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New phenomena in entrepreneurship

Crowdfunding Campaigns

I One of the novelties of the emerging FinTech sector:

Founders launch a campaign on an internet-based platform for a crowd
of potential funders within limited time.

I Potentially disruptive innovation for financing a variety of new en-
trepreneurial ventures without traditional financial intermediaries.

Ways of Success

I Identification: what are the key areas of success factors for crowdfund-
ing campaigns

I Explanation: how and why the percentage of a project’s goal actually
raised is dynamically associated with dollar pledged and funder count
that reflect the signals of underlying project quality



Crowdfunding Campaign

Over a billion dollars spent by millions of individual crowdfunders

Large-scale action by the US Congress to encourage crowdfunding
as a source of capital for new ventures.

Both practice and policy continue to rapidly advance



Distribution

Little a priori basic academic knowledge of the distribution of crowd-
funding mechanisms and of successful crowdfunding if any

General Distribution



Dynamics of Mechanisms

No a priori knowledge of whether crowdfunding efforts reinforce or
contradict existing theories about how ventures raise capital and
achieve success either.
Let alone read off

I which variables are “important” in the dynamic process.
I whether crowdfunding efforts reinforce or contradict existing theories

about how ventures raise capital and achieve success.
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Hierarchy of Claims

Association

Intervention

Counterfactuals



Multivariate Identification and Interpretation

The important and growing area of entrepreneurial activity and
government action is understudied outside of the still-uncommon
analysis of particular crowdfunding efforts (Mollick, 2014).

The claim of independent association between one or more vari-
ables and outcome of interest requires adjustment for potentially
confounding variables.

Effort to adjust for confounding
I Many variables are measured in .

F The Kickstarter campaign of n=99,036 projects totaling about 1 billion
USD in pledges from 2009 to 2017.

F Raw covariates: goal, pledged, deadline, created, launched, staff-pick,
backers-count, deadline, goal, duration, latitude, longitude, time.

I A wide net is cast and multivariate models are build.

F Technical covariates: high-dimensional



Existing Methods in The Literature

As crowdfunding becomes more and more popular, many researchers
have explored various methods to understand the phenomenon.

More recently, researchers have employed various machine learning
algorithms to the study

I “black-box”, “model-free”, “model-blind”, or “data-centric”

I “function-fitting” (Darwiche, 2017): fitting data by a complex function
defined by the neural network architecture.



Machine Learning To Causal Inference

Despite failure stories (Shalev-Shwartz et al., 2017), albeit less pub-
licized, the dramatic success in machine learning has led to an explo-
sion of AI applications and increasing expectations for autonomous
systems that exhibit human-level intelligence.

The fundamental obstacles to the expectations

I adaptability or robustness
I explainability
I the understanding of causal relationships, a necessary (though not

sufficient) ingredient for achieving human-level intelligence

F a parsimonious and modular representation of environment to answer
interventional questions and counterfactual questions

F statistical methods that have desirable statistical properties while
remaining computationally feasible.

Identification of factors influencing the success rate via SPDE/GMRF
spatio-temporal approach.



Unmeasured Confounders

Unmeasured confounding is a concern in many observational studies.

Adjusting for unmeasured confounding permits us to estimate causal
effects in nonexperimental studies.

Traditional statistics is strong in devising ways of describing data
and inferring distributional parameters from sample.

Causal inference invokes non-parametric structural equations models
as a formal and meaningful language for defining causal quantities,
formulating causal assumptions, testing identifiability, and explicat-
ing many concepts used in causal discourse.



Coping with Unmeasured Confounding

Propensity score, regression and matching methods only control
for measured confounders and do not control for unmeasured con-
founders.

Approaches to unmeasured confounding control

I Randomization control trials (RCTs)— interventional design

I Instrumental variables (IVs)— observational study



Graphical Model
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SEM

SCM (Pearl, 2009)

W = fW (UW ),

A = fA(W,UA),

∆ = f∆(W,A,U∆),

Y = fY (W,A,∆,UY )

Counterfactuals Y 1 and Y 0 corresponding with interventions setting
A and ∆.

ATE

Ψ(P ) = EY 1 − EY 0

= E [E(Y |do(A = 1), ∆ = 1,W )− E(Y |do(A = 0), ∆ = 1,W )]

The SCM is nonparametric SEM (NPSEM) when the realistic as-
sumptions are involved.



Data Structures

Simple data structure: O=(L, A, Y)∼ P0 without common issues
such as missingness and censoring.

I O: realization of P0

I Oi: sample of P0

I oi: observation of P0

Complex data structure

I Censoring data structure: Ost = (L,A, T̃ ,∆)st ∼ P0.

F T: time to event (deadline)

F C: censoring time (right censoring in the USA cohort)

F T̃ = min(T,C) represents the T or C that was observed first

F ∆ = I (T ≤ T̃ ) = I(C ≥ T ): indicator that T was observed at or
before C

I Missingness data structure: O = (L,A,∆,∆Y )st with indicator ∆ of
missingness



Trajectory Modeling (TM)

The evolution of an outcome of interest over time called developmen-
tal trajectory describes the progression of any behavioral, biological
or physical phenomenon.

Representing and understanding developmental trajectories is among
the most fundamental and empirical important research topics in
the social and behavioral sciences and medicine.

To analyze the developmental trajectories,

I Nagin and Land (1993) laid out the popular statistical method called
group-based trajectory modeling (GBTM) to address issues related
to the “hot topic” of the time—the criminal career debate.

I Yu et. al. (2021) proposed network-based trajectory modeling (NBTM)
as an extension of GBTM.



STP-NBTM

STP-NBTM is obtained by assigning Gaussian priors to all elements
of the latent field that can answer complex longitudinal questions

I using heterogeneity of structural longitudinal (big, complex, and dy-
namic) data

I incorporating targeted ensemble machine learning algorithms (super
learner) to estimate quantity of interest while still maintain strong
theoretical foundation providing valid inference

I avoiding reliance on human art and unrealistic parametric models

STP-NBTM can be expressed as a hierarchical model



Hierarchical Representation

NBTM is obtained by assigning Gaussian priors to all elements of
the latent field x.

The NBTM can schematically be represented as a hierarchical model
(HM). For i = 1, 2, · · · , n,

Data Model : Yi(t)|ηi(t),θd ∼ D(ηi(t),θd),

Latent Random Field : ηi(t) = β0 +

p∑
m=1

βmxmi(t) + ωi(t),

Dynamic Process : ωi(t) =Mτ (ω(t),Φω) + ξi(t)

Regularization : Φω ∼ π1(θr),
Residual Process : ξi(t) ∼ π2(θu),

Parameters : θ = (β0,β,θd,θr,θu) ∼ π(β0,β,θd,θr,θu).



Inference Framework — three-stage hierarchical model

observations (y):

I conditionally independent given η and θ

y|η,θ ∼
∏
i

p(yi|ηi,θ).

latent field (x):

I a Gaussian Markov Random Field (GMRF) with sparse precision
matrix Q(θ)

x|θ ∼ N (0,Q−1(θ)).

hyperparameters (θ):

I Precision parameters of the Gaussian priors assigned to latent field

θ ∼ π(θ).



STP

The random variable Zst, s ∈ Dt and t ∈ T , where Dt = D(t)
representing an evolution of random sets.

The spatial locations in Dt are linked by the SPDE model object at
∀t ∈ T , while the process evolves, for example, according to an RW
process across time.



Markov Random Field

Outcomes O = (O1, · · · , Ot, · · · ) observed repeatedly from the state
of a system characterized by a Latent MRF F = (F1, F2, · · · , Ft, · · · ).

Latent F1 F2 F3 Ft

Observed O1 O2 O3 Ot

. . .. . .

. . .



Random Fields

Probability space (Ω,F ,P)

Y -valued random field (RF) is a collection of Y -valued random
variables indexed by elements in a topological space Dt, i.e.,

I a random field Y is a collection

{Yst(ω) : s ∈ Dt, t ∈ T, ω ∈ Ω}

I probabilistic model: product measure on product space.

RFs confront astronomers, physicists, geologists, meteorologists, bi-
ologists, and other natural scientists.

RFs even underlie the processes of social and economic change.



Gaussian Fields

The process {z(s), s ∈ D} is a Gaussian field if for any k ≥ 1
and any locations s1, · · · , sk ∈ D, (z(s1), · · · , z(sk))

T is normally
distributed. The mean function and covariance function (CF) of z
are

µ(s) = E(z(s)), C(s, t) = Cov(z(s), z(t)),

which are both assumed to exist for all s and t.

In the machine learning literature, the phrase “Gaussian process
models” is often used (Rasmussen and Williams, 2006).

By modern definitions, a RF is a generalization of a stochastic process
where the underlying parameter need no longer be real or integer
valued “time” but can instead take values that are multidimensional
vectors or points on some manifold (Vanmarcke, 2010).



Covariance Structure: Covariance Functions

The random effects are captured through a spatial covariance model,
especially in GF.
In most applications, one of the following isotropic CFs is used in
geostatistics:

Exponential C(h) = exp(−3h)

Gaussian C(h) = exp(−3h2)

Powered exponential C(h) = exp(−3hα), 0 < α ≤ 2

Matérn C(h) =
σ2

Γ (ν)2ν−1
(sνh)νKν(sνh).

I Kν is the modified Bessel function of the second kind and order ν > 0,
and sν is a function of ν such that the covariance function is scaled
to C(1) = 0.05.

I For similar reasons, the multiplicative factor 3 enters in the exponent
of the exponential, Gaussian and powered exponential CF, where now
C(1) = 0.04979 ≈ 0.05.



SPDE-based GMRF

A large class of random field models can be expressed as solutions to
continuous domain stochastic partial differential equations (SPDEs)
(Lindgren et al., 2011, Simpson, Lindgren, and Rue, 2012a,b) with
explicit links between the parameters of each SPDE and the ele-
ments of precision matrices for weights in a discrete basis function
representation.

Such models include those with Matérn covariance functions (Whittle,
1963).

In contrast to covariance-based models it is far easier to introduce non-
stationarity into the SPDE models because the differential operators
act locally and only mild regularity conditions are required.

Classical Gaussian random fields can be merged with methods based
on the Markov property, providing continuous domain models that
are computationally efficient, and where the parameters can be
specified locally without having to worry about positive definiteness
of covariance functions.



Fitting GMRFs to GFs

The (continuous) stationary Matérn fields fields are derived from
SPDEs

(κ2 −∆)α/2x(s)) =W(s), s ∈ Dd

The (continuous) non-stationary Gaussian fields are derived from
SPDEs

(κ(s)2 −∆)α/2(τ(s)x(s)) =W(s), s ∈ Dd

where ∆ is the Laplacian, κ > 0 is the spatial scale parameter, α
controls the smoothness, τ controls the variance, and W (s) is a
Gaussian spatial white noise processes.

The SPDE model is defined with considering the PC-prior derived
in Fuglstad et al. (2018).

The solution is a Gaussian field with Matérn covariance function
having smoothness ν = α− d

2 .



Kronecker Product Model

The most important method is to construct a Kronecker product
model, starting from a basis representation

x(s, t) =
∑
k

ψk(s, t)xk,

With each basis function is the product of a spatial and a temporal
basis function, ψk(s, t) = ψs

i (s)ψtj(t), the space-time SPDE

∂

∂t
(κ(s)2 −∆)α/2(τ(s)x(s, t)) =W(s, t), (s, t) ∈ D ×R

generates a precision matrix for the weight vector x as Q = Qt⊗Qs,
where Qs is the precision for the previous purely spatial model and
Qt is the precision corresponding to a one-dimensional random walk.



Results

Fixed effects:
mean sd Q0.025 Q0.5 Q0.975 mode

Goal -0.072 0.001 -0.074 -0.072 -0.069 -0.072
Pledged 0.095 0.001 0.092 0.095 0.098 0.095

Random effects:
mean sd Q0.025 Q0.5 Q0.975 mode

Range r 139.247 29.162 92.428 135.604 206.523 128.277
σ 0.141 0.042 0.077 0.134 0.241 0.122
ρ 0.962 0.029 0.884 0.970 0.993 0.982
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