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Signatures

• We recall some elements of rough paths.

• Consider a Rd -valued smooth path

x = (x1, . . . , xd).

• Consider multiple integrals of x :

x1
st :=

∫ t

s
dxu = xt − xs x2

st :=

∫ t

s

∫ u

s
dxv ⊗ dxu

x3
st :=

∫ t

s

∫ u

s

∫ v

s
dxw ⊗ dxv ⊗ dxu

and similar definition for m-th order multiple integral xm.

• The n-th order signature of x :

Sn(x)st = (x1
st , x

2
st , . . . , x

n
st).

It is known that for fixed s and t , the Sn(x)st contains all information of x for
n =∞.
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Rough paths

• Consider p-variation continuous path x in Rd . We denote δxst = xt − xs.

• Recall that the p-variation norm is defined as

‖x‖p-var =

(
sup

(tk )∈P

∑
k

|δxtk tk+1 |
p

)1/p

,

where P is the set of finite partitions of the time interval [0,T ].

• Denote xε: a mollification of x .

• Suppose that for n = bpc the n th order signature Sn(xε) of xε converges
under the p-variation norm and denote the limit by Sn(x) := x. Then x is
called a p-rough path.
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Itô map

• Consider differential equation for a smooth function x :

yt = y0 +

∫ t

0
V (yu)dxu, t ∈ [0,T ].

• Sn(x): signature of x .

• Sn(y): signature of solution y .

• Consider the Itô map I : Sn(x)→ Sn(y).

• I is continuous under p-var norm with p < n + 1. (Lyons ’98)

• We extend the Itô map I to p-variation rough paths. We define y = I(x) as
the solution of the differential equation

dyt = V (yt)dxt .
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Applications

• The rough paths theory provides a framework for differential equations
driven by an arbitrary irregular noise.

• Such solutions are path-wise solutions. No probability structure is
required (e.g. Markovian or martingale).

• The rough paths framework provides the stability of the Itô map.

• The signature has been applied to model complex data streams.
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Rough integrations

• Consider a p-rough path x . Denote xε: a mollification of x .

• For V ∈ C∞ we define the rough integral:∫ T

0
V (x)dx = lim

ε→0

∫ T

0
V (xε)dxε.

• Let (tk ) be a partition of [0,T ]. For each k we consider the approximation∫ tk+1

tk

V (xt)dxt ≈
∫ tk+1

tk

V (xtk )dxt = V (xtk )δxtk tk+1 .

• This leads to the Riemann sum approximation∫ T

0
V (xt)dxt =

∑
k

∫ tk+1

tk

V (xt)dxt ≈
∑

k

V (xtk )δxtk tk+1 .

• Note that if p ≥ 2 the Riemann sum
∑
k

V (xtk )δxtk tk+1 diverges.
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• Denote LV = ∂VV and Ln = L ◦ · · · ◦ L.

• We consider an improved approximation∫ tk+1

tk

V (xt)dxt ≈
∫ tk+1

tk

(
V (xtk ) + (LV )(xtk )x

1
tk tk+1 + · · ·+ (Ln−1V )(xtk )x

n−1
tk tk+1

)
︸ ︷︷ ︸

The first n terms of Taylor expansion of V (yt ) at t

dxt

= V (xtk )δxtk tk+1 + (LV )(xtk )x
2
tk tk+1 + · · ·+ (Ln−1V )(xtk )x

n
tk tk+1

• We obtain the compensated Riemann sum:∫ T

0
V (xt)dxt ≈

∑
k

V (xtk )δxtk tk+1 + (LV )(xtk )x
2
tk tk+1 + · · ·+ (Ln−1V )(xtk )x

n
tk tk+1 .

• The compensated Riemann sum converges to the rough integral∫ T
0 V (x)dx when n > p − 1.

• Note that the compensated Riemann sum requires the computations of
signatures of x .
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Multi-dimensional rough integral

• Rough integration with respect to random fields have been studied in the
following cases:

• 2-dim Young integral: Towghi ’01 and Quer-Sardanyons-Tindel ’07

• 2-dim rough integral of order > 1/3: Chouk-Gubinelli ’18

• Multi-dim Young integral: Harang ’18

• Let x and y be 2d Hölder functions on [0,T ]2 of order (α1, α2) and
(β1, β2), respectively, and αi + βi > 1, i = 1, 2. The Riemann sum∑

(ti ),(t′j )

yti t′j
x ti ti+1

t′i t′i+1

converges to the Young integral
∫
[0,T ]2

ystdxst .

• The Riemann sum is divergent when αi + βi < 1, i = 1 or 2, and
compensated Riemann sum is introduced.

11 / 20



Multi-dimensional rough integral

• Rough integration with respect to random fields have been studied in the
following cases:

• 2-dim Young integral: Towghi ’01 and Quer-Sardanyons-Tindel ’07

• 2-dim rough integral of order > 1/3: Chouk-Gubinelli ’18

• Multi-dim Young integral: Harang ’18

• Let x and y be 2d Hölder functions on [0,T ]2 of order (α1, α2) and
(β1, β2), respectively, and αi + βi > 1, i = 1, 2. The Riemann sum∑

(ti ),(t′j )

yti t′j
x ti ti+1

t′i t′i+1

converges to the Young integral
∫
[0,T ]2

ystdxst .

• The Riemann sum is divergent when αi + βi < 1, i = 1 or 2, and
compensated Riemann sum is introduced.

11 / 20



Multi-dimensional rough integral

• Rough integration with respect to random fields have been studied in the
following cases:

• 2-dim Young integral: Towghi ’01 and Quer-Sardanyons-Tindel ’07

• 2-dim rough integral of order > 1/3: Chouk-Gubinelli ’18

• Multi-dim Young integral: Harang ’18

• Let x and y be 2d Hölder functions on [0,T ]2 of order (α1, α2) and
(β1, β2), respectively, and αi + βi > 1, i = 1, 2. The Riemann sum∑

(ti ),(t′j )

yti t′j
x ti ti+1

t′i t′i+1

converges to the Young integral
∫
[0,T ]2

ystdxst .

• The Riemann sum is divergent when αi + βi < 1, i = 1 or 2, and
compensated Riemann sum is introduced.

11 / 20



Multi-dimensional rough integral

• Rough integration with respect to random fields have been studied in the
following cases:

• 2-dim Young integral: Towghi ’01 and Quer-Sardanyons-Tindel ’07

• 2-dim rough integral of order > 1/3: Chouk-Gubinelli ’18

• Multi-dim Young integral: Harang ’18

• Let x and y be 2d Hölder functions on [0,T ]2 of order (α1, α2) and
(β1, β2), respectively, and αi + βi > 1, i = 1, 2. The Riemann sum∑

(ti ),(t′j )

yti t′j
x ti ti+1

t′i t′i+1

converges to the Young integral
∫
[0,T ]2

ystdxst .

• The Riemann sum is divergent when αi + βi < 1, i = 1 or 2, and
compensated Riemann sum is introduced.

11 / 20



Presentation Outline

1 Elements of rough paths

2 Numerical methods for rough integrals

3 Numerical methods for stochastic rough integrals
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• Let X = (X 1, . . . ,X d ) be a continuous centered Gaussian process with
i.i.d. components.

• The covariance function of X is defined as follows

R(s, t) = E[X j
sX j

t ].

• The information concerning X is mostly encoded in the rectangular
increments of R:

Rst
uv := R(t , v)− R(t , u)− R(s, v) + R(s, u) = E[δX j

stδX
j
uv ].

• For ρ ≥ 1 we define the ρ-variation of R as

‖R‖ρ-var = sup
(ti ),(t′j )

∑
i,j

∣∣∣Rt′j t′j+1
ti ti+1

∣∣∣ρ
1/ρ

,

where (tj) and (t ′j ) are partitions on [0,T ].

• If R has finite ρ-variation for ρ ∈ [1, 2), then X gives raise to a p-rough
path, provided p > 2ρ. (Friz-Victoir ’11).
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• Consider a process y such that

δyst = y ′sX1
st + y ′′s X2

st + r 0
st , δy ′st = y ′′s X1

st + r 1
st ,

where y ′, y ′′, r 0, r 1 are processes satisfying some regularity conditions.

• y is called a controlled paths of X of order 2. Such processes contains
most of the interesting examples. e.g. y = V (X ) or y is the solution of a RDE.
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Define the trapezoid rule:

tr-J T
0 (y ,X ) =

∑
k

ytk + ytk+1

2
· δXtk tk+1 .

Theorem (Liu-Selk-Tindel ’21)

• Suppose that ‖R‖ρ-var <∞. Then as the mesh size of the partition (tk )
goes to 0 we have

tr-J T
0 (y ,X )→

∫ T

0
ytdXt in probability.

• Suppose that there exists a constant C > 0 such that
‖R‖ρ-var;[s,t]×[0,T ] ≤ C|t − s| for all [s, t ] ⊂ [0,T ]. Then we have

tr-J T
0 (y ,X )→

∫ T

0
ytdXt almost surely.

15 / 20



Define the trapezoid rule:

tr-J T
0 (y ,X ) =

∑
k

ytk + ytk+1

2
· δXtk tk+1 .

Theorem (Liu-Selk-Tindel ’21)

• Suppose that ‖R‖ρ-var <∞. Then as the mesh size of the partition (tk )
goes to 0 we have

tr-J T
0 (y ,X )→

∫ T

0
ytdXt in probability.

• Suppose that there exists a constant C > 0 such that
‖R‖ρ-var;[s,t]×[0,T ] ≤ C|t − s| for all [s, t ] ⊂ [0,T ]. Then we have

tr-J T
0 (y ,X )→

∫ T

0
ytdXt almost surely.

15 / 20



Define the trapezoid rule:

tr-J T
0 (y ,X ) =

∑
k

ytk + ytk+1

2
· δXtk tk+1 .

Theorem (Liu-Selk-Tindel ’21)

• Suppose that ‖R‖ρ-var <∞. Then as the mesh size of the partition (tk )
goes to 0 we have

tr-J T
0 (y ,X )→

∫ T

0
ytdXt in probability.

• Suppose that there exists a constant C > 0 such that
‖R‖ρ-var;[s,t]×[0,T ] ≤ C|t − s| for all [s, t ] ⊂ [0,T ]. Then we have

tr-J T
0 (y ,X )→

∫ T

0
ytdXt almost surely.

15 / 20



Define the trapezoid rule:

tr-J T
0 (y ,X ) =

∑
k

ytk + ytk+1

2
· δXtk tk+1 .

Theorem (Liu-Selk-Tindel ’21)

• Suppose that ‖R‖ρ-var <∞. Then as the mesh size of the partition (tk )
goes to 0 we have

tr-J T
0 (y ,X )→

∫ T

0
ytdXt in probability.

• Suppose that there exists a constant C > 0 such that
‖R‖ρ-var;[s,t]×[0,T ] ≤ C|t − s| for all [s, t ] ⊂ [0,T ]. Then we have

tr-J T
0 (y ,X )→

∫ T

0
ytdXt almost surely.

15 / 20



Ingredients of proof.

With a careful rearrangement of the trapezoid rule one can recast it as

tr-J T
0 (y ,X ) =

∑
k

I1 + I2 + I3 + I4,

where

I1 = ytk · X
1
tk tk+1 + y ′tk · X

2
tk tk+1 + y ′′tk · X

3
tk tk+1

I2 =
1
2

y ′tk X1
tk tk+1 · X

1
tk tk+1 − y ′tk · X

2
tk tk+1

I3 =
1
2

y ′′tk X2
tk tk+1 · X

1
tk tk+1 − y ′′tk · X

3
tk tk+1

I4 =
1
2

r 0
tk tk+1 · X

1
tk tk+1 .

• I1 is the compensated Riemann sum of
∫ T

0 ydX.

• I2 and I3 are weighted random sums of the forms:
∑

k y ′tk hn
tk tk+1

and∑
k y ′′tk h̃n

tk tk+1
.

• The convergences of Ii , i = 2, 3, 4 can be shown based on a transfer
principle combined with some 2d young-type estimates.
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Transfer principle (Liu-Tindel ’19)

• In order to bound a weighted sum
∑n−1

k=0 ytk hn
tk tk+1

it suffices to consider
the following elementary weighted sums:∑

s≤tk<t

hn
tk tk+1 ,

∑
s≤tk<t

X1
stk hn

tk tk+1 , · · ·
∑

s≤tk<t

X`stk hn
tk tk+1 ,

where ` is an integer depending on X and hn.

• These special weighted sums belong to finite Wiener chaos and are
easier to handle.

• For example, in order to estimate I2 = 1
2

∑
k y ′tk (X

1
tk tk+1

· X1
tk tk+1

− ·X2
tk tk+1

) it
suffices to bound∑

k

(X1
tk tk+1 · X

1
tk tk+1 − X2

tk tk+1) and
∑

k

X1
tk (X

1
tk tk+1 · X

1
tk tk+1 − X2

tk tk+1)

• Such transfer principle for limit theorems of weighted sums are obtained
and has been applied to very general weighted sum.
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tk (X

1
tk tk+1 · X

1
tk tk+1 − X2

tk tk+1)

• Such transfer principle for limit theorems of weighted sums are obtained
and has been applied to very general weighted sum.
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Let f be a smooth function on Rm. Define the midpoint rule:

m-J T
0 (f (X ),X ) =

n−1∑
k=0

f
(Xtk + Xtk+1

2

)
· δXtk tk+1 .

Corollary

• Suppose that ‖R‖ρ-var <∞. Then as the mesh size of the partition (tk )
goes to 0 we have

m-J T
0 (f (X ),X )→

∫ T

0
f (Xt)dXt in probability.

• If we assume further that ‖R‖ρ-var;[s,t]×[0,T ] ≤ C|t − s|. Then the
convergence holds almost surely.
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Ingredients of proof:

For a, b ∈ Rd we consider the following mean value identity

f (a) + f (b)
2

− f
(

a + b
2

)
=

1
2
∂2f (c)

(
b − a

2

)⊗2

,

where c ∈ R3 satisfies c = a + θ(b − a) for some θ ∈ [0, 1].

• Apply the mean value identity with a = Xtk and b = Xtk+1 to the difference

tr-J T
0 (f (X ),X )−m-J T

0 (f (X ),X ).

We will obtain some weighted sums similar to I3 and I4 in the previous proof.

• We conclude that the two numerical integral methods converge to the
same limit.
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Thank you very much for your attention!
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