Local times for systems of non-linear stochastic heat equations

Brahim Boufoussi and Yassine Nachit

Cadi Ayyad University - Faculty of Sciences Semlalia Department of Mathematics

CBMS Conference 2021

systems of non-linear stochastic heat equations

We consider the following system of non-linear stochastic heat equations

$$\frac{\partial u_k}{\partial t}(t,x) = \frac{\partial^2 u_k}{\partial x^2}(t,x) + b_k(u(t,x)) + \sum_{l=1}^d \sigma_{k,l}(u(t,x))\dot{W}^l(t,x), \quad (1.1)$$

with Neumann boundary conditions

$$u_k(0,x) = 0,$$
 $\frac{\partial u_k(t,0)}{\partial x} = \frac{\partial u_k(t,1)}{\partial x} = 0,$

We put

$$u := (u_1, \cdots, u_d), b = (b_k), and \sigma = (\sigma_{k,l}).$$

systems of non-linear stochastic heat equations

We consider the following system of non-linear stochastic heat equations

$$\frac{\partial u_k}{\partial t}(t,x) = \frac{\partial^2 u_k}{\partial x^2}(t,x) + b_k(u(t,x)) + \sum_{l=1}^d \sigma_{k,l}(u(t,x))\dot{W}^l(t,x), \quad (1.1)$$

with Neumann boundary conditions

$$u_k(0,x) = 0,$$
 $\frac{\partial u_k(t,0)}{\partial x} = \frac{\partial u_k(t,1)}{\partial x} = 0,$

We put
$$u := (u_1, \cdots, u_d)$$
, $b = (b_k)$, and $\sigma = (\sigma_{k,l})$.

Let us state the following hypotheses on the coefficients $\sigma_{k,l}$ and b_k of the system of non-linear stochastic heat equations (1.1):

A1 For all $1 \le k, l \le d$ The functions $\sigma_{k,l}$ and b_k are bounded and infinitely differentiable such that the partial derivatives of all orders are bounded.

A2 The matrix σ is uniformly elliptic i.e., there exists $\rho > 0$ such that for all $x \in \mathbb{R}^d$ and $z \in \mathbb{R}^d$ with ||z|| = 1, we have $||\sigma(x)z||^2 \ge \rho^2$ (where $||\cdot||$ is the Euclidean norm on \mathbb{R}^d).

Mild solution of SHE

The mild solution

$$u_{k}(t,x) = \int_{0}^{t} \int_{0}^{1} G_{t-r}(x,v) \sum_{l=1}^{d} \sigma_{k,l}(u(r,v)) W^{l}(dr,dv) + \int_{0}^{t} \int_{0}^{1} G_{t-r}(x,v) b_{k}(u(r,v)) dv dr,$$
(1.2)

< □ > < 同 >

- ∢ ⊒ →

э

Malliavin derivative of the mild solution of SHE

Proposition (Bally and Pardoux (1998))

Assume A1. Then for any $t \in [0, T]$ and $x \in [0, 1]$ we have $u(t, x) \in (\mathbb{D}^{\infty})^d$. Furthermore, its derivative satisfies for all r < t,

$$D_{r,v}^{(i)}(u_k(t,x)) = G_{t-r}(x,v)\sigma_{k,i}(u(r,v)) + a_k(i,r,v,t,x),$$

where

$$a_{k}(i,r,v,t,x) = \sum_{l=1}^{d} \int_{r}^{t} \int_{0}^{1} G_{t-\tau}(x,z) D_{r,v}^{(i)}(\sigma_{k,l}(u(\tau,z))) W^{l}(d\tau,dz) + \int_{r}^{t} \int_{0}^{1} G_{t-\tau}(x,z) D_{r,v}^{(i)}(b_{k}(u(\tau,z))) dz d\tau,$$

and

$$D_{r,v}^{(i)}(u_k(t,x)) = 0$$
 when $r > t$. (1.3)

Brahim Boufoussi and Yassine Nachit (Cadi /Local times for systems of non-linear stochast

ヘロト 人間ト 人間ト 人間ト

1^{st} goal

Theorem

Let u(t, x) be the solution to Eq. (1.1).

(i) For every x ∈ (0,1), almost surely, when d ≤ 3, the local time L(ξ, t) of the process (u(t,x); t ∈ [0, T]) exists for any fixed t, moreover, L(•, t) ∈ H^α(ℝ^d) for α < 4-d/2, where H^α(ℝ^d) is the Sobolev space of index α; when d ≥ 4, the local time does not exist in L²(ℙ ⊗ λ_d) for any t, here λ_d is the Lebesgue measure on ℝ^d.

(ii) Assume $d \leq 3$. for each $x \in (0, 1)$, the local time of the process $(u(t, x); t \in [0, T])$ has a version, denoted by $L(\xi, t)$, which is s jointly continuous in (ξ, t) almost surely, and which is γ -Hölder continuous in t, uniformly in ξ , for all $\gamma < 1 - \frac{d}{4}$: There exist two random variables η and δ which are almost surely finite and positive such that

$$\sup_{\xi\in\mathbb{R}^d}|L(\xi,t+h)-L(\xi,t)|\leq \eta|h|^{\gamma},$$

for all $t, t + h \in [0, T]$ and all $|h| < \delta$.

Brahim Boufoussi and Yassine Nachit (Cadi Acocal times for systems of non-linear stochast CBMS Conference 2021 7/44

2nd Goal

Theorem

Assume A1 and A2. Then we get the following:

(a) There exists a constant c > 0 such that for any $x \in (0, 1)$ fixed, and for all $0 \le s < t \le T$ and $\xi \in \mathbb{R}^d$,

$$p_{s,t,x}(\xi) \ge rac{c}{(t-s)^{d/4}} \exp\left(-rac{\|\xi\|^2}{c(t-s)^{1/2}}
ight),$$
 (1.4)

where $p_{s,t,x}(\xi)$ is the density of the \mathbb{R}^d -valued random vector $(u_1(t,x) - u_1(s,x), \cdots, u_d(t,x) - u_d(s,x)).$

(b) There exists
$$c > 0$$
 such that for any
 $0 = t_0 < t_1 < \cdots < t_n \le T$, $x \in (0,1)$, $m_{i,k}$ positive integer,
for $i = 1, \cdots, n$ and $k = 1, \cdots, d$, and
 $\xi = (\xi_{1,1}, \cdots, \xi_{1,d}, \cdots, \xi_{n,1}, \cdots, \xi_{n,d}) \in \mathbb{R}^{n \times d}$,
 $\left| \partial_{\xi_{1,1}}^{m_{1,1}} \cdots \partial_{\xi_{1,d}}^{m_{1,d}} \cdots \partial_{\xi_{n,1}}^{m_{n,1}} \cdots \partial_{\xi_{n,d}}^{m_{n,d}} p_{t_1,\cdots,t_n,x}(\xi) \right|$
 $\le c \prod_{i=1}^n \frac{1}{(t_i - t_{i-1})^{(d + \sum_{k=1}^d m_{i,k})/4}} \exp\left(-\frac{\|\xi_i\|^2}{c(t_i - t_{i-1})^{1/2}}\right),$
(1.5)
where $\xi_i = (\xi_{i,1}, \cdots, \xi_{i,d}), \|\cdot\|$ is the Euclidean norm on \mathbb{R}^d

where $\xi_i = (\xi_{i,1}, \dots, \xi_{i,d}), \|\cdot\|$ is the Euclidean norm on \mathbb{R}^d and, $\partial_y^l := \frac{\partial^l}{\partial y^l}$.

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ ─ 臣

Elements of the local times

Let $(\theta_t)_{t \in [0, T]}$ be a Borel function with values in \mathbb{R}^d . For any Borel set $B \subseteq [0, T]$, the occupation measure of θ on B is given by the following measure on \mathbb{R}^d :

$$u_B(ullet) = \lambda\{t \in B; \ heta_t \in ullet\},\$$

where λ is the Lebesgue measure. When ν_B is absolutely continuous with respect to λ_d (the Lebesgue measure on \mathbb{R}^d), we say that the local time of θ on B exists and it is defined, $L(\bullet, B)$, as the Radon-Nikodym derivative of ν_B with respect to λ_d , i.e., for almost every x,

$$L(x,B)=\frac{d\nu_B}{d\lambda_d}(x).$$

The local time satisfies the following occupation formula: for any Borel set $B \subseteq [0, T]$, and for every measurable bounded function $f : \mathbb{R}^d \to \mathbb{R}$,

$$\int_B f(\theta_s) ds = \int_{\mathbb{R}^d} f(x) L(x, B) dx.$$

- The deterministic function θ can be chosen to be the sample path of a separable stochastic process (X_t)_{t∈[0,T]} with X₀ = 0 a.s.
- We investigate the local time via Berman's approach.

The local time satisfies the following occupation formula: for any Borel set $B \subseteq [0, T]$, and for every measurable bounded function $f : \mathbb{R}^d \to \mathbb{R}$,

$$\int_B f(\theta_s) ds = \int_{\mathbb{R}^d} f(x) L(x, B) dx.$$

- The deterministic function θ can be chosen to be the sample path of a separable stochastic process (X_t)_{t∈[0,T]} with X₀ = 0 a.s.
- We investigate the local time via Berman's approach.

The local time satisfies the following occupation formula: for any Borel set $B \subseteq [0, T]$, and for every measurable bounded function $f : \mathbb{R}^d \to \mathbb{R}$,

$$\int_B f(\theta_s) ds = \int_{\mathbb{R}^d} f(x) L(x, B) dx.$$

- The deterministic function θ can be chosen to be the sample path of a separable stochastic process (X_t)_{t∈[0,T]} with X₀ = 0 a.s.
- We investigate the local time via Berman's approach.

Let us state the following hypotheses on the integrability of the characteristic function of X:

B1

$$\int_{\mathbb{R}^d} \int_0^T \int_0^T \mathbb{E}\left[e^{i\langle u, X_t - X_s\rangle}\right] dt \, ds \, du < \infty,$$

where $\langle \cdot, \cdot \rangle$ is the Euclidean inner product on \mathbb{R}^d . **B2** For every even integer $m \ge 2$,

$$\int_{(\mathbb{R}^d)^m}\int_{[0,T]^m}\left|\mathbb{E}\left[\exp\left(i\sum_{j=1}^m \langle u_j, X_{t_j}\rangle\right)\right]\right|\prod_{j=1}^m dt_j\prod_{j=1}^m du_j<\infty.$$

Theorem

Assume **B1**. Then the process X has a square integrable local time. Moreover, we have almost surely, for all Borel set $B \subseteq [0, T]$, and for almost every x,

$$L(x,B) = \frac{1}{(2\pi)^d} \int_{\mathbb{R}^d} e^{-i\langle u, x \rangle} \int_B e^{i\langle u, X_t \rangle} dt \, du.$$
(1.6)

Theorem (Berman(1969))

Assume **B1** and **B2**. Put for all integer $N \ge 1$,

$$L_N(x,t) = \frac{1}{(2\pi)^d} \int_{[-N,N]^d} e^{-i\langle u,x\rangle} \int_0^t e^{i\langle u,X_s\rangle} ds \, du.$$

Then there exists a stochastic process $\tilde{L}(x, t)$ separable in the x-variable, such that for each even integer $m \ge 2$,

$$\lim_{N\to\infty}\sup_{(x,t)\in\mathbb{R}^d\times[0,T]}\mathbb{E}\left[|L_N(x,t)-\tilde{L}(x,t)|^m\right]=0. \tag{1.7}$$

Brahim Boufoussi and Yassine Nachit (Cadi ALLCal times for systems of non-linear stochast CBMS Conference 2021 14/44

Theorem (Berman(1969))

Let $\tilde{L}(x, t)$ be given by (1.7). If $\tilde{L}(x, t)$ is almost surely continuous in x, then it is a (continuous in x) version of the local time on [0, t].

$$\mathbb{E}[\tilde{L}(x+k,t+h) - \tilde{L}(x,t+h) - \tilde{L}(x+k,t) + \tilde{L}(x,t)]^{m}$$

$$= \frac{1}{(2\pi)^{md}} \int_{(\mathbb{R}^{d})^{m}} \int_{[t,t+h]^{m}} \prod_{j=1}^{m} \left(e^{-i\langle v_{j}-v_{j+1},x+k\rangle} - e^{-i\langle v_{j}-v_{j+1},x\rangle} \right)$$

$$\times \mathbb{E}\left[e^{i\sum_{j=1}^{m} \langle v_{j},X_{t_{j}}-X_{t_{j-1}}\rangle} \right] \prod_{j=1}^{m} dt_{j} \prod_{j=1}^{m} dv_{j},$$
(1.8)

and

$$\mathbb{E}[\tilde{L}(x,t+h)-\tilde{L}(x,t)]^{m}$$

$$=\frac{1}{(2\pi)^{md}}\int_{(\mathbb{R}^{d})^{m}}\int_{[t,t+h]^{m}}e^{-i\langle v_{1},x\rangle}\mathbb{E}\left[e^{i\sum_{j=1}^{m}\left\langle v_{j},X_{t_{j}}-X_{t_{j-1}}\right\rangle}\right]\prod_{j=1}^{m}dt_{j}\prod_{j=1}^{m}dv_{j},$$
(1.9)

Brahim Boufoussi and Yassine Nachit (Cadi Accal times for systems of non-linear stochast CBMS Conference 2021 16/44

3

For the Gaussian case

Assume d = 1. We know that

$$\mathbb{E}\left[e^{i\sum_{j=1}^{m}v_{j}(X_{t_{j}}-X_{t_{j-1}})}\right] = \exp\left(-\frac{\operatorname{Var}(\sum_{j=1}^{m}v_{j}(X_{t_{j}}-X_{t_{j-1}}))}{2}\right)$$

That is why we define the local nondeterminism (LND) as:

Lemma (Berman 1973)

For any $m \ge 2$, there exist two positive constants c_m and ε such that for every ordered points $0 = t_0 \le t_1 < \cdots < t_m \le 1$ with $t_m - t_1 < \varepsilon$, and $(v_1, \cdots, v_m) \in \mathbb{R}^m \setminus \{0\}$,

$$\operatorname{Var}\left(\sum_{j=1}^{m} v_j (X_{t_j} - X_{t_{j-1}})\right) \ge c_m \sum_{j=1}^{m} v_j^2 \operatorname{Var}\left(X_{t_j} - X_{t_{j-1}}\right).$$
(1.10)

For the Gaussian case

Assume d = 1. We know that

$$\mathbb{E}\left[e^{i\sum_{j=1}^{m}v_{j}(X_{t_{j}}-X_{t_{j-1}})}\right] = \exp\left(-\frac{\operatorname{Var}(\sum_{j=1}^{m}v_{j}(X_{t_{j}}-X_{t_{j-1}}))}{2}\right)$$

That is why we define the local nondeterminism (LND) as:

Lemma (Berman 1973)

For any $m \ge 2$, there exist two positive constants c_m and ε such that for every ordered points $0 = t_0 \le t_1 < \cdots < t_m \le 1$ with $t_m - t_1 < \varepsilon$, and $(v_1, \cdots, v_m) \in \mathbb{R}^m \setminus \{0\}$,

$$\operatorname{Var}\left(\sum_{j=1}^{m} v_j (X_{t_j} - X_{t_{j-1}})\right) \ge c_m \sum_{j=1}^{m} v_j^2 \operatorname{Var}\left(X_{t_j} - X_{t_{j-1}}\right).$$
(1.10)

э

For the non-Gaussian case

- For non-Gaussian processes, the unknown form of the characteristic functions caused the difficulty in extending the LND condition outside the Gaussian framework.
- We introduce a new concept of the LND (which is called the α -LND) that deals directly with the characteristic function.

For the non-Gaussian case

- For non-Gaussian processes, the unknown form of the characteristic functions caused the difficulty in extending the LND condition outside the Gaussian framework.
- We introduce a new concept of the LND (which is called the α-LND) that deals directly with the characteristic function.

The α -LND

Definition

Let $X = (X_t)_{t \in [0,T]}$ be a stochastic process with values in \mathbb{R}^d and J a subinterval of [0, T]. We say that X is α -LND on J, if for every nonnegative integers $m \ge 2$, $k_{1,1}, \cdots, k_{1,d}, \cdots, k_{m,1}, \cdots, k_{m,d}$, there exist two positive constants c and ε (both may depend on $m, k_{1,1}, \cdots, k_{1,d}, \cdots, k_{m,1}, \cdots, k_{m,d}$) such that

$$\mathbb{E}\left[e^{i\sum_{j=1}^{m}\left\langle v_{j}, X_{t_{j}} - X_{t_{j-1}}\right\rangle}\right]\right| \leq \frac{c}{\prod_{j=1}^{m}\prod_{l=1}^{d}|v_{j,l}|^{k_{j,l}}(t_{j} - t_{j-1})^{\alpha k_{j,l}}}, \quad (1.11)$$

for all $v_j = (v_{j,1}, \dots, v_{j,d}) \in \mathbb{R}^d$ with $v_{j,l} \neq 0$ $(j = 1, \dots, m$ and $l = 1, \dots, d$), and for every ordered points $t_1 < \dots < t_m$ in J with $t_m - t_1 < \varepsilon$ and $t_0 = \inf(J)$.

- 御下 - 戸下 - 戸下 - 戸

Remark

Let d = 1 and Y = (Y_t)_{t∈[0,T]} be a centred Gaussian process verifies the classical local nondeterminism (LND) property on J, we have fore any m ≥ 2, there exist two positive constants c_m and ε such that for every ordered points t₁ < ··· < t_m in J with t_m - t₁ < ε, and (v₁, ··· , v_m) ∈ ℝ^m with (v₁, ··· , v_m) ≠ (0, ··· , 0),

$$\operatorname{Var}\left(\sum_{j=1}^{m} v_{j}(Y_{t_{j}} - Y_{t_{j-1}})\right) \geq c_{m} \sum_{j=1}^{m} v_{j}^{2} \operatorname{Var}\left(Y_{t_{j}} - Y_{t_{j-1}}\right). \quad (1.12)$$

Assume also that there exists a positive constant K, such that for every $s, t \in J$ with s < t,

$$K(t-s)^{2\alpha} \leq \operatorname{Var}\left(Y_t - Y_s\right). \tag{1.13}$$

Hence Y is α -LND on J.

Let d > 1 and Y⁰ = (Y⁰_t)_{t∈[0,T]} be a real-valued centred Gaussian process verifies the classical local nondeterminism (LND) property on J (i.e. (1.12)) and (1.13). Define

$$Y_t = (Y_t^1, \cdots, Y_t^d),$$

where Y^1, \dots, Y^d are independent copies of Y^0 . Then Y is α -LND on J.

Elements of Malliavin calculus

Let $(W^i(t,x), t \in [0, T], x \in [0, 1])$, $i = 1, \dots, d$, be d-independent space-time white noises defined on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$, and put $W = (W^1, \dots, W^d)$. For any $h \in \mathcal{H} := L^2([0, T] \times [0, 1], \mathbb{R}^d)$, we set $W(h) = \sum_{i=1}^d \int_0^T \int_0^1 h^i(t, x) W^i(dx, dt)$ the Wiener integral. Denote by \mathcal{S} the class of cylindrical random variables of the form $F = \varphi(W(h_1), \dots, W(h_n))$. $F \in \mathcal{S}$ $D_{t,x}^{(I)}F = \sum_{i=1}^n \frac{\partial \varphi}{\partial x_i}(W(h_1), \dots, W(h_n))h'_i(t, x)$.

$$\begin{split} \mathcal{H} &:= L^2([0,T] imes [0,1], \mathbb{R}^d) \\ \mathcal{H}_{s,t} &:= L^2([s,t] imes [0,1], \mathbb{R}^d). \end{split}$$
 For any $F, G \in \mathbb{D}^{1,p}$ we point out that

$$\langle DF, DG \rangle_{\mathcal{H}} = \sum_{l=1}^{d} \int_{0}^{T} \int_{0}^{1} D_{r,x}^{(l)} F D_{r,x}^{(l)} G dr dx,$$

 and

$$\langle DF, DG \rangle_{\mathcal{H}_{s,t}} = \sum_{l=1}^{d} \int_{s}^{t} \int_{0}^{1} D_{r,x}^{(l)} F D_{r,x}^{(l)} G dr dx.$$

Brahim Boufoussi and Yassine Nachit (Cadi Acocal times for systems of non-linear stochast CBMS Conference 2021 23 / 44

イロト イ部ト イヨト イヨト 二日

New definition for the Malliavin matrix

Definition

Let $0 = t_0 < t_1 < \cdots < t_n \leq T$ and $F = (F_1, \cdots, F_n)$ be a $\mathbb{R}^{n \times d}$ -valued random vector such that for $i = 1, \cdots, n$, $F_i = (F_{i,1}, \cdots, F_{i,d})$ where $F_{i,k} \in \mathbb{D}^{1,p}$ for any $1 \leq i \leq n$ and $1 \leq k \leq d$. We define the following matrices, for every $1 \leq i, j \leq n$,

$$\Gamma^{i,j} = \left(\Gamma^{i,j}_{k,l}\right)_{1 \le k,l \le d} \quad \text{where} \quad \Gamma^{i,j}_{k,l} = \left\langle DF_{i,k} , DF_{j,l} \right\rangle_{\mathcal{H}_{t_{i-1},t_i}}$$

where $\mathcal{H}_{t_{i-1},t_i} = L^2([t_{i-1},t_i] \times [0,1])$ we write $\Gamma_{F,t_1,\cdots,t_n}$ for the Malliavin matrix of F with respect to t_1,\cdots,t_n . That is, the following block matrix

$$\Gamma_{F,t_1,\cdots,t_n} = \left(\Gamma^{i,j}\right)_{1 \leq i,j \leq n}.$$

For d = 1.

$$\begin{split} \Gamma_{F, t_{1}, \cdots, t_{n}} &= \\ & \begin{pmatrix} \langle DF^{1}, DF^{1} \rangle_{L^{2}([t_{0}, t_{1}] \times [0, 1])} & \cdots & \langle DF^{1}, DF^{n} \rangle_{L^{2}([t_{0}, t_{1}] \times [0, 1])} \\ \langle DF^{2}, DF^{1} \rangle_{L^{2}([t_{1}, t_{2}] \times [0, 1])} & \cdots & \langle DF^{2}, DF^{n} \rangle_{L^{2}([t_{1}, t_{2}] \times [0, 1])} \\ & \vdots & \ddots & \vdots \\ \langle DF^{n}, DF^{1} \rangle_{L^{2}([t_{n-1}, t_{n}] \times [0, 1])} & \cdots & \langle DF^{n}, DF^{n} \rangle_{L^{2}([t_{n-1}, t_{n}] \times [0, 1])} \end{pmatrix} \end{split}$$

Brahim Boufoussi and Yassine Nachit (Cadi /Local times for systems of non-linear stochast CBMS Conference 2021 25 / 44

<ロト <問ト < 目ト < 目ト

2

Definition

Let $0 = t_0 < t_1 < \cdots < t_n \leq T$ and $F = (F_1, \cdots, F_n)$ be a $\mathbb{R}^{n \times d}$ -valued random vector such that $F_i = (F_{i,1}, \cdots, F_{i,d})$, for $i = 1, \cdots, n$. F is said to be nondegenerate with respect to t_1, \cdots, t_n , if it satisfies the following three conditions:

(i) For all
$$i=1,\cdots,n,$$
 and $k=1,\cdots,d,$ $\mathsf{F}_{i,k}\in\mathbb{D}^\infty$

(ii) $\Gamma_{F, t_1, \dots, t_n}$ is invertible a.s. and we denote by $\Gamma_{F, t_1, \dots, t_n}^{-1}$ its inverse.

(iii)
$$(\det \Gamma_{F, t_1, \dots, t_n})^{-1} \in L^p$$
 for all $p \ge 1$.

Integration by parts

Proposition

Let $0 = t_0 < t_1 < \cdots < t_n \leq T$ and $F = (F_1, \cdots, F_n)$ be a nondegenerate with respect to t_1, \cdots, t_n , $\mathbb{R}^{n \times d}$ -valued random vector such that, $F_i = (F_{i,1}, \cdots, F_{i,d})$, for $i = 1, \cdots, n$. Let $G \in \mathbb{D}^{\infty}$ and let $g(x_{1,1}, \cdots, x_{1,d}, \cdots, x_{n,1}, \cdots, x_{n,d}) \in C_P^{\infty}(\mathbb{R}^{n \times d})$. Fix $m \geq 1$. For any multi-index $\beta = (\beta_1, \cdots, \beta_m)$ with $\beta_{\theta} = (i_{\theta}, k_{\theta}) \in \{1, \cdots, n\} \times \{1, \cdots, d\}$, for $\theta = 1, \cdots, m$, we introduce the following notations:

$$\partial_{eta_{ heta}} := rac{\partial}{\partial x_{i_{ heta},k_{ heta}}} \quad ext{and} \quad \partial_{eta} := \partial_{eta_1} \cdots \partial_{eta_m}, \quad ext{for } heta = 1, \cdots, m.$$

Then for any $\beta = (\beta_1, \dots, \beta_m)$, there exists $H_{t_1, \dots, t_n}^{\beta}(F, G) \in \mathbb{D}^{\infty}$ such that

$$\mathbb{E}\left[(\partial_{\beta}g)(F)G\right] = \mathbb{E}\left[g(F)H_{t_{1},\cdots,t_{n}}^{\beta}(F,G)\right], \qquad (1.14)$$

э

(B)

< 円

where the random variables $H^{\beta}_{t_1,\cdots,t_n}(F,G)$ are recursively given by

For d = 1. Put $F = (X_{t_1} - X_{t_0}, \cdots, X_{t_m} - X_{t_{m-1}})$ and $\partial_{\beta} = \frac{\partial}{\partial x_{\beta_1}} \cdots \frac{\partial}{\partial x_{\beta_n}}.$

On one hand, we have by integration by parts

$$\mathbb{E}[\partial_{\beta}e^{i\sum_{j=1}^{m}u_{j}(X_{t_{j}}-X_{t_{j-1}})}] = \mathbb{E}[e^{i\sum_{j=1}^{m}u_{j}(X_{t_{j}}-X_{t_{j-1}})}H_{\pi_{m}}^{\beta}(F,1)]$$
(1.17)

On the other hand we have

$$\mathbb{E}[\partial_{\beta}e^{i\sum_{j=1}^{m}u_{j}(X_{t_{j}}-X_{t_{j-1}})}] = (iu_{1})^{k_{1}}\cdots(iu_{m})^{k_{m}}\mathbb{E}[e^{i\sum_{j=1}^{m}u_{j}(X_{t_{j}}-X_{t_{j-1}})}]$$
(1.18)

Combining (1.17) and (1.18), we get

$$\mathbb{E}[e^{i\sum_{j=1}^{m}u_{j}(X_{t_{j}}-X_{t_{j-1}})}]| \le |u_{1}|^{-k_{1}}\cdots|u_{m}|^{-k_{m}}\|H_{\pi_{m}}^{\beta}(F,1)\|_{L^{1}}$$
(1.19)

Then, to establish α -LND, we need to estimate $\|H_{\pi_m}^{\beta}(F,1)\|_{L^1}$.

For d = 1. Put $F = (X_{t_1} - X_{t_0}, \cdots, X_{t_m} - X_{t_{m-1}})$ and $\partial_{\beta} = \frac{\partial}{\partial x_{\beta_1}} \cdots \frac{\partial}{\partial x_{\beta_n}}.$

On one hand, we have by integration by parts

$$\mathbb{E}[\partial_{\beta}e^{i\sum_{j=1}^{m}u_{j}(X_{t_{j}}-X_{t_{j-1}})}] = \mathbb{E}[e^{i\sum_{j=1}^{m}u_{j}(X_{t_{j}}-X_{t_{j-1}})}H_{\pi_{m}}^{\beta}(F,1)]$$
(1.17)

On the other hand we have

$$\mathbb{E}[\partial_{\beta}e^{i\sum_{j=1}^{m}u_{j}(X_{t_{j}}-X_{t_{j-1}})}] = (iu_{1})^{k_{1}}\cdots(iu_{m})^{k_{m}}\mathbb{E}[e^{i\sum_{j=1}^{m}u_{j}(X_{t_{j}}-X_{t_{j-1}})}]$$
(1.18)

Combining (1.17) and (1.18), we get

$$\mathbb{E}[e^{i\sum_{j=1}^{m}u_{j}(X_{t_{j}}-X_{t_{j-1}})}]| \leq |u_{1}|^{-k_{1}}\cdots|u_{m}|^{-k_{m}}\|H_{\pi_{m}}^{\beta}(F,1)\|_{L^{1}}$$
(1.19)

Then, to establish α -LND, we need to estimate $\|H_{\pi_m}^{\beta}(F,1)\|_{L^1}$.

Theorem (Nualart (The Malliavin Calculus and Related Topics)) There exist constants $\beta, \gamma > 1$ and integers n, m such that

 $\|H_{\alpha}(F,G)\|_{p} \leq \|\det \gamma_{F}^{-1}\|_{\beta}^{m}\|DF\|_{k,\gamma}^{n}\|G\|_{k,q}.$

Lemma

 $0 = t_0 < t_1 < \cdots < t_n$ and $\beta = (\beta_1, \cdots, \beta_m)$ with $\beta_{\theta} = (i_{\theta}, k_{\theta}) \in \{1, \cdots, n\} \times \{1, \cdots, d\}$, for $\theta = 1, \cdots, m$, then there exists a constant C > 0 such that

$$\left\| \mathcal{H}_{t_{1},\cdots,t_{n}}^{\beta}(F,1) \right\|_{0,2} \leq C \left\| (\det \Gamma_{F,t_{1},\cdots,t_{n}})^{-1} \right\|_{m,2^{m+2}}^{m} \\ \cdot \prod_{\theta=1}^{m} \| DF_{i_{\theta},k_{\theta}} \|_{m,2^{2(m+n\times d)},\mathcal{H}} \prod_{(i_{0},k_{0})\in\mathcal{O}_{(i_{\theta},k_{\theta})}} \| DF_{i_{0},k_{0}} \|_{m,2^{2(m+n\times d)},\mathcal{H}}^{2},$$

$$(1.20)$$

where
$$O_{(i_{\theta},k_{\theta})} = \{(i_0,k_0) \in \{1,\cdots,n\} \times \{1,\cdots,d\}; (i_0,k_0) \neq (i_{\theta},k_{\theta})\}.$$

◆□▶ ◆□▶ ◆ 三▶ ◆ 三▶ ● ○○○

Estimation of $||DF_{i,k}||_{k,p}$

Proposition (Dalang, Khoshnevisan, and E. Nualart (2009)) Assume A1. Then for any $s, t \in [0, T]$ with $s \le t, x \in [0, 1], p > 1$, and $m \ge 1$,

$$\mathbb{E}\left[\left\|D^m(u_k(t,x)-u_k(s,x))\right\|_{\mathcal{H}^{\otimes m}}^p\right] \leq C_T |t-s|^{p/4}, \qquad k=1,\cdots,d.$$

Estimation of $\| (\det \Gamma_{F, t_1, \cdots, t_n})^{-1} \|_{k, p}$

$$0 = t_0 < t_1 < \dots < t_n \le T$$

$$Z = (u(t_1, x) - u(t_0, x), \dots, u(t_n, x) - u(t_{n-1}, x)), \quad (1.21)$$
where

$$u(t_i, x) - u(t_{i-1}, x) = (u_1(t_i, x) - u_1(t_{i-1}, x), \cdots, u_d(t_i, x) - u_d(t_{i-1}, x))$$

Let $\Gamma_{Z, t_1, \dots, t_n}$ be the Malliavin matrix of Z with respect to t_1, \dots, t_n (Z is given by (1.21)). Note that $\Gamma_{Z, t_1, \dots, t_n} = (\Gamma^{i,j})_{1 \le i,j \le n}$ is the random block matrix, of the form

$$\Gamma_{k,l}^{i,j} = \langle D(u_k(t_i,x) - u_k(t_{i-1},x)), D(u_l(t_j,x) - u_l(t_{j-1},x)) \rangle_{\mathcal{H}_{t_{i-1},t_i}},$$

where
$$\mathcal{H}_{t_{i-1},t_i} = L^2 ([t_{i-1},t_i] \times [0,1], \mathbb{R}^d).$$

For d = 1.

$$\Gamma_{Z, t_{1}, \cdots, t_{n}} = \begin{pmatrix} \langle DF^{1}, DF^{1} \rangle_{L^{2}([t_{0}, t_{1}] \times [0, 1])} & \cdots & \langle DF^{1}, DF^{n} \rangle_{L^{2}([t_{0}, t_{1}] \times [0, 1])} \\ \langle DF^{2}, DF^{1} \rangle_{L^{2}([t_{1}, t_{2}] \times [0, 1])} & \cdots & \langle DF^{2}, DF^{n} \rangle_{L^{2}([t_{1}, t_{2}] \times [0, 1])} \\ \vdots & \ddots & \vdots \\ \langle DF^{n}, DF^{1} \rangle_{L^{2}([t_{n-1}, t_{n}] \times [0, 1])} & \cdots & \langle DF^{n}, DF^{n} \rangle_{L^{2}([t_{n-1}, t_{n}] \times [0, 1])} \end{pmatrix}$$

where $F^{i} = u(t_{i}, x) - u(t_{i-1}, x)$.

æ

ヨト イヨト

$D_{r,v}(u(t,x)) = 0$ when r > t.

(1.22)

E 6 4 E 6

э

 $\Gamma_{Z,t_1,\cdots,t_n} =$

$$\begin{pmatrix} \langle DF^{1}, DF^{1} \rangle_{L^{2}([t_{0}, t_{1}] \times [0, 1])} & \cdots & \langle DF^{1}, DF^{n} \rangle_{L^{2}([t_{0}, t_{1}] \times [0, 1])} \\ 0 & \cdots & \langle DF^{2}, DF^{n} \rangle_{L^{2}([t_{1}, t_{2}] \times [0, 1])} \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \langle DF^{n}, DF^{n} \rangle_{L^{2}([t_{n-1}, t_{n}] \times [0, 1])} \end{pmatrix}$$

$$\det\left(\mathsf{\Gamma}_{Z,t_{1},\cdots,t_{n}}\right) = \prod_{i=1}^{n} \|D\mathsf{F}^{i}\|_{L^{2}\left([t_{i-1},t_{i}]\times[0,1]\right)}^{2}.$$
(1.23)

 $\Gamma_{Z, t_1, \cdots, t_n} =$

$$D_{r,v}(u(t,x)) = 0$$
 when $r > t$.

(1.22)

 $\begin{pmatrix} \left\langle DF^{1}, DF^{1} \right\rangle_{L^{2}([t_{0}, t_{1}] \times [0, 1])} & \cdots & \left\langle DF^{1}, DF^{n} \right\rangle_{L^{2}([t_{0}, t_{1}] \times [0, 1])} \\ 0 & \cdots & \left\langle DF^{2}, DF^{n} \right\rangle_{L^{2}([t_{1}, t_{2}] \times [0, 1])} \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \left\langle DF^{n}, DF^{n} \right\rangle_{L^{2}([t_{n-1}, t_{n}] \times [0, 1])} \end{pmatrix}$

$$\det\left(\Gamma_{Z,t_1,\cdots,t_n}\right) = \prod_{i=1}^n \|DF^i\|_{L^2([t_{i-1},t_i]\times[0,1])}^2.$$
(1.23)

$$D_{r,v}(u(t,x)) = 0$$
 when $r > t$.

(1.22)

ヨト イヨト

3

 $\Gamma_{Z,t_1,\cdots,t_n} =$

$$\begin{pmatrix} \langle DF^{1}, DF^{1} \rangle_{L^{2}([t_{0}, t_{1}] \times [0, 1])} & \cdots & \langle DF^{1}, DF^{n} \rangle_{L^{2}([t_{0}, t_{1}] \times [0, 1])} \\ 0 & \cdots & \langle DF^{2}, DF^{n} \rangle_{L^{2}([t_{1}, t_{2}] \times [0, 1])} \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \langle DF^{n}, DF^{n} \rangle_{L^{2}([t_{n-1}, t_{n}] \times [0, 1])} \end{pmatrix}$$

$$\det\left(\Gamma_{Z,t_1,\cdots,t_n}\right) = \prod_{i=1} \|DF^i\|_{L^2([t_{i-1},t_i]\times[0,1])}^2. \tag{1.23}$$

$$D_{r,v}(u(t,x)) = 0$$
 when $r > t$.

(1.22)

э

ヨト イヨト

 $\Gamma_{Z,t_1,\cdots,t_n} =$

$$\begin{pmatrix} \langle DF^{1}, DF^{1} \rangle_{L^{2}([t_{0}, t_{1}] \times [0, 1])} & \cdots & \langle DF^{1}, DF^{n} \rangle_{L^{2}([t_{0}, t_{1}] \times [0, 1])} \\ 0 & \cdots & \langle DF^{2}, DF^{n} \rangle_{L^{2}([t_{1}, t_{2}] \times [0, 1])} \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \langle DF^{n}, DF^{n} \rangle_{L^{2}([t_{n-1}, t_{n}] \times [0, 1])} \end{pmatrix}$$

$$\det\left(\mathsf{\Gamma}_{Z,t_{1},\cdots,t_{n}}\right) = \prod_{i=1}^{n} \|D\mathsf{F}^{i}\|_{L^{2}\left([t_{i-1},t_{i}]\times[0,1]\right)}^{2}.$$
(1.23)

Theorem

Assume A1 and A2. Let $0 = t_0 < t_1 < \cdots < t_n \le T$, $x \in (0,1)$, and Z given by (1.21), then for any $k \ge 0$, p > 1,

$$\| (\det \Gamma_{Z, t_1, \cdots, t_n})^{-1} \|_{k, p} \leq K \prod_{i=1}^n (t_i - t_{i-1})^{-d/2},$$

where K is a positive constant.

Lemma

Assume A1 and A2. Let $0 = t_0 < t_1 < \cdots < t_n \leq T$, $x \in (0,1)$, Z given by (1.21), and $\beta = (\beta_1, \cdots, \beta_m)$ with $\beta_{\theta} = (i_{\theta}, k_{\theta}) \in \{1, \cdots, n\} \times \{1, \cdots, d\}$, for $\theta = 1, \cdots, m$, then there exists a constant C > 0 such that

$$\left\|H_{t_1,\cdots,t_n}^{\beta}(Z\,,\,1)\right\|_{0,2} \leq C \prod_{\theta=1}^m (t_{i_{\theta}}-t_{i_{\theta}-1})^{-1/4}.$$
 (1.24)

Brahim Boufoussi and Yassine Nachit (Cadi ALocal times for systems of non-linear stochast

Theorem

Assume A1 and A2. Let $0 = t_0 < t_1 < \cdots < t_n \le T$, $x \in (0,1)$, and Z given by (1.21), then for any $k \ge 0$, p > 1,

$$\| (\det \Gamma_{Z, t_1, \cdots, t_n})^{-1} \|_{k, p} \leq K \prod_{i=1}^n (t_i - t_{i-1})^{-d/2},$$

where K is a positive constant.

Lemma

Assume A1 and A2. Let $0 = t_0 < t_1 < \cdots < t_n \leq T$, $x \in (0, 1)$, Z given by (1.21), and $\beta = (\beta_1, \cdots, \beta_m)$ with $\beta_{\theta} = (i_{\theta}, k_{\theta}) \in \{1, \cdots, n\} \times \{1, \cdots, d\}$, for $\theta = 1, \cdots, m$, then there exists a constant C > 0 such that

$$\left\|H_{t_1,\cdots,t_n}^{\beta}(Z,\,1)\right\|_{0,2} \leq C \prod_{\theta=1}^m (t_{i_{\theta}}-t_{i_{\theta}-1})^{-1/4}.$$
 (1.24)

The non-linear SHE is $\frac{1}{4}$ -LND

Theorem

Let u(t, x) be given by (1.2). Hence, for each fixed $x \in (0, 1)$, for every nonnegative integers $m \ge 2$, $k_{1,1}, \dots, k_{1,d}, \dots, k_{m,1}, \dots, k_{m,d}$, there exists a constant $c = c(m, k_{1,1}, \dots, k_{1,d}, \dots, k_{m,1}, \dots, k_{m,d})$ such that

$$\left| \mathbb{E} \left[e^{i \sum_{j=1}^{m} \langle v_{j}, u(t_{j}, x) - u(t_{j-1}, x) \rangle} \right] \right| \leq \frac{c}{\prod_{j=1}^{m} \prod_{l=1}^{d} |v_{j,l}|^{k_{j,l}} (t_{j} - t_{j-1})^{\frac{1}{4}k_{j,l}}},$$
(1.25)
for all $v_{j} = (v_{j,1}, \cdots, v_{j,d}) \in \mathbb{R}^{d}$ with $v_{j,l} \neq 0$ $(j = 1, \cdots, m$ and $l = 1, \cdots, d$), for each $t \in [0, T)$, and for every ordered points $t = t_{0} < t_{1} < \cdots < t_{m}$ in $[0, T]$. We said that the process $(u(t, x), t \in [0, T])$ is $\frac{1}{4}$ -LND on $[t, T]$ for each fixed $t \in [0, T)$.

Existence of local time when $d \leq 3$

Let $\alpha \geq 0$, we define the Sobolev space $H^{\alpha}(\mathbb{R}^d)$ as:

$$H^lpha(\mathbb{R}^d)=\left\{g\in L^2(\mathbb{R}^d)\,;\; (1+\|\xi\|^2)^{rac{lpha}{2}}\hat{g}\in L^2(\mathbb{R}^d)
ight\},$$

Theorem

Let u(t, x) be given by (1.2). Assume that $d \leq 3$, then for each $x \in (0, 1)$, the process $(u(t, x); t \in [0, T])$ has local time $L(\xi, t)$. Moreover, for every fixed t, $L(\bullet, t) \in H^{\alpha}(\mathbb{R}^d)$ for $\alpha < \frac{4-d}{2}$. The local time does not exist for $d \ge 4$

Theorem

Let u(t,x) be given by (1.2). Assume that $d \ge 4$, then for each $x \in (0,1)$, the process $(u(t,x); t \in [0,T])$ does not have a local time $L(\xi,t)$ in $L^2(\mathbb{P} \otimes \lambda_d)$ for any $t \in [0,T]$.

Lemma

Let u(t, x) be given by (1.2). Assume $d \leq 3$. Let $\tilde{L}(\xi, t)$ be given as in (1.7), therefore, for every $\xi, y \in \mathbb{R}^d$, $t, t + h \in [0, T]$, and even integer $m \geq 2$, $\mathbb{E} \left[\tilde{L}(\xi, t + h) - \tilde{L}(\xi, t) \right]^m \leq C_m |h|^{m(1 - \frac{d}{4})}.$ (1.26) $\mathbb{E} \left[\tilde{L}(\xi + y, t + h) - \tilde{L}(\xi, t + h) - \tilde{L}(\xi + y, t) + \tilde{L}(\xi, t) \right]^m$ (1.27) $\leq C_{m,\theta} \|y\|^{m\theta} |h|^{m(1 - \frac{d}{4} - \frac{\theta}{4})},$ where $0 < \theta < (\frac{4 - d}{2}) \land 1$.

Theorem

Assume $d \leq 3$. for each $x \in (0, 1)$, the local time of the process $(u(t, x); t \in [0, T])$ has a version, denoted by $L(\xi, t)$, which is s jointly continuous in (ξ, t) almost surely.

Sample paths regularity of SHE

Corollary

Let u(t, x) be given by (1.2). Assume $d \le 3$. Then for each $x \in (0, 1)$, all coordinate functions of $(u(t, x), t \in [0, T])$ are nowhere Hölder continuous of order greater than $\frac{1}{4}$.

Investigation of the local time of the following two processes:

- $(u(t,x), x \in [0,1])$
- $(u(t,x), (t,x) \in [0,T] \times [0,1]).$

Investigation of the local time of the following two processes:

- $(u(t,x), x \in [0,1])$
- $(u(t,x), (t,x) \in [0,T] \times [0,1]).$

Thank you for your attention!