βu2 = −β(3u2 − 2u + 1

β
), h′′

1(u) = 2β − 6βu = 2β(1 − 3u).

Hence h′
1(u) is increasing on (0, 1/3) and decreasing on (1/3, 1). Note that h′

1(0) = −1, h′
1(1) =

−β − 1, and h′
1(

1
3 ) = −1 + 1

3β . Hence, if β ≤ 3, then h′
1(u) < 0 and so h1 is strictly decreasing 

on (0, 1], yielding the first inequality in (A′
2) (for any α > 0).

Next we show this inequality holds as well if β > 3 and α ∈ (0, ᾱ). So we assume β > 3. 
Then h′

1(u) = 0 at u = ū and u = ũ with 0 < ū < ũ < 1 given by

ū = 1

3

(
1 −

√
1 − 3

β

)
, ũ = 1

3

(
1 +

√
1 − 3

β

)
.

Moreover, h1(ū) is a local minimum and h1(ũ) is a local maximum, so that h1 is decreasing in 
(0, ū) ∪ (ũ, 1) and is increasing in (ū, ũ). Let û ∈ (ũ, 1) be such that h1(û) = h1(ū). We derive 
now that û has the formula given in (3.13). To see this, using h1(ū) = h1(û) gives (û − ū) −
β(û2 − ū2) + β(û3 − ū3) = 0, yielding 1 − β(û + ū) + β(û2 + ûū + ū2) = 0. Since h′(ū) = 0
we have 1 = 2βū − 3βū2. Inserting this into the above equation gives 2βū − 3βū2 − β(û +
ū) + β(û2 + ûū + ū2) = 0, and simplifying gives (ū − û) + (û2 + ûū − 2ū2) = 0. Removing the 
common factor ū − û gives 1 − (û + 2ū) = 0, which together with the formula of ū above leads 
to (3.13).

Now to guarantee that (h1(u) − h1(u
∗))(u − u∗) < 0 for u ∈ (0, u∗) ∪ (u∗, 1), it suffices to 

require u∗ ∈ (û, 1). This is equivalent to u∗ > û and h1(u
∗) < h1(û). Since h1(u

∗) = α(u∗)2, 
this reduces to α(u∗)2 < h1(û). On the other hand, note that u∗ is the horizontal coordinate 
of the intersection point of the graphs of h1(u) and αu2. Using these graphs we see that u∗ is 
decreasing and α(u∗)2 is increasing as α increases in the interval (0, ᾱ) with u∗ ↗ 1 as α ↘ 0
and u∗ ↘ u∗(ᾱ) = û as α ↗ ᾱ. Thus we have ᾱ(û)2 = h1(û), and so

ᾱ = h1(û)

û2
, û < u∗(α) < 1, ∀ α ∈ (0, ᾱ).

This shows that the first inequality in (A′
2) holds if β > 3 and α ∈ (0, ᾱ), as we wanted.

It remains to verify (A′
3). We have g(u) = u

1+βu2 and g′(u) = 1−βu2

(1+βu2)2 , and so

u∗g(u) − u(u − u∗)g′(u) = u
2u∗ + u(βu2 − 1)

(1 + βu2)2
. (3.14)

Note that the function u(βu2 −1) reaches its minimum on (0, ∞) at u = √
1/(3β) with the value 

− 2√
1/(3β). Hence,
3
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u∗g(u) − u(u − u∗)g′(u) ≥ 2u

(1 + βu2)2

(
u∗ − 1

3

√
1

3β

)
. (3.15)

Note that 0 < 1√
3β

< 1 when β > 1
3 . We consider three cases.

Case 1. Assume that β > 3 and 0 < α < ᾱ = h(û)/(û)2. Then from the above proof we know 
that u∗ > û for α ∈ (0, ᾱ). Using this and (3.15) we get, for u ∈ (0, 1],

u∗g(u) − u(u − u∗)g′(u) ≥ 2u

(1 + βu2)2

(
û − 1

3

√
1

3β

)

≥ 2u

3(1 + βu2)2

(
1 + 2

√
1 − 3

β
−
√

1

3β

)
> 0.

So (A′
3) holds in this case.

Case 2. Assume that 1
3 < β ≤ 3 and 0 < α < ᾱ = 28β

(
1 − 1

3
√

3β

)
. Recall when β ≤ 3, h1(u)

is decreasing on (0, 1] so that u∗ is decreasing as α increases on (0, ∞) with u∗ ↗ 1 as α ↘ 0 and 

u∗ ↘ 0 as α ↗ ∞. So to have u∗ > 1
3

√
1

3β
for 0 < α < ᾱ, it is equivalent to having u∗ = 1

3

√
1

3β

for α = ᾱ, which is equivalent to having

ᾱ = h1(u
∗)

(u∗)2
= 27βh1

( 1

3
√

3β

)
= 28β

(
1 − 1

3
√

3β

)
.

Hence, it follows from (3.15) that (A′
3) holds in the current case.

Case 3. Assume that 0 < β ≤ 1
3 and 0 < α < ᾱ = (1 + β) 

[
2

(1−β)2 + β
2

]
. In this case we have 

1√
3β

≥ 1 and u(βu2 − 1) is decreasing in [0, 1], and so u(βu2 − 1) ≥ β − 1 for u ∈ [0, 1]; thus 
from (3.14) we have

u∗g(u) − u(u − u∗)g′(u) ≥ u

(1 + βu2)2

[
2u∗ − (1 − β)

]
).

To have 2u∗ − (1 − β) > 0 for 0 < α < ᾱ, it is equivalent to having u∗ = 1
2 (1 − β) for α = ᾱ, 

yielding

ᾱ = h1(u
∗)

(u∗)2
= 4

(1 − β)2
h1

(1

2
(1 − β)

)
= (1 + β)

[
2

(1 − β)2
+ β

2

]
.

So (A′
3) holds in this case as well. This completes the proof of Theorem 3.4. �

We conclude this section by giving some comparisons of the results in Theorems 3.2 and 3.4, 
which are consequences of Theorems 3.1 and 3.3, respectively. Since Theorems 3.1 and 3.3 are 
obtained by completely different methods, we hope the comparison might reveal the strengths of 
these different methods.

For the case m = 1, Theorem 3.4 clearly covers a bigger range of the parameter α, thus giving 
a better result than Theorem 3.2. For m = 2, when β ∈ [0, 3), Theorem 3.2 gives a better result 
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(no restriction on α > 0) than Theorem 3.4; on the other hand, Theorem 3.4 covers ranges for 
β ≥ 27 which is absent in Theorem 3.2.

In conclusion, the above comparison seems to suggest that both the squeeze method and the 
Lyapunov function method have their own advantages.

4. Appendix

Here we give the proof of Theorem 2.1 by an upper and lower solution approach. We believe 
that this method should have many applications elsewhere.

We start with the definition of upper and lower solutions of (1.6), which generalizes those in 
the literature when F and G are required to satisfy monotone or quasi-monotone conditions (see 
[3,30] and references therein).

Definition. The continuous functions (u, v) and (ū, v̄) on R are called a pair of lower and upper 
solutions of the system (1.6) if they satisfy:
(i)

0 ≤ u(x) ≤ ū(x) ≤ U0, 0 ≤ v(x) ≤ v̄(x) ≤ V0, ∀ x ∈ R,

for some positive constants U0 and V0.
(ii) There exists a set D consisting of at most finitely many real numbers such that

(a) ū, u, v̄, v are in C2(R \D),
(b) The right and left limits of u′, ū′, v′, v̄′ all exist at each x ∈D and satisfy

ū′(x−) ≥ ū′(x+), u′(x−) ≤ u′(x+), v̄′(x−) ≥ v̄′(x+), v′(x−) ≤ v′(x+).

(iii) At ±∞, the first and second derivatives of ū, v̄, u, v have at most exponential growth.
(iv) For every pair of continuous functions (u, v) with u ≤ u ≤ ū and v ≤ v ≤ v̄,

⎧⎪⎪⎨
⎪⎪⎩

ū′′ − cū′(x) + F(ū(x), v(x)) ≤ 0,

dv̄′′(x) − cv̄′(x) + G(u(x), v̄(x)) ≤ 0,

u′′(x) − cu′(x) + F(u(x), v(x)) ≥ 0,

dv′′(x) − cv′(x) + G(u(x), v(x)) ≥ 0,

∀ x ∈ R \D.

Lemma 4.1. Assume that (u, v) and (ū, v̄) are a pair of lower and upper solutions of (1.6), 
where we only assume that F and G are Lipschitz continuous on [0, U0] × [0, V0]. Then there is 
a solution (u, v) of (1.6) satisfying

u(x) ≤ u(x) ≤ ū(x), v(x) ≤ v(x) ≤ v̄(x), ∀x ∈R,

and u′, u′′, v′ and v′′ are bounded on R.

Proof. Since F and G satisfy the Lipschitz condition on [0, U0] × [0, V0], there is � > 0 such 
that, for (ui, vi) ∈ [0, U0] × [0, V0], i = 1, 2,

|F(u1, v1) − F(u2, v2)| + |G(u1, v1) − G(u2, v2)| ≤ �
(
|u1 − u2| + |v1 − v2|

)
. (4.1)
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Define the functions F̂ (u, v) := F(u, v) +�u and Ĝ(u, v) = G(u, v) +�v. It follows from (4.1)
that F̂ (u, v) is nondecreasing in u ∈ [0, U0] for each fixed v ∈ [0, V0], Ĝ(u, v) is nondecreasing 
in v ∈ [0, V0] for each fixed u ∈ [0, U0], and (1.6) can be written as

u′′ − cu′ − �u + F̂ (u, v) = 0, dv′′ − cv′ − �v + Ĝ(u, v) = 0.

Now let

X = {(u, v) ∈ [C(R)]2 : u(x) ≤ u(x) ≤ ū(x), v(x) ≤ v(x) ≤ v̄(x),∀x ∈R},

and define the map T = (T1, T2) : X → [C(R)]2 by

T1(u, v)(x) = 1

λ+
1 − λ−

1

⎛
⎝ x∫

−∞
eλ−

1 (x−y) +
∞∫

x

eλ+
1 (x−y)

⎞
⎠ F̂ (u, v)(y) dy,

T2(u, v)(x) = 1

d(λ+
2 − λ−

2 )

⎛
⎝ x∫

−∞
eλ−

2 (x−y) +
∞∫

x

eλ+
2 (x−y)

⎞
⎠ Ĝ(u, v)(y) dy,

where

λ±
1 = 1

2
(c ±

√
c2 + 4�), λ±

2 = 1

2d
(c ±

√
c2 + 4d�).

It is easy to check that for each (u, v) ∈ X, (U, V ) = T (u, v) is the unique bounded solution of 
the linear equations

U ′′ − cU ′ − �U + F̂ (u, v) = 0, dV ′′ − cV ′ − �V + Ĝ(u, v) = 0,

and any fixed point of T in X gives a solution of (1.6). Therefore, it suffices to show by the 
Schauder fixed point theorem that T has a fixed point in X. To do so, we define the Banach 
space

Cρ(R,R2) = {(u, v) ∈ [C(R)]2 : ‖(u, v)‖ρ < ∞},

with the exponentially weighted norm

‖(u, v)‖ρ = sup
x∈R

|(u(x), v(x))|e−ρ|x| := sup
x∈R

[|u(x)| + |v(x)|]e−ρ|x|, 0 < ρ < min{|λ−
1 |, |λ−

2 |},

and it follows that X is a bounded, closed, and convex subset of Cρ(R, R2).
It is easily checked that T maps X into itself. Moreover, by rather standard arguments simi-

larly to those in the references [28,30,36,38,40], we can show that T is completely continuous 
on X. Thus we can apply the Schauder fixed point theorem to conclude that T has a fixed point 
(u, v) in X, which gives a solution of (1.6).
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Note that for x ∈R,

u′(x) = 1

λ+
1 − λ−

1

⎛
⎝λ−

1

x∫
−∞

eλ−
1 (x−y) + λ+

1

∞∫
x

eλ+
1 (x−y)

⎞
⎠ F̂ (u, v)(y) dy.

v′(x) = 1

d(λ+
2 − λ−

2 )

⎛
⎝λ−

2

x∫
−∞

eλ−
2 (x−y) + λ+

2

∞∫
x

eλ+
2 (x−y)

⎞
⎠ Ĝ(u, v)(y) dy.

It follows that 
∣∣u′(x)

∣∣≤ M0/(λ
+
1 − λ−

1 ) and 
∣∣v′(x)

∣∣≤ M0/[d(λ+
2 − λ−

2 )] for x ∈R, where M0 =
max{|F̂ (u, v)|, |Ĝ(u, v)| : 0 ≤ u ≤ U0, 0 ≤ v ≤ V0}. This shows that u′ and v′ are bounded on R, 
and then using the equations in (1.6) yields the boundedness of u′′ and v′′ as well. This completes 
the proof of Lemma 4.1. �

In the following two lemmas, we construct upper and lower solutions for c > c∗ = √
4dr and 

for c = c∗ respectively. Since the lower solution v to be constructed for c > c∗ goes to zero as 
c ↘ √

4dr , it is unclear whether the limit of the weak traveling wave solutions as c ↘ √
4dr is 

the trivial equilibrium (1, 0). Therefore we cannot use the usual approach of taking the limit of 
these weak traveling wave solutions (or a sequence of these solutions) to obtain a weak traveling 
wave solution for the case c = √

4dr . Instead, we construct the upper and lower solutions for 
c = √

4dr separately.
Our construction of the upper and lower solutions is inspired by those appearing in the lit-

erature, such as [3,8,40], where various special cases are considered. Here we give a unified 
approach that cover a very general class of predator–prey systems.

In view of Remark 1 (ii), under the assumptions of Theorem 2.1 part (i), the weaker require-
ment (2.4) always holds. In the lemmas below, we will only assume this less restrictive condition 
and the constants δ, σ and K from (2.4) will be used. Furthermore, by the local Lipschitz conti-
nuity of F and G, there is M > 0 such that, for (ui, vi) ∈ [0, 1] × [0, v0], i = 1, 2,

|F(u1, v1) − F(u2, v2)| + |G(u1, v1) − G(u2, v2)| ≤ M
[
|u1 − u2| + |v1 − v2|

]
. (4.2)

Lemma 4.2. Suppose all the assumptions in part (i) of Theorem 2.1 are satisfied. Let c > c∗, 
λ = (c − √

c2 − 4dr )/(2d), and M be the constant in (4.2). Choose auxiliary constants γ , β , η, 
A one by one in that order such that

1

2

(
c −

√
c2 − 4M0

)
< γ < min

{
λ,

1

2

(
c +

√
c2 − 4M0

)}
,

β > max

{(
M

cγ − γ 2 − M0

)γ /λ

,

(
1

v0

)γ /λ

,1

}
,

0 < η < σγ, −d(λ + η)2 + c(λ + η) − r > 0,

A > max

{
βγ/η,

(
1

δ

)η/λ

,

(
β

δ

)η/γ

,
K(1 + β)

−d(λ + η)2 + c(λ + η) − r

}
.
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Then define ū(x), u(x), v̄(x) and v(x) on R by

ū(x) = 1, u(x) =
{

1 − βeγx, ∀ x ≤ a1,

0, ∀x > a1,

v̄(x) =
{

eλx, ∀x ≤ a2,

v0, ∀x > a2,
v(x) =

{
eλx(1 − Aeηx), ∀x ≤ a0,

0, ∀x > a0,

where

a0 = −1

η
lnA, a1 = − 1

γ
lnβ, a2 = 1

λ
lnv0.

Then (ū, v̄) and (u, v) are a pair of upper and lower solutions of (1.6).

Proof. We first point out that since M0 < min{d, 1}r , we have 1
2

(
c−√c2 − 4M0

)
< λ = 1

2d
(c−√

c2 − 4dr ) so that γ is well defined. If d < 1, then we have M0 < dr , so this inequality is clearly 
true. If d ≥ 1, then M0 < r ≤ dr , which implies that an equivalent inequality

M0

c +√c2 − 4M0

<
r

c + √
c2 − 4dr

holds. The choice of γ yields that cγ − γ 2 − M0 > 0 so that β is well defined.
We also point out that by the definitions of a1, a2 and a0, u, v̄ and v are continuous at a1, 

a2 and a0 respectively, and a0 < a1 < min{0, a2} by the assumptions on γ , β , η, A and the 
definitions of u, v̄, v. It is clear that u(x) < ū(x) and v(x) < v̄(x) for all x ∈ R, and

u′(a1−) = −γ < 0 = u′(a1+),

v′(a0−) = −ηeλa0 < 0 = v′(a0+),

v̄′(a2−) = λv0 > 0 = v̄′(a2+).

Let (u, v) be a pair of continuous functions with u ≤ u ≤ ū and v ≤ v ≤ v̄.
Since ū ≡ 1 and F(1, v(x)) ≤ 0 by the assumptions on F , it follows that

ū′′(x) − cū′(x) + F(ū(x), v(x)) = F(1, v(x)) ≤ 0 for all x ∈R.

For x < a1, we have u(x) = 1 − βeγx , u′′(x) − cu′(x) = βγ (c − γ )eγ x , and by (4.2),

F(u(x), v(x)) ≥ F(u(x),0) − Mv(x) ≥ −M0[1 − u(x)] − Mv̄(x).

Thus, noting a1 < a2 and v̄(x) = eλx for x < a1, we obtain

u′′(x) − cu′(x) + F(u(x), v(x)) ≥ βγ (c − γ )eγ x − M0βeγx − Meλx

= βeγx[γ (c − γ ) − M0 − 1

β
Me(λ−γ )x]

≥ βeγx[γ (c − γ ) − M0 − Me(λ−γ )a1 ]
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= βeγx[γ (c − γ ) − M0 − Mβ−λ/γ ]
≥ 0, ∀x < a1,

where the last inequality is guaranteed by the assumptions on γ and β . For x > a1, since u(x) = 0
and F(0, v(x)) ≥ 0, we also have

u′′(x) − cu′(x) + F(u(x), v(x)) ≥ 0.

For x < a2, we have v̄(x) = eλx , and using G(u(x), v̄(x)) ≤ rv̄(x) we get

dv̄′′(x) − cv̄′(x) + G(u(x), v̄(x)) ≤ dv̄′′(x) − cv̄′(x) + rv̄(x) = 0.

For x > a2, we have v̄(x) = v0 so that G(u(x), v̄(x)) ≤ 0, and thus

dv̄′′(x) − cv̄′(x) + G(u(x), v̄(x)) ≤ 0.

For x < a0, since a0 < 0 and a0 < a1 < a2, we deduce

v(x) = eλx − Ae(λ+η)x, v̄(x) = eλx and 1 − u(x) = βeγx.

By the choice of A, for x < a0 we have v(x) ≤ v̄(x) ≤ eλa0 < δ, and 1 − u(x) ≤ 1 − u(x) ≤
βeγa0 < δ. Hence, for x < a0,

G(u(x), v(x)) ≥ rv(x) − K[(1 − u(x))σ + v(x)σ ]v(x)

≥ rv(x) − K[(1 − u(x))σ + v̄(x)σ ]v̄(x)

≥ rv(x) − K(βσ eσγ x + eσλx)v̄(x)

≥ rv(x) − K(β + 1)eσγ xeλx,

which together with the formula of v(x), the choice of A, a0 < 0, and 0 < η < σγ leads to

dv′′(x) − cv′(x) + G(u(x), v(x))

≥ dv′′(x) − cv′(x) + rv(x) − K(β + 1)eσγ xeλx

= e(λ+η)x{A[−d(λ + η)2 + c(λ + η) − r] − K(β + 1)e(σγ−η)x}
≥ 0.

For x > a0, we have v(x) = 0, and so dv′′(x) − cv′(x) +G(u(x), v(x)) = G(u(x), 0) = 0 by the 
assumptions on G.

Combining the above we have proved the assertions of Lemma 4.2. �
Lemma 4.3. Let the assumptions in part (i) of Theorem 2.1 hold. Suppose c := √

4dr . Let λ =
c/(2d), M1 = λev0, and M be the constant in (4.2). Choose auxiliary constants γ and β such 
that
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1

2

(
c −

√
c2 − 4M0

)
< γ < min

{
λ,

1

2

(
c +

√
c2 − 4M0

)}
,

β > max
{
e

γ
λ−γ ,

MM1

(cγ − γ 2 − M0)(λ − γ )e

}
.

There exists N0 > 0 large so that for all N ≥ N0, if we define

a2 = −1

λ
, a1 = 1

γ
ln

1

β
, a0 = − N2

M2
1

,

and

ū ≡ 1, u(x) =
{

1 − βeγx, x ≤ a1,

0, x > a1,

v̄(x) =
{

M1|x|eλx, x ≤ a2,

v0, x > a2,
v(x) =

{ (
M1|x| − N

√|x|) eλx, x ≤ a0,

0, x > a0,

then (ū, v̄) and (u, v) are a pair of upper and lower solutions of (1.6).

Proof. We first point out that γ and β are well defined. By the choice of M1, γ , β , and the defi-
nitions of a0, a1 and a2, we have u(a1) = v(a0) = 0, v̄(a2) = v0 and a0 < a1 < a2 < 0 provided 
that N is sufficiently large.

Let u and v be continuous functions on R such that u ≤ u ≤ ū and v ≤ v ≤ v̄. Combined with 
the proof of Lemma 4.2, it is sufficient to do the following three steps to confirm that ū, u, v and 
v̄ are a pair of upper and lower solutions of (1.6).

Step 1. Checking the inequalities for u. For x < a1 we have

u′(x) = −βγ eγx, u′′(x) = −βγ 2eγ x, F (u(x), v(x)) ≥ −M0[1 − u(x)] − Mv̄(x),

and so

u′′(x) − cu′(x) + F(u(x), v(x)) ≥ β(cγ − γ 2)eγ x − M0βeγx − MM1|x|eλx

= βeγx
[
(cγ − γ 2) − M0 − 1

β
MM1|x|e(λ−γ )x

]
.

Since |x|e(λ−γ )x is monotone increasing over (−∞, − 1
λ−γ

) and a1 < − 1
λ−γ

, it follows that 

|x|e(λ−γ )x ≤ 1
(λ−γ )e

for x < a1. By the choice of β , we have, for x < a1,

u′′(x) − cu′(x) + F(u, v) ≥ βeγx

[
(cγ − γ 2) − M0 − MM1

β(λ − γ )e

]
≥ 0.

Furthermore, u′(a1−) = −βeγa1 ≤ 0 = u′(a1+).

Step 2. Checking the inequalities for v. For x < a0, we have
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(v + M1xeλx)′ =
[

N

2
√−x

+ λ(−N
√−x)

]
eλx = N

[
1

2
√−x

− √−xλ

]
eλx,

and

(v + M1xeλx)′′ = N

[
− 1

4x
√−x

+ 1√−x
λ − √−xλ2

]
eλx,

and so

dv′′ − cv′ + rv = N

[ −d

4x
√−x

+ d√−x
λ − d

√−xλ2 − c

2
√−x

+ c
√−xλ

]
eλx − rN

√−xeλx

= −dN

4x
√−x

eλx.

Note that for x < a0, since a0 < 0 and a0 < a1 < a2, we have v(x) = (M1|x| − N
√|x|)eλx , 

v̄(x) = M1|x|eλx and 1 − u(x) = βeγx . For all large N and x < a0 we have v(x) ≤ v̄(x) < δ, 
and 1 − u(x) ≤ 1 − u(x) ≤ βeγa0 < δ. Hence, for such N and x,

G(u,v) ≥ rv − K[(1 − u)σ + vσ ]v
≥ rv − K[(1 − u)σ + v̄σ ]v̄
≥ rv − K

[
βeσγ x + Mσ

1 |x|σ eσλx
]
v̄

≥ rv − M1K[β + M1|x|]|x|eσγ xeλx (since x < a0 < −1, 0 < σ ≤ 1)

and

dv′′ − cv′ + G(u,v) ≥
( −dN

4x
√−x

− M1K
[
β + M1|x|

]
|x|eσγ x

)
eλx

= 1

4|x|√|x|
(
dN − M1K

[
β + M1|x|

]
4x2
√|x|eσγ x

)
eλx

≥ 1

4|x|√|x|
[
dN − 4M1K(β + M1)x

4eσγ x
]
eλx

≥ 0.

Furthermore, using v′(x) = [−M1 + N

2
√−x

+ λ(−M1x − N
√−x)]eλx , we have

v′(a0−) =
[
−M1 + N

2
√|a0|

]
eλa0 = −M1

2
eλa0 < 0 = v′(a0+).

Step 3. Checking the inequalities for v̄. For x < a2 = − 1
λ

, we have v̄(x) = −M1xeλx , and v̄′(x) =
−M1[1 +λx]eλx , so that v̄(a2) = M1/(λe) = v0 and v̄′(a2−) = 0 = v̄′(a2+). Since dv̄′′ − cv̄′ +
rv̄ = 0 and G(u, v̄) ≤ rv̄, it follows that dv̄′′ − cv̄′ + G(u, v̄) ≤ 0.

We thus conclude the proof of Lemma 4.3. �



7812 S. Ai et al. / J. Differential Equations 263 (2017) 7782–7814
Proof of Theorem 2.1. We first show (i). Applying Lemmas 4.2 and 4.3 and Lemma 4.1 with 
U0 = 1 and V0 = v0 yields the existence of a solution (u, v) of (1.6), satisfying u ≤ u ≤ ū and 
v ≤ v ≤ v̄. The definitions of u, ū, v, and v̄ imply that (u, v)(x) → (1, 0) as x → −∞, and that, 
after a translation in x, 0 < u(x) ≤ 1 and 0 < v(x) < v0 for x ≤ 0, and that 0 ≤ u(x) ≤ 1 and 
0 ≤ v(x) ≤ v0 for x > 0. Using the expressions

u′(x) = ecxu′(0) +
0∫

x

ec(x−y)F (u(y), v(y)) dy,

v′(x) = ecx/du′(0) + 1

d

0∫
x

ec(x−y)/dG(u(y), v(y)) dy,

and L’Hospital’s rule we get (u′(x), v′(x)) → 0 as x → −∞. Therefore, (u, v) is a weak travel-
ing wave of (1.6).

We next prove the remaining assertions in (i). We first show that v(x) > 0 for x > 0. If not, 
then there exists x0 > 0 such that v(x0) = 0 and v′(x0) ≤ 0. If v′(x0) < 0, then v(x) < 0 for small 
x − x0 > 0, contradicting the non-negativeness of v. So v′(x0) = 0, and by the uniqueness of the 
IVP: dV ′′ − cV ′ +G(u(x), V ) = 0, V (x0) = V ′(x0) = 0 we conclude that v ≡ 0, a contradiction 
again. Thus we have v > 0 on R. Using the same argument and the assumption that F(0, v) = 0
for v ∈ (0, v0) we can show u > 0 on R.

Assuming G(u, v0) < 0 for u ∈ [0, 1], we show that v(x) < v0 for x > 0. If not, then there 
is x1 > 0 such that v(x1) = v0 and v′(x1) ≥ 0. If v′(x1) > 0, then v(x) > v0 for all x − x1 > 0
small, contradicting that v(x) ≤ v0 for all x ∈ R. So v′(x1) = 0, and then the v equation gives 
v′′(x1) = −G(u(x1), v0)) > 0, yielding that v(x1) = v0 is a strict local minimum of v. This 
again contradicts the fact that v ≤ v0, showing that v(x) < v0 for all x ∈ R. Applying the same 
argument with the assumption that F(1, v) < 0 for v ∈ (0, v0] leads to the assertion that u(x) < 1
for all x ∈R. This shows (i).

We now show (ii). Under the assumptions, we can write in a neighborhood of (1, 0) the v
equation in (1.6) as

dv′′ − cv′ + rv + [g(u, v) − r]v = 0

where g(1, 0) = Gv(1, 0) = r and g(u, v) − r → 0 as (u, v) → (1, 0). Note that the characteristic 
equation dλ2 −cλ + r = 0 has a pair of complex roots λ = α± iβ := c/(2d) ± i

√
4dr − c2/(2d). 

Assume by contradiction there is a solution (u, v) of (1.6) satisfying (u(x), v(x)) → (1, 0) as 
x → −∞ and v(x) > 0 for sufficiently negative x. Then using the variation of constants formula 
one can show that, for sufficiently negative x0 and x,

v(x) = eα(x−x0)

{
v(x0) cosβ(x − x0) + 1

β
[v′(x0) − αv(x0)] sinβ(x − x0)

}
[1 + R(x, x0)],

where limx0→−∞ supx<x0
|R(x, x0)| = 0. (See the proof of Lemma 4.4 in [22] for details.) This 

asymptotic expression shows that v(x) changes the signs infinitely many times as x → −∞, 
a contradiction. This shows (ii), thereby completing the proof of Theorem 2.1. �
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