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Introduction

• The images and graphs of FBM was one of the most things studied. We recall
that an explicite formula for the Hausdorff dimension of the images of the FBM
was given by J-P Kahane [3]. Namely

dimBH(A) = min

{
dim(A)

H
, d
}
.

where dim(�) denote the Hausdorff dimension

• Several works of J-P Kahane [3] give precise information on the rang set BH(A):

i) If dim(A)/H > d, then BH(A) is a.s. a set of positive Lebesgue measure,
ii) If dim(A)/H < d, then BH(A) is a Salem set.

• Recently Peres and Sousi [1] studied fractal properties of images and graphs of
BH + f where f : [0, 1]→ Rd is a Borel measurable function.
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They expressed the dimension of the image set
(
BH + f

)
(A) in terms of the

so-called parabolic Hausdorff dimension of the graph of f restricted to A
denoted by dimΨ,H(GrA(f)).

• Precisely, they stated that

dim
(

(BH + f)(A)
)

= min

(
dimΨ,H(GrA(f))

H
, d
)

a.s.

• It is therefore quite natural to ask the following question:

- How to extend (i) and (ii) for BH + f , according to the value of
dimΨ,H (GrA(f))?

This issue will be the main goal of this work.
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Preliminaries on Parabolic Hausdorff dimension
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• For β > 0, F ⊂ R+ × Rd , and H ∈ (0, 1), the H-parabolic β-dimensional
Hausdorff content is defined by

Ψβ
H(F) = inf

∑
j

δβj : F ⊆ ∪
j

[aj, aj + δj]×
[
bj,1, bj,1 + δHj

]
× . . .×

[
bj,d, bj,d + δHj

]
(1)

where the infimum is taken over all covers of F by rectangles of the form
given above.

• The H-parabolic Hausdorff dimension is then defined to be

dimΨ,H(F) = inf
{
β > 0 : Ψβ

H(F) = 0
}
.
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Remark

Let ρH be the metric defined on R+ × Rd by

ρH((s, x), (t, y)) = max{|s− t|H, ‖x− y‖∞} ∀(s, x), (t, y) ∈ R+ × Rd. (2)

We define the β-dimensional Hausdorff content as

HβρH (F) = inf

∑
j

diam(Uj)
β : F ⊆ ∪

j
Uj

 (3)

where
{
Uj
}
is a countable cover of F by any sets and diam(Uj) denotes the diameter of a

set Uj relatively to the metric ρH.

For any F ⊆ R+ × Rd , the Hausdorff dimension, in the metric ρH , of F is defined by

dimρH (F) = inf
{
β : HβρH (F) = 0

}
.

Then, since any set Uj of the forme Uj = [aj, aj + δj]×
[
bj,1, bj,1 + δHj

]
. . .×

[
bj,d, bj,d + δHj

]
has a diameter "diam

(
Uj
)

= δHj ", it can be shown that for any β > 0

Hβ/HρH (F) > 0 iff ΨβH(F) > 0. (4)

Hence we obtain
dimΨ,H(F) = H× dimρH (F). (5)
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The following proposition relates β-dimensional capacity to the H-parabolic
Hausdorff dimension.

Proposition

Let F ⊂ R+ × Rd be a compact set. Then we have

dimΨ,H(F) = sup{β : CρH,β/H(F) > 0} = inf{β : CρH,β/H(F) = 0}, (6)

where CρH,β(.) is the β-capacity on the metric space (R+ × Rd, ρH) defined by

CρH,β(F) =

[
inf

µ∈P(F)

∫
R+×Rd

∫
R+×Rd

µ(du)µ(dv)

(ρH(u, v))β

]−1

. (7)

Here P(F) is the family of probability measure carried by F.

The next theorem is the analogue of Frostman’s theorem for parabolic
Hausdorff dimension.

Theorem (Peres and Sousi 2013 [1])
Let F a Borel set in R+ × Rd. If dimΨ,H(F) > κ, then there exists a Borel probability measure
µ supported on F, and a constant C > 0, such that, for any (a, b1, · · · , bd) ∈ R+ × Rd and
δ > 0

µ

[a, a + δ]×
d∏

j=1

[
bj, bj + δH

] ≤ Cδκ, (8)
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Now we give a comparison result for the Hausdorff parabolic dimensions with
different parameters.

Proposition

Let F ⊂ R+ × Rd and K,H ∈ (0, 1) such that K < H. Then we have

dimΨ,K(F) ∨
(

H
K

dimΨ,K(F) + 1−
H
K

)
≤ dimΨ,H(F) ≤(
H
K

dimΨ,K(F)

)
∧
(
dimΨ,H(F) + (H− K)d

)
.

(9)

Proof: Let us start by the first term in the lower inequality, let K,H such that
K < H, an immediate consequence of the definition is

dimΨ,K(F) ≤ dimΨ,H(F).

For the second term in the lower inequality it suffice to show that

dimΨ,K(F)− 1
K

≤ dimΨ,H(F)− 1
H
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Proof

Now let 0 < ε < 1 and γ > dimΨ,H(F)− 1
H

. Then ΨγH+1
H (F) = 0, and hence there

exists a cover

(
[an, an + δn]×

d∏
j=1

[bn,j, bn,j + δHn ]

)
n≥1

of the set F, such that

∑
n≥1

δγH+1
n ≤ ε. (10)

Each interval [an, an + δn] can be divided into
⌈
δ
1− H

K
n

⌉
intervals of length δH/Kn . In

this way we obtain a new cover

([
a′l , a

′
l + δ

H/K
l

]
×

d∏
j=1

[
b′l,j, b

′
l,j +

(
δ
H/K
l

)K
])

l≥1

of

the set F which satisfies

ΨγK+1
K (F) ≤

∑
l≥1

(
δ
H/K
l

)γK+1
≤ 2

∑
n≥1

δ
1− H

K
n

(
δ
H/K
n

)γK+1
≤ 2ε. (11)
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Then we get
dimΨ,K(F) ≤ γK + 1,

Letting γ ↓ dimΨ,H(F)−1
H , the desired inequality follows

For the upper inequality, let κ < dimΨ,H(F). Then by Frostman’s theorem there
exists a probability measure µ supported on F such that

µ

[a, a + δ]×
d∏

j=1

[
bj, bj + δH

] ≤ Cδκ. (12)

By some covering arguments, we can deduce that

µ

[a, a + δ]×
d∏

j=1

[
bj, bj + δK

] ≤ C
(
δκ+d(K−H) ∧ δκK/H

)
, (13)

Then the Mass Distribution Principle in the metric space (R+ × Rd, ρK) implies
that

dimρK (F) ≥ κ

H
∨ κ+ d(K − H)

K
.
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Using the fact that dimΨ,K(F) = K × dimρK (F), it follows that

κ ≤
(
H
K

dimΨ,K(F)

)
∧ (dimΨ,K(F) + d(H− K)) .

Therefore letting κ ↑ dimψ,H(F) the desired inequality follows.

Remark

Let α ∈ (0, 1), and let f : [0, 1]→ Rd be a Borel measurable function, and A be a Borel
subset of [0, 1]. Then by projection we can deduce that

dim(A) ≤ dimΨ,α(GrA(f)) (14)

if f : [0, 1]→ Rd is an α-Hôlder continuous function, then it can be shown from a covering
argument like in previous proposition that

dimΨ,α(GrA(f)) = dim(A) (15)
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The next proposition looks at the effect of the Hölder continuity of f on the
H-parabolic Hausdorff dimension of its graph dimΨ,H(GrA(f))

Proposition

Let f : [0, 1]→ Rd be an α-Hölder continuous function α ≤ H, then we have

dim(A) ≤ dimΨ,H(GrA(f)) ≤
(

H
α

dim(A)

)
∧ (dim(A) + (H− α)d) . (16)

Especially, when f is (H− ε)-Hölder continuous for all ε > 0 then

dim(A) = dimΨ,H(GrA(f)) (17)
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A natural question that arises from the previous Proposition is whether the
upper bound is optimal ?

The answer is given by using the trajectories of a fractional Brownian motion Bα
with Hurst index α with α ≤ H

Theorem

Let α ≤ H, {Bα(t) : t ∈ [0, 1]} a d-dimensional fractional Brownian motion of Hurst index α
and A ⊂ [0, 1] a Borel set. Then we have

dimΨ,H(GrA(Bα)) =

((
H
α

dim(A)

)
∧ (dim(A) + d(H− α))

)
a.s. (18)
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Proof of the theorem

• The upper bound of dimΨ,H(GrA(Bα)) follows directly from the previous
proposition.

• For the lower bound part, there is two different cases i) dim(A) ≤ αd and ii)
dim(A) > αd:

i) If dim(A) ≤ αd, then(
H
α

dim(A)

)
∧ (dim(A) + d(H− α)) =

H
α

dim(A).

Let γ < H
α

dim(A). Then by the Frostman’s Theorem there exists a
probability measure ν on A such that

Eγα/H(ν) :=

∫
A

∫
A

1
|t− s|γα/H

ν(ds)ν(dt) <∞. (19)

Let µ̃ be the random measure defined as the image measure of ν by the
map s 7→ (s,Bα(s))

µ̃(E) = ν{s : (s,Bα(s)) ∈ E},
where E ⊂ GrA(Bα). We will show that

EρH,γ/H(µ̃) :=

∫
R+×Rd

∫
R+×Rd

µ̃(du)µ̃(dv)

(ρH(u, v))γ/H
<∞ a.s.
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E
[
EρH,γ/H(µ̃)

]
=

∫
A

∫
A
E
[

1
(max (|s− t|H, ‖Bα(t)− Bα(s)‖∞)) γ/H

]
ν(ds)ν(dt).

(20)

Bα has a stationary increments, then we have

E
[
EρH,γ/H(µ̃)

]
=

∫
A

∫
A
E
[

1
(max (|s− t|H, ‖Bα(|s− t|)‖∞)) γ/H

]
ν(ds)ν(dt).

So we need the following lemma

we need the following lemma for the proof of the last theorem

Lemma

There exists a constants C such that, for all s, t ∈ (0, 1] with s 6= t we have

E
[

1
(max{|t− s|H, ‖Bα(t− s)‖})γ/H

]
≤

 C |t− s|−γα/H if γ < Hd,

C |t− s|d(H−α)−γ if γ > Hd.
(21)

Since γ < Hd we deduce from the previous lemma that

E
[
EρH,γ/H(µ̃)

]
≤ C

∫
A

∫
A

1
|t− s|γα/H

ν(ds)ν(dt) <∞
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Hence CρH,γ/H(GrA(Bα)) > 0 a. s. and then dimΨ,H(GrA(Bα)) ≥ γ a.s.

ii) If dim(A) > αd, then(
H
α

dim(A)

)
∧ (dim(A) + d(H− α)) = dim(A) + d(H− α).

Let γ < dim(A) + d(H− α). Then, we proceed as in (i) to prove that
CρH,γ/H(GrA(Bα)) > 0 a.s via the probability measure ν satisfying

Eγ−d(H−α)(ν) <∞.

Letting γ ↑ ( H
α

dim(A)) ∧ (dim(A) + d(H− α)) finishes the proof.

As a consequence, we have the following result

Corollary

Let α ≤ H, {Bα(t) : t ∈ [0, 1]} a fractional Brownian motion of Hurst index α and A ⊂ [0, 1]
a Borel set. Then we have

dimΨ,H (GrA(Bα)) > Hd a.s ⇐⇒ dim(A) > αd. (22)
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Fractional Brownian motion with deterministic drift

First, we recall some results for the Brownian motion.

Let (Bt)t∈[0,1] be the BM plane, and λ2 be the Lebesgue measure on R2, then:

Theorem 1 (Lévy 1940 )

P.a.s we have λ2(B([0, 1]) = 0.

Let now (Bt)t≥0 the d-dimensional BM such that d ≥ 2, then:

Theorem 2 (Taylor 1952)

P.a.s. pour tout A ⊂ [0,∞) we haveH2(B(A)) = 0.
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Cameron martin theorem

Let f : [0, 1] 7→ R2 be a continuous function and (Bt)t≥0 be the BM on R2. we
denote by D[0, 1] the Dirichlet space defined by

D[0, 1] =

{
f ∈ C[0, 1] : ∃g ∈ L2[0, 1] t.q. f(t) =

∫ t

0
g(s)ds,∀t ∈ [0, 1]

}

Let us denote by LB and LB+f the laws of B and B + f respectively.

Theorem (Cameron-Martin 1944)

If f ∈ D[0, 1], then the distributon LB and LB+f are equivalent.

Hence, if f ∈ D[0, 1], then the results of Levy and Taylor still hold for B + f also.
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Theorem (Gravensen 1982[4])
For all 0 < α < 1/2, there is an α-Hölder continuous function f : R+ → R2 such that

P{λ2(B + f)[0, 1]] > 0} > 0.

Now, let (BH(t))t≥0 be the d-dimentionnal fractional Brownian motion, J-P
Kahane proved the following result

Theorem (J-P Kahane [3])
Let A be a Borel subset of [0, 1], if dim(A) > Hd then

λd

(
BH(A)

)
> 0 a.s.

Question:
• Can we extend the previous result of Kahane to BH + f under the weak
condition dimΨ,H (GrA(f)) > Hd?
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Theorem

Let {BH(t) : t ∈ [0, 1]} be a d-dimensional FBM of Hurst index H ∈ (0, 1). Let f : [0, 1]→ Rd

be a Borel measurable function and let A ⊂ [0, 1] be a Borel set. If dimΨ,H(GrA(f)) > Hd,
then

λd((BH + f)(A)) > 0 a.s.

The idea is to find an appropriate random probability measure µω supported on
(BH
ω + f)(A) and

µω << λd,

for P-almost all ω ∈ Ω.
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Differentiation’s method

Let Y = (Y(t))t∈[0,1] be an Rd-valued stochastic process and ν is a positive
measure on [0, 1]. The occupation measure of the sample path
[0, 1] 3 t −→ Y(t)(w) ∈ Rd is defined by

µY(E) := ν {t ∈ [0, 1] : Y(t) ∈ E} ,

where E ⊂ Rd is a Borel set

A simple modification of the differentiation’s method allow to give the following
Lemma

Lemma

The following assertions are equivalent:

1. µY << λd a.s. with
dνY
dλd

(.) ∈ L2(λd ⊗ P).

2. lim inf
r↓0

r−d
∫
A

∫
A
P {‖Y(s)− Y(t)‖ < r} dν(s) dν(t) <∞.
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Proof of our Theorem

• Let A ⊂ [0, 1] and assume that η := dimΨ,H(GrA(f)) > Hd. It follows from th
parabolic Frostman’s theorem that for κ ∈ (Hd, η) there exists a Borel probability
measure σ supported on GrA(f) and C > 0 such that

σ

[a, a + δ]×
d∏

j=1

[
bj, bj + δH

] ≤ Cδκ, (23)

for all a ∈ A, b1, ..., bn ∈ Rd and all δ ∈ (0, 1].

• Let ν be the measure defined on A by ν = σ ◦ P−1
1 , where P1 is the projection

mapping on A, i.e. P1(s, f(s)) = s.

• Then to achieve our purpose it is enough to verify the second assertion of the
last Lemma for the process Y = BH + f.
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Indeed for s, t ∈ A and r > 0, we have

P
{
‖(BH + f)(s)− (BH + f)(t)‖ < r

}
=

1
(2π)d/2|t− s|Hd

∫
‖y‖<r

exp

(
−‖y − f(t) + f(s)‖2

2|t− s|2H

)
dy.

(24)

Then using Fubini’s theorem we obtain, for any fixed t ∈ A and r > 0, that∫
A
P
{
‖(BH + f)(s)− (BH + f)(t)‖ < r

}
dν(s) =

1
(2π)d/2

∫
‖y‖<r

∫
A

1
|t− s|Hd exp

(
−‖y − f(t) + f(s)‖2

2|t− s|2H

)
dν(s) dy

≤ C rd sup
‖y‖<r

∫
A

1
|t− s|Hd exp

(
−‖y − f(t) + f(s)‖2

2|t− s|2H

)
dν(s)︸ ︷︷ ︸

=I(y,(t,f(t)))

,

where C is a positive constant depending only on d.
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For any fixed y ∈ {‖y‖ < r} and (t, f(t)) ∈ GrA(f), we have the following
decomposition

I (y, (t, f(t))) = I1 (y, (t, f(t))) + I2 (y, (t, f(t))) ,

where

I1 (y, (t, f(t))) =

∫{
s∈A:‖y−f(t)+f(s)‖≤C1 |s−t|H

√
| log |s−t||

} 1
|s− t|Hd exp

(
− ‖y−f(t)+f(s)‖2

2|s−t|2H

)
dν(s) =

∫{
(s,f(s))∈GrA(f):‖y−f(t)+f(s)‖≤C1 |s−t|H

√
| log |s−t||

} 1
|s− t|Hd exp

(
− ‖y−f(t)+f(s)‖2

2|s−t|2H

)
dµ(s, f(s)).
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and

I2 (y, (t, f(t))) =

∫{
s∈A:‖y−f(t)+f(s)‖>C1 |s−t|H

√
| log |s−t||

} 1
|s− t|Hd exp

(
− ‖y−f(t)+f(s)‖2

2|s−t|2H

)
dν(s) =

∫{
(s,f(s))∈GrA(f):‖y−f(t)+f(s)‖>C1 |s−t|H

√
| log |s−t||

} 1
|s− t|Hd exp

(
− ‖y−f(t)+f(s)‖2

2|s−t|2H

)
dµ(s, f(s)),

where C1 is a positive constant which will be chosen later.
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We first show that

sup
(y,(t,f(t)))∈{‖y‖<r}×GrA(f)

I1 (y, (t, f(t))) < +∞.

By the Frostman’s inequality (23) we can verify that the measure ν is no atomic.

Then we split the integral I1(y, (t, f(t))) into the regions
{s ∈ A : 2−n < |t− s| ≤ 21−n}, we obtain that

I1(y, (t, f(t))) ≤
∞∑
n=1

2nHd σ

(s, f(s)) :
‖f(s)− f(t) + y‖ ≤ C1 |s− t|H

√
| log |s− t||

2−n < |s− t| ≤ 21−n


≤
∞∑
n=1

2nHd σ

(s, f(s)) :
‖f(s)− f(t) + y‖ ≤ C2 2−nH√n

2−n < |s− t| ≤ 21−n

 ,

where C2 = C1 2H√log(2).
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Now, for n ≥ 1, we set

Sn (y, (t, f(t))) =

(s, f(s)) ∈ GrA(f) :
‖y − f(t) + f(s)‖ ≤ C2 2−nH√n

2−n < |s− t| ≤ 21−n

 .

Applying the Frostman’s condition (23) and some covering arguments, we can
deduce that

sup
(y,(t,f(t)))∈{‖y‖<r}×GrA(f)

σ(Sn (y, (t, f(t))) ≤ C3 nd/2 2−κn.

Therefore we get

sup
(y,(t,f(t)))∈{‖y‖<r}×GrA(f)

I1 (y, (t, f(t))) ≤ C4

∞∑
n=1

2−(κ−Hd)n nd/2 <∞, (25)

where C4 depends on d and H only.
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For the second term I2 (y, (t, f(t))) we have

I2 (y, (t, f(t))) ≤
∞∑
n=1

2nHd
∫
{
‖f(s)−f(t)‖>C1 |s−t|H

√
| log |s−t||, 2−n<|s−t|≤21−n

}

exp

(
−‖f(s)− f(t) + y‖2

2|t− s|2H

)
dσ (s, f(s))

≤
∞∑
n=1

2nHd exp

(
−C2

1

2
(n− 1) ln 2

)
×

σ

(s, f(s)) :
‖f(s)− f(t) + y‖ > C1 |s− t|H

√
| log |s− t||

2−n < |s− t| ≤ 21−n


Thus, for C1 >

√
2Hd we obtain

sup
(y,(t,f(t)))∈{‖y‖<r}×GrA(f)

I2 (y, (t, f(t))) ≤ eC2
1 ln 2/2

∞∑
n=1

2−n(C2
1/2−Hd) < +∞. (26)
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Now putting all this together yields

sup
(y,(t,f(t)))∈{‖y‖<r}×GrA(f)

∫
A

1
|s− t|Hd exp

(
−‖y − f(t) + f(s)‖2

2|s− t|2H

)
dν(s) <∞.

Thus we get from (24) that

lim inf
r↓0

r−d
∫
A

∫
A
P
{
‖(BH + f)(s)− (BH + f)(t)‖ < r

}
dν(s) dν(t) <∞.

We can therefore state from Lemma 22 that the occupation measure νBH+f is
absolutely continuous with respect to the Lebesgue measure λd a.s. Hence
λd
(
BH + f

)
(A) > 0 a.s. which finishes the proof.
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Example

Example

Let α ∈ (0, 1) such that α < H. Let Bα be a fractional Brownian motion independent to BH.
Then for any Borel set A ⊂ [0, 1] such that dim(A) > α d, it is known from (22) that all the
trajectories of Bα are satisfying the condition

dimΨ,H (GrA (Bα)) > Hd.

This gives some examples of d

© Youssef Hakiki 31



Remark

Another criterion due to Berman (often easier to apply) tells us that:

• νY has a density dνY
dλd

(.) ∈ L2(λd ⊗ P) if and only if∫
Rd

∫
A

∫
A
E
(
ei〈θ,(Y(s)−Y(t)〉

)
dν(s) dν(t) dθ <∞. (27)

However, we were unable to apply it. Indeed, a simple calculation using
characteristic function of Gaussian random vector yields

E
(
ei〈θ,(BH+f)(s)−(BH+f)(t)〉

)
= ei〈θ,f(s)−f(t)〉 exp

(
−|s− t|2H‖θ‖2

2

)
.

Now integrating the modulus we have∫
Rd

∣∣∣E(ei〈θ,(BH+f)(s)−(BH+f)(t)〉
)∣∣∣ dθ =

(2π)d/2

|s− t|Hd .

However, the difficulty stems from the lack of information contained in the
measure ν. We are unable to ensure finiteness of the integral,∫

A

∫
A

(2π)d/2

|s− t|Hd dν(s) dν(t).
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Thank you for your attention
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