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Introduction

e The images and graphs of FBM was one of the most things studied. We recall
that an explicite formula for the Hausdorff dimension of the images of the FBM
was given by J-P Kahane [3]. Namely

i B { di”;I(A) , d} .

where dim(.) denote the Hausdorff dimension
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Introduction

e The images and graphs of FBM was one of the most things studied. We recall
that an explicite formula for the Hausdorff dimension of the images of the FBM
was given by J-P Kahane [3]. Namely

i B { di”;(A) , d} .

where dim(.) denote the Hausdorff dimension

o Several works of J-P Kahane [3] give precise information on the rang set B"(A):

i) If dim(A)/H > d, then B"(A) is a.s. a set of positive Lebesgue measure,
i) If dim(A)/H < d, then B"(A) is a Salem set.
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Introduction

e The images and graphs of FBM was one of the most things studied. We recall
that an explicite formula for the Hausdorff dimension of the images of the FBM
was given by J-P Kahane [3]. Namely

i B { di”;(A) , d} .

where dim(.) denote the Hausdorff dimension

o Several works of J-P Kahane [3] give precise information on the rang set B"(A):

i) If dim(A)/H > d, then B"(A) is a.s. a set of positive Lebesgue measure,
i) If dim(A)/H < d, then B"(A) is a Salem set.

e Recently Peres and Sousi [1] studied fractal properties of images and graphs of
B" + f where f : [0,1] — RY is a Borel measurable function.
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They expressed the dimension of the image set (B” + f) (A) in terms of the
so-called parabolic Hausdorff dimension of the graph of f restricted to A
denoted by dimy +(Gra(f)).
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They expressed the dimension of the image set (B” + f) (A) in terms of the
so-called parabolic Hausdorff dimension of the graph of f restricted to A
denoted by dimy +(Gra(f)).

e Precisely, they stated that

dim ((B" + F)(4)) = min (Md) as.
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They expressed the dimension of the image set (B” + f) (A) in terms of the
so-called parabolic Hausdorff dimension of the graph of f restricted to A
denoted by dimy +(Gra(f)).

e Precisely, they stated that

dim ((B” + f)(A)) = min (M,d> as.
H
e It is therefore quite natural to ask the following question:

- How to extend (i) and (ii) for B" + f, according to the value of
dimwa (GI'A(f))7

This issue will be the main goal of this work.
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Preliminaries on Parabolic Hausdorff dimension
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e For3>0,FC Ry x R? and H ¢ (0, 1), the H-parabolic -dimensional
Hausdorff content is defined by

WE(F) = inf {Zéﬁ FCUa3+ 0] x (b1, i + '] .. x [y, by + 6,”]}
J
©)

where the infimum is taken over all covers of F by rectangles of the form
given above.
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e For3>0,FC Ry x R? and H ¢ (0, 1), the H-parabolic -dimensional
Hausdorff content is defined by

WE(F) = inf {Zéﬁ FCUa3+ 0] x (b1, i + '] .. x [y, by + 6,”]}
J
©)

where the infimum is taken over all covers of F by rectangles of the form
given above.

e The H-parabolic Hausdorff dimension is then defined to be

dimy y(F) = inf {5 >0:Vi(F) = o} )
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Let py be the metric defined on R, x R? by
PH((S,X), (tvy)) - max{\s - t‘H7 ”X 7yH00} V(S,X), (tvy) € R+ X Rd' (2)
We define the 3-dimensional Hausdorff content as

Hﬁ = inf {Zd:am (FC UU } (3)

where {U;} is a countable cover of F by any sets and diam(U;) denotes the diameter of a
set U; relatively to the metric py,.
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Let py be the metric defined on R, x R? by

PH((S,X), (tvy)) = max{\s - t‘H7 ”X 7yH<>O} V(S,X), (tvy) € R+ X Rd' (2)
We define the 3-dimensional Hausdorff content as

Hﬁ = inf {Zd:am :FC UU } (3)

where {U;} is a countable cover of F by any sets and diam(U;) denotes the diameter of a
set U; relatively to the metric py,.

Forany F C R, x RY the Hausdorff dimension, in the metric py, of F is defined by

dimy, (F) = inf{ﬁ L HE (F) = o}.
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Let py be the metric defined on R, x R? by

PH((37X)7 (tvy)) = max{\s - t‘H7 ”X 7yH00} V(S,X), (tvy) € R+ X Rd' (2)
We define the 3-dimensional Hausdorff content as

Hﬁ = inf {Zd:am :FC UU } (3)

where {U;} is a countable cover of F by any sets and diam(U;) denotes the diameter of a
set U; relatively to the metric py,.

Forany F C R, x RY the Hausdorff dimension, in the metric py, of F is defined by

dimy, (F) = inf{,ﬁ L HE (F) = o}.

Then, since any set U; of the forme U; = [a;, a; + §j] x {bj 1,bj1 + 5”] Lo X [bj,d, by + 5}4}
has a diameter "diam (U;) = 6” it can be shown that for any 5 > 0

HYM(F)>0 iff Wi(F)>o0. (4)
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Let py be the metric defined on R, x R? by

PH((37X)7 (tvy)) = max{\s - t‘H7 ”X 7yH00} V(S,X), (tvy) € R+ X Rd' (2)
We define the 3-dimensional Hausdorff content as

Hﬁ = inf {Zd:am :FC UU } (3)

where {U;} is a countable cover of F by any sets and diam(U;) denotes the diameter of a
set U; relatively to the metric py,.

Forany F C R, x RY the Hausdorff dimension, in the metric py, of F is defined by

dimy, (F) = inf{,ﬁ L HE (F) = o}.

Then, since any set U; of the forme U; = [a;, a; + §j] x {bj 1,bj1 + 5”] Lo X [bj,d, by + 5}4}
has a diameter "diam (U;) = 6” it can be shown that for any 5 > 0

HYM(F)>0 iff Wi(F)>o0. (4)

Hence we obtain
dimwa(F) =l dim‘,H(F). (5)
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The following proposition relates 3-dimensional capacity to the H-parabolic
Hausdorff dimension.

Proposition

Let F C R x RY be a compact set. Then we have

dimw?H(F) = sup{ﬂ 2 c/)Hﬁ/H(F) > 0} = mf{ﬂ 3 C/)H-,Jg/H(F) = 0}, (6)
where C,,, 5(.) is the B-capacity on the metric space (R x RY, pyy) defined by
—
Cpyp(F) = | inf / / M . @)
1eP(F) Jr, xrd Jr, xrd (pH(U,V))P

Here P(F) is the family of probability measure carried by F.
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The following proposition relates 3-dimensional capacity to the H-parabolic
Hausdorff dimension.

Proposition

Let F C R x RY be a compact set. Then we have

dimw?H(F) = sup{ﬂ 2 c/)H,B/H(F) > 0} = mf{ﬂ 3 C/)H-,Jg/H(F) = 0}, (6)
where C,,, 5(.) is the B-capacity on the metric space (R x RY, pyy) defined by
—
Cpyp(F) = | inf / / M . @)
HEP(F) JR, xRI JRy xRI pH(U 4 )[

Here P(F) is the family of probability measure carried by F.

The next theorem is the analogue of Frostman'’s theorem for parabolic
Hausdorff dimension.

Theorem (Peres and Sousi 2013 [1

Let F a Borel setin Ry x RY. If dimy 1;(F) > &, then there exists a Borel probability measure
w supported on F, and a constant C > 0, such that, for any (a,bq,--- ,bg) € Ry x R? and

6>0
d
" ([a7a +a < [T [bj, bj + 6”}) < Co", ®)

j=1
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Now we give a comparison result for the Hausdorff parabolic dimensions with
different parameters.

Proposition

LetF c Ry x R?and K,H € (0, 1) such that K < H. Then we have

dimer(F) Vv (g dimer(F) +1 — g) S dimw?H(F) S
)
(g dimw"K(F)) A (dimy y(F) + (H — K)d) .

Proof: Let us start by the first term in the lower inequality, let K, H such that
K < H, an immediate consequence of the definition is

dim\u‘,K(F) S dim\u#H(F).
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Now we give a comparison result for the Hausdorff parabolic dimensions with
different parameters.

Proposition

LetF c Ry x R?and K,H € (0, 1) such that K < H. Then we have

dimer(F) Vv (g dimw)K(F) +1 — g) S dim\y’H(F) S
)
(g dimw"K(F)) A (dimy y(F) + (H — K)d) .

Proof: Let us start by the first term in the lower inequality, let K, H such that
K < H, an immediate consequence of the definition is

dim\u‘,K(F) S dim\u#H(F).

For the second term in the lower inequality it suffice to show that

dimw,K(F) -1 < dimw,H(F) —1
K = H
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dimw,H(F) 7 1
H

Now let0 < e < Tandy > . Then W7"*'(F) = 0, and hence there

d
exists a cover <[a,,, an + n] X T1[bnj;bnj+ 5,‘:’]) of the set F, such that
= n>1

S <e. (10)

n>1

H/K In

Each interval [an, an + dn] can be divided into [ intervals of length 4,

d
this way we obtain a new cover ({a“a, + 6H/K] x 1 {b,j,b,j ( H/K) }) of
= 1>1
the set F which satisfies

\U;KH(F) < Z ( H/K> 22 51—K < H/K)wfm < 2e. (11)

>1 n>1

K+1

© Youssef Hakiki 10



Then we get

dimy H

Letting v |
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dim\uyK(F) <K +1,

1, the desired inequality follows



Then we get
dim\uyK(F) <K +1,

dimy H

Letting v | 1, the desired inequality follows

For the upper |nequality, let k < dimy #(F). Then by Frostman's theorem there
exists a probability measure n supported on F such that

=1

d
" ([a,a +ox [ [bj,b, + 5”]) ¥co (12)
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Then we get
dim\uyK(F) <K +1,

Letting v | M, the desired inequality follows

For the upper inequality, let & < dimy 1(F). Then by Frostman's theorem there
exists a probability measure n supported on F such that

d
o ([a,a +ox [ [bj,b, + 5”]) < Cs", 12)
=il
By some covering arguments, we can deduce that

i <[a7a +4] x ﬁ [bj7bj +5K]) <c ((Sm—d(K—H) AdnK/H) . (13)

=1
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Then we get
dim\uyK(F) <K +1,

dimy H

Letting v | 1, the desired inequality follows

For the upper |nequality, let k < dimy #(F). Then by Frostman's theorem there
exists a probability measure n supported on F such that

d
o ([a,a +ox [ [bj,b, + 5”]) < Cs", 12)
=il
By some covering arguments, we can deduce that

i <[a7a +4] x ﬁ [bj7bj +5K]) <c ((Sm—d(K—H) AdnK/H) . (13)

=1

Then the Mass Distribution Principle in the metric space (R x RY, pk) implies

that d(K — H)
. k. K+ =
dlmpK(F) Z ﬁ \Y #
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Using the fact that dimy «(F) = K x dim,, (F), it follows that
Kk < <g dimw,K(F)> A (dimy k(F) + d(H — K)) .

Therefore letting ~ 1 dimy, 4(F) the desired inequality follows.
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Using the fact that dimy «(F) = K x dim,, (F), it follows that
k< (g dimw,K(F)> A (dimy (F) + d(H — K)) .

Therefore letting s 1 dim,, 4 (F) the desired inequality follows.

Let o € (0,1),and let f : [0,1] — RY be a Borel measurable function, and A be a Borel
subset of [0, 1]. Then by projection we can deduce that

dim(A) < dimy o (Gra(f)) )

if f: [0,1] — RY is an a-Hélder continuous function, then it can be shown from a covering
argument like in previous proposition that

dimy o (Gra(f)) = dim(A) (15)
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The next proposition looks at the effect of the Holder continuity of f on the
H-parabolic Hausdorff dimension of its graph dimy 1 (Gra(f))
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The next proposition looks at the effect of the Holder continuity of f on the
H-parabolic Hausdorff dimension of its graph dimy x(Gra(f))

Let f: [0,1] — RY be an a-Hélder continuous function o < H, then we have

dim(A) < dimy 4(Gra(f)) < (5 dim(A)) A (dim(A) + (H — a)d) . (16)

(0%
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The next proposition looks at the effect of the Holder continuity of f on the
H-parabolic Hausdorff dimension of its graph dimy x(Gra(f))

Let f: [0,1] — RY be an a-Hélder continuous function o < H, then we have

dim(A) < dimy 4(Gra(f)) < (5 dim(A)) A (dim(A) + (H — a)d) . (16)

(0%

Especially, when f is (H — ¢)-Holder continuous for all e > 0 then
dim(A) = dimy 4/(Gra(f)) (17)
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A natural question that arises from the previous Proposition is whether the
upper bound is optimal ?

© Youssef Hakiki



A natural question that arises from the previous Proposition is whether the
upper bound is optimal ?

The answer is given by using the trajectories of a fractional Brownian motion B*
with Hurst index oo with oo < H
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A natural question that arises from the previous Proposition is whether the
upper bound is optimal ?

The answer is given by using the trajectories of a fractional Brownian motion B
with Hurst index o with o« < H

Theorem

Let o < H, {B(t) : t € [0, 1]} a d-dimensional fractional Brownian motion of Hurst index «
and A C [0,1] a Borel set. Then we have

dimy (Gra(B®)) = ((g dim(A)) A (dim(A) + d(H — a))) as. (18)
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A natural question that arises from the previous Proposition is whether the
upper bound is optimal ?

The answer is given by using the trajectories of a fractional Brownian motion B
with Hurst index o with o« < H

Theorem

Let o < H, {B(t) : t € [0, 1]} a d-dimensional fractional Brownian motion of Hurst index «
and A C [0,1] a Borel set. Then we have

dimy (Gra(B®)) = ((g dim(A)) A (dim(A) + d(H — a))) as. (18)
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Proof of the theorem

e The upper bound of dimy 1(Gra(B<)) follows directly from the previous
proposition.
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Proof of the theorem

e The upper bound of dimy 1(Gra(B<)) follows directly from the previous
proposition.

e For the lower bound part, there is two different cases i) dim(A) < «d and i)
dim(A) > ad:

i) If dim(A) < ad, then
(g dim(A)) A (dim(A) + d(H — a)) = g dim(A).

Let v < £ dim(A). Then by the Frostman’s Theorem there exists a
probability measure v on A such that

£ i) = /A /A Wu(ds)u(dt) FA (19)

Let 1z be the random measure defined as the image measure of v by the
map s — (s,B<(s))

A(E) = vis : (s,B°(s)) € E},
where E C Gra(B*). We will show that

du)
Eppv /H (B) == / / 7’4 /)H < ooa.s.
Ry xRY JR, xRY (pu(u, V)
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e = [ [E 7

© Youssef Hakiki

1

(max (|s — t]F, |B(t) —

B(8)lloo

))’Y/H

v(ds)u(dt).

(20)



!
o) = [ [[E | o= oot ey e
(20)

B has a stationary increments, then we have

m)| = ! v v
= 6] = [ 2| gty 00
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:
& 6] = |, |2 | s a0~ Bﬂ<s>|m>)v/”]V(ds)y(d:)’)
20

B has a stationary increments, then we have

= 6] = [ 2| gty 00

So we need the following lemma

we need the following lemma for the proof of the last theorem

There exists a constants C such that, for all s, t € (0, 1] with s # t we have

1 Ci = g~/ if ~ < Hd,
E [ ] < (21)
(max{[t — S|, [[B=(t — 5)[[})7/7 Clt — s|UH-)=1  if ~> Hd.

Since v < Hd we deduce from the previous lemma that

E[£pm(l)] <C /A .A Wl/(ds)u(dt) < o0
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Hence C,,, ~/H(Gra(B*)) > 0 a. s. and then dimy y(Gra(B)) > v a.s.
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Hence C,,, ~/H(Gra(B*)) > 0 a. s. and then dimy y(Gra(B)) > v a.s.

ii) If dim(A) > ad, then

(g dim(A)) A (dim(A) + d(H — &) = dim(A) + d(H — ).
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Hence C,,, ~/H(Gra(B*)) > 0 a. s. and then dimy y(Gra(B)) > v a.s.
ii) If dim(A) > ad, then
(g dim(A)) A (el (A d(B ) =S ) e

Let v < dim(A) + d(H — «). Then, we proceed as in (i) to prove that
Cop.r/H(Gra(B*)) > 0 a.s via the probability measure v satisfying

Ex—d(H—a) (V) < 0.

Letting v 1 (£ dim(A)) A (dim(A) + d(H — «)) finishes the proof.
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Hence C,,, ~/H(Gra(B*)) > 0 a. s. and then dimy y(Gra(B)) > v a.s.
ii) If dim(A) > ad, then

(g dim(A)) A (diT(A) < a0 SO CA) o hdn

Let v < dim(A) + d(H — «). Then, we proceed as in (i) to prove that
Cop.r/H(Gra(B*)) > 0 a.s via the probability measure v satisfying

57,(1(/.1,&)(1/) SSJCON
Letting v 1 (£ dim(A)) A (dim(A) + d(H — «)) finishes the proof.

As a consequence, we have the following result

Corollary

Let o < H, {B*(t) : t € [0, 1]} a fractional Brownian motion of Hurst index ccand A C [0, 1]
a Borel set. Then we have

dimy y (Gra(B*)) > Hd a.s <= dim(A) > od. (22)
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Fractional Brownian motion with deterministic drift

First, we recall some results for the Brownian motion.
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Fractional Brownian motion with deterministic drift

First, we recall some results for the Brownian motion.
Let (Bt)ic[0,1 be the BM plane, and X, be the Lebesgue measure on R?, then:

Theorem 1 (Lévy 1940 )

P.a.s we have \,(B([0,1]) = 0.
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Fractional Brownian motion with deterministic drift

First, we recall some results for the Brownian motion.
Let (Bt)ic[0,1 be the BM plane, and X, be the Lebesgue measure on R?, then:

Theorem 1 (Lévy 1940 )

P.a.s we have \,(B([0,1]) = 0.

Let now (B:):>o the d-dimensional BM such that d > 2, then:

Theorem 2 (Taylor 1952)

PP.a.s. pour tout A C [0, c0) we have #?(B(A)) = 0.
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Cameron martin theorem

Let f : [0,1] — R? be a continuous function and (B¢):>o be the BM on R?. we
denote by D[0, 1] the Dirichlet space defined by

D[0,1] = {f € C[0,1] : 3g € L?[0,1] t.q. f(t) = /Otg(s)ds,Vt = [0,1]}
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Cameron martin theorem

Let f : [0,1] — R? be a continuous function and (B¢):>o be the BM on R?. we
denote by D[0, 1] the Dirichlet space defined by

D[0,1] = {f € C[0,1] : 3g € L?[0,1] t.q. f(t) = /Otg(s)ds,Vt = [0,1]}

Let us denote by ILg and LLg, r the laws of B and B + f respectively.

Theorem (Cameron-Martin 1944)

If f € D[0, 1], then the distributon Lz and LLg., ¢ are equivalent.

Hence, if f € D[0, 1], then the results of Levy and Taylor still hold for B + f also.

© Youssef Hakiki 19



Theorem (Gravensen 1982[4]

Forall 0 < o < 1/2, there is an a-Hdlder continuous function f : R, — R? such that
P{X\2(B +f)[0,1]] > 0} > 0.

© Youssef Hakiki
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Theorem (Gravensen 1982[4]

Forall 0 < o < 1/2, there is an a-Hdlder continuous function f : R, — R? such that
P{X\2(B +f)[0,1]] > 0} > 0.

Now, let (B"(t))t>0 be the d-dimentionnal fractional Brownian motion, J-P
Kahane proved the following result
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Theorem (Gravensen 1982[4]

Forall 0 < o < 1/2, there is an a-Hdlder continuous function f : R, — R? such that
P{X\2(B +f)[0,1]] > 0} > 0.

Now, let (B(t))i>0 be the d-dimentionnal fractional Brownian motion, J-P
Kahane proved the following result

Theorem (J-P Kahane [3

Let A be a Borel subset of [0, 1], if dim(A) > Hd then

Ag (BH(A)) >0 as.
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Theorem (Gravensen 1982[4]

Forall 0 < o < 1/2, there is an a-Hdlder continuous function f : R, — R? such that
P{X\2(B +f)[0,1]] > 0} > 0.

Now, let (B"(t))t>0 be the d-dimentionnal fractional Brownian motion, J-P
Kahane proved the following result

Theorem (J-P Kahane [3

Let A be a Borel subset of [0, 1], if dim(A) > Hd then

Ag (BH(A)) >0 as.

Question:
e Can we extend the previous result of Kahane to B + f under the weak
condition dimy y (Gra(f)) > Hd?

© Youssef Hakiki
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Theorem

Let {B"(t) : t € [0,1]} be a d-dimensional FBM of Hurst index H € (0,1). Let f : [0,1] — RY
be a Borel measurable function and let A C [0, 1] be a Borel set. If dimy y(Gra(f)) > Hd,
then

M((B" +£)(A) >0 as.

© Youssef Hakiki
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Theorem

Let {B"(t) : t € [0,1]} be a d-dimensional FBM of Hurst index H € (0,1). Let f : [0,1] — RY
be a Borel measurable function and let A C [0, 1] be a Borel set. If dimy y(Gra(f)) > Hd,
then

M((B" +£)(A) >0 as.

The idea is to find an appropriate random probability measure 1., supported on
(B +f)(A) and
Hw << >\d7

for P-almost all w € Q.
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Theorem

Let {B"(t) : t € [0,1]} be a d-dimensional FBM of Hurst index H € (0,1). Let f : [0,1] — RY
be a Borel measurable function and let A C [0, 1] be a Borel set. If dimy y(Gra(f)) > Hd,
then

M((B" +£)(A) >0 as.

The idea is to find an appropriate random probability measure 1., supported on
(B +f)(A) and
Hw << >\d7

for P-almost all w € Q.
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Differentiation's method

Let Y = (Y(t))icpo,1 be an R%valued stochastic process and v is a positive
measure on [0, 1]. The occupation measure of the sample path
[0,1] 3t — Y(t)(w) € R is defined by

py(E) :==v{t€[0,1]: Y(t) € E},

where E c RY is a Borel set
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Differentiation's method

Let Y = (Y(t))icpo,1 be an R%valued stochastic process and v is a positive
measure on [0, 1]. The occupation measure of the sample path
[0,1] 3t — Y(t)(w) € R is defined by
py(E) :=v{t€[0,1] : Y(t) € E},
where E  RY is a Borel set

A simple modification of the differentiation’s method allow to give the following
Lemma
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Differentiation's method

Let Y = (Y(t))icpo,1 be an R%valued stochastic process and v is a positive
measure on [0, 1]. The occupation measure of the sample path
[0,1] 3t — Y(t)(w) € R is defined by

wy(E) :=v{te[0,1]: Y(t) € E},

where E c RY is a Borel set

A simple modification of the differentiation’s method allow to give the following
Lemma

The following assertions are equivalent:

1. py << Ag a.s. with %(.) €L2(M\g ®P).
d

2. limint r’d/A/A:IF’{HY(s) —Y@)I| <} du(s) du(t) < o.
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Proof of our Theorem

e Let A C [0,1] and assume that 7 := dimy 1(Gra(f)) > Hd. It follows from th
parabolic Frostman'’s theorem that for x € (Hd, n) there exists a Borel probability
measure o supported on Gra(f) and C > 0 such that

d
o ([a,a +61x ] [bj,bj + 5”}) < ol (23)

J=1

foralla € A, bs,...,b, € R%and all § € (0,1].
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Proof of our Theorem

e Let A C [0,1] and assume that 7 := dimy 1(Gra(f)) > Hd. It follows from th
parabolic Frostman'’s theorem that for x € (Hd, n) there exists a Borel probability
measure o supported on Gra(f) and C > 0 such that

d
o ([a,a +0]x [ [bj,bj + 5”]) < C§", (23)
=i

foralla € A, bs,...,b, € R%and all § € (0,1].

e Let v be the measure defined on A by v = o o P;", where P; is the projection
mapping on A, i.e. P1(s,f(s)) = s.
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Proof of our Theorem

e Let A C [0,1] and assume that 7 := dimy 1(Gra(f)) > Hd. It follows from th
parabolic Frostman'’s theorem that for x € (Hd, n) there exists a Borel probability
measure o supported on Gra(f) and C > 0 such that

d

o ([a,a +0]x [ [bj,bj +5H]) < CoP, (23)
=il

foralla € A, bs,...,b, € R%and all § € (0,1].

e Let v be the measure defined on A by v = o o P;", where P; is the projection
mapping on A, i.e. P1(s,f(s)) = s.

e Then to achieve our purpose it is enough to verify the second assertion of the
last Lemma for the process Y = B +f.
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Indeed fors,t € Aandr > 0, we have

P{II(B" +f)(s) - (B" + N(O)ll < r} =

1 oo [y = F(O) + £
/HYII<r p(

(2m)?72]t — s|Hd 2|t — s[2H

© Youssef Hakiki
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Indeed fors,t € Aandr > 0, we have

P{IB" +1)(s) - (B + NO)ll < r} =
1 (= FO+FEIPY .
/Hy||<re P( ) %

(2m)d/2|t — s|Hd 2|t — s|2H
Then using Fubini’'s theorem we obtain, for any fixed t € A and r > 0, that

/AIP’{H(BH +1)(s) — (B + N(O) <1} du(s) =

L 1 ly — () + f(s)|]?
(2m)2 /ny||<r/A Jt—sppa &P (7W) du(s)dy

/ lly — (1) + (s)||?
240057 WD _ly = f®) +f(s)II?
) I\Syﬁgr//A |t — s|fd B4 ( 2]t — s du(s),

=I(y,(tf(t)))

where C is a positive constant depending only on d.
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For any fixed y € {|ly|| < r} and (t,f(t)) € Gra(f), we have the following
decomposition

[y, (t,£(1)) = h (v, (L £(1)) + 2 (y, (£, £(1))) ,

where

h(y, (t.£(1))) =

1 ly=f Q)12
f{seA lly—F()+(5) | <C1 [s—t[H/Tlog s } s — t[e exp( 2ls—t|2H ) dv(s) =

1 ly— f(r)+f ()1
f{(s,f(s))eGrA(f):|\y7f(t)+f(s)|\§C1 Is—t|H+/Tlogls—tl] } s — [ <P ( 25— ) du(s,f(s)).
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and

I (y, (t.£(1))) =

1 lly—F()+£(s)]I2 i
f{seA:||y7f(t)+f(s)||>C1 |s—t/H\/TTog sl } s — 1| e (7 2ls—t|2A ) dv(s) =

1 =10 +()1?
f{(s,f(s))eGrA(f):|\y7f(r)+f(s)|\>C1 Is—tl"y/Tiog Js—tl1 } s — t]d EXP (_ 2[s—t]2H ) du(s,f(s)),

where C; is a positive constant which will be chosen later.
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We first show that

© Youssef Hakiki

sup
v, (@& F))E{llyll<r} x Gra(f)

h(y, (t,1(t))) < +oc.
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We first show that
sup h(y, (t,f(t)) < +oo.
v, (tF () eyl <r} xGra(f)

By the Frostman’s inequality (23) we can verify that the measure v is no atomic.
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We first show that

sup h(y, (t,f(t)) < +oo.
v, (tF () eyl <r} xGra(f)

By the Frostman’s inequality (23) we can verify that the measure v is no atomic.

Then we split the integral /1(y, (t, f(t))) into the regions
{s€A:27" < |t —s| < 2'"}, we obtain that

h(y, (t, f(t <ZandU (s, f(s)) : If(s) — f(t) +yll < C |S_t|H\/“°g|3_tH

2 < |6 =1

—nH
v Z 25 ) (5. s)) . (&) =+ < C:27"
2" < st < 2"

where C, = C; 2" /log(2).
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Now, for n > 1, we set

Sn (v, (t:£(1)) =

© Youssef Hakiki

(s,f(s)) € Gra(f) :

ly = f(t) + f(s)| < C227™v/n

iz 5= < 2
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Now, for n > 1, we set

S0 (v, (1 F(1)) = 4 (5.(5)) € Gra(r) : 1V~ O+ <2277V
iz 5= < 2

Applying the Frostman's condition (23) and some covering arguments, we can
deduce that

sup a(Sn (y, (t, f(t))) < Can?/227"",
(AN E LIyl <ry xGra(F)
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Now, for n > 1, we set

S0 (v, (1 F(1)) = 4 (5.(5)) € Gra(r) : 1V~ O+ <2277V

iz 5= < 2
Applying the Frostman's condition (23) and some covering arguments, we can
deduce that

sup a(Sn (y, (t, f(t))) < Can?/227"",
(AN E LIyl <ry xGra(F)

Therefore we get

sup B (5 FER TS Ca DY | 25 S EVn 2 cve0 [ 29(75)
W, (tF))ELllyll <r}xGra(f) =

where C4 depends on d and H only.
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For the second term I, (y, (t, f(t))) we have

© Youssef Hakiki
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For the second term I, (y, (t, f(t))) we have

I (y, (t,f()) < Y 2™ /
"Z:; {175)=F(011>Cr ]s—t1H/Tlog [s 1, 2= <|s—t|<2!~"}

o 2
i <_%) do (s, f(s))

2
=1

<3 ZZﬂHdexp (_(; (n— 1)|n2> X
n=1

Bl sy Tl H(O sl = 1C s — t|\/Tlog [s — 1]

71 i< 2
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For the second term I, (y, (t, f(t))) we have

RO, (LAO) <> 2" |
; {If&)—fO1>C1 ls—t1H\/Tlogls—tlI, 2-"<|s—t|<2'=n}

V. 2
exp (_ Hf(s)z‘t _f(;)|2:'y“ ) do (S, f(S))

2
=1

< ZZ”HdeXp (—(; (n— ‘I)In2> X
n=1

Bl sy Tl H(O sl = 1C s — t|\/Tlog [s — 1]

2atlteic . T E ROl
Thus, for C; > V2Hd we obtain

oo
sup B i) eele?/2 >3 251 < 4ol (28
- (tFONELlIYII<r} xGra(f) e
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Now putting all this together yields

exp(
(y,(t,f(t)))e{uylkr}xerA /IS i

© Youssef Hakiki

lly = () + f(s)11?
W

) dv(s) < co.
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Now putting all this together yields

ly — () + f(S)HZ)
ex dv(s) < co.
A<} xGra(t / ek g p( 2ls —t|2H (=)
Thus we get from (24) that
im inf - // 1(B" + f)(s) — (”+f)(t)||<r} du(s) du(t) < co.
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Now putting all this together yields

/ exp( lly — f(t)+f(S)H2) O
0.(tF(1)) e{uyn<r}xerA Rl ¢ 2|5 2[Es

Thus we get from (24) that

im inf - // 1(B" + £)(s) — (”+f)(t)||<r} du(s) du(t) < co.

We can therefore state from Lemma 22 that the occupation measure vy ¢ is
absolutely continuous with respect to the Lebesgue measure A4 a.s. Hence
A (B +f) (A) > 0 a.s. which finishes the proof.
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Example

Let o € (0,1) such that a < H. Let B~ be a fractional Brownian motion independent to B".
Then for any Borel set A C [0, 1] such that dim(A) > a.d, it is known from (22) that all the

trajectories of B> are satisfying the condition
dim\y"H (GFA (BQ)) > Hd.

This gives some examples of d
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Another criterion due to Berman (often easier to apply) tells us that:

e vy has a density d"Y( ) € L*(A\g ® PP) if and only if

/R : / / '<" 0 W) du(s) du(t) df < co. 27)
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Another criterion due to Berman (often easier to apply) tells us that:

e vy has a density d"Y( ) € L*(A\g ® PP) if and only if

/R : / / '<" 0 W) du(s) du(t) df < co. 27)

However, we were unable to apply it. Indeed, a simple calculation using
characteristic function of Gaussian random vector yields

2H 2
E (ei<e.,(B”+f>(s>—<B”+f)(r)>) = OFOFO) gy (7 |s — l’|2 191l ) .
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Another criterion due to Berman (often easier to apply) tells us that:

e vy has a density d"Y( ) € L*(A\g ® PP) if and only if

/R : / / '<9 0 W) du(s) du(t) df < co. 27)

However, we were unable to apply it. Indeed, a simple calculation using
characteristic function of Gaussian random vector yields

2H 2
E (ei<e,(s”+f>(s>—<e”+f)(r)>) = OFOFO) gy (7 |s — l’|2 191l ) .

Now integrating the modulus we have

e

d
E <ei(0,(BH+f)( )— (B +£)(t) >‘ do — (27) a
|s — t|fd”
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Another criterion due to Berman (often easier to apply) tells us that:

e vy has a density d"Y( ) € L*(A\g ® PP) if and only if

/R : / / '<9 0 W) du(s) du(t) df < co. 27)

However, we were unable to apply it. Indeed, a simple calculation using
characteristic function of Gaussian random vector yields

2H 2
E (ei<9,(B”+f>(s>—<B”+f)(r)>) = OFOFO) gy (7 |s — t|2 191l ) .

Now integrating the modulus we have
d
/ E <ei(0,(BH+f)() B1+6)(1) >‘ do — (2m)"/?
Rd

(SRR
However, the difficulty stems from the lack of information contained in the
measure v. We are unable to ensure finiteness of the integral,

)i/
// ‘327 £ dv(s)du(t).
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Thank you for your attention
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