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Signatures

e We recall some elements of rough paths.

e Consider a R%-valued smooth path

e Consider multiple integrals of x:

X _/ axy = Xt — Xs X% _// axy ® dxy
xst —/ / / dxw ® dxy ® dxy

and similar definition for m-th order multiple integral x".
e The n-th order signature of x:
Sn(X)SY = (x;h xil‘: ceey xgi)-

It is known that for fixed s and ¢, the S,(x)s: contains all information of x for
n=oo
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Rough paths

e Consider p-variation continuous path x in RY. We denote dxst = X; — Xs.

e Recall that the p-variation norm is defined as

1/p
[Xllpvar = | sup Z|5thtk+1|p )
(t)EP P

where P is the set of finite partitions of the time interval [0, T].
e Denote x°: a mollification of x.

e Suppose that for n = |p] the nth order signature S,(x¢) of x¢ converges
under the p-variation norm and denote the limit by S,(x) := x. Then x is
called a p-rough path.
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[t6 map

e Consider differential equation for a smooth function x:
t
=yt [ Virdok te[oT)
0

e S,(x): signature of x.

e Sy(y): signature of solution y.

e Consider the Itd map /: Sy(x) — Sa(y).

e [is continuous under p-var norm with p < n+ 1. (Lyons '98)

e We extend the It6 map / to p-variation rough paths. We define y = /(x) as
the solution of the differential equation

dyt = V(yt)dXI.
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Applications

e The rough paths theory provides a framework for differential equations
driven by an arbitrary irregular noise.

e Such solutions are path-wise solutions. No probability structure is
required (e.g. Markovian or martingale).

e The rough paths framework provides the stability of the 1t6 map.

e The signature has been applied to model complex data streams.
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e Consider a p-rough path x. Denote x°: a mollification of x.

e For V € C* we define the rough integral:
T T
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0 e—=0 Jo
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Rough integrations

Consider a p-rough path x. Denote x°: a mollification of x.

e For V € C* we define the rough integral:

T T
/ V(x)dx = Iim/ V(x®)dx
0 e—=0 Jo

e Let (#) be a partition of [0, T]. For each k we consider the approximation

tiet1 /]
/ V(X{)dX[ ~ / V(X[k)de = V(th)(thk(kJr1 .

t t

e This leads to the Riemann sum approximation
/ V(Xr dXt Z/ xt)dxt Z V(th 5ka1k+1

o Note that if p > 2 the Riemann sum > V/(xy )Xy, diverges.
k
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e Denote LV=90VWWandL"=Lo---0L.

e We consider an improved approximation

bet v bet ’ - -
(xe)dxe ~ (VO + (EV)00 )X+ + (€7 V)X, ) dxi

t t

The first n terms of Taylor expansion of V(y;) at ¢
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t t

The first n terms of Taylor expansion of V(y;) at ¢
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e We obtain the compensated Riemann sum:

)
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0 k

e The compensated Riemann sum converges to the rough integral
foT V(x)dx whenn>p—1.
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e Denote LV=90VWWandL"=Lo---0L.

e We consider an improved approximation

bet v bet ’ - o
(xe)dxe ~ (VO + (EV)00 )X+ + (€7 V)X, ) dxi

t t

The first n terms of Taylor expansion of V(y;) at ¢

= V(x4)8Xs11 + (LV) (0 )Xyt + -+ (L7 V)00 )X,
e We obtain the compensated Riemann sum:

)
/ V) dx = 37 V)08t + (EV)06)% 0+ (£ V) ()X,
0 k

e The compensated Riemann sum converges to the rough integral
Iy V(x)dx when n > p — 1.

e Note that the compensated Riemann sum requires the computations of
signatures of x.
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Multi-dimensional rough integral

e Rough integration with respect to random fields have been studied in the
following cases:

e 2-dim Young integral: Towghi 01 and Quer-Sardanyons-Tindel '07
e 2-dim rough integral of order > 1/3: Chouk-Gubinelli "18
o Multi-dim Young integral: Harang ’18

e Let x and y be 2d Hélder functions on [0, T]? of order (a1, az) and
(B1, B2), respectively, and «; + 8; > 1, i = 1,2. The Riemann sum

fitiq
> Yoy Xpy
(1)

i i1

converges to the Young integral f[o T2 YstOXst.

e The Riemann sum is divergent when o; + 8, < 1, i =1 or 2, and
compensated Riemann sum is introduced.
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o Let X =(X",..., X% be a continuous centered Gaussian process with
i.i.d. components.

e The covariance function of X is defined as follows

R(s, t) = E[XX]].

e The information concerning X is mostly encoded in the rectangular
increments of R:

RS, .= R(t,v) — R(t,u) — R(s, v) + R(s, u) = E[6 X6 X.,].

)1/1J

e If R has finite p-variation for p € [1,2), then X gives raise to a p-rough
path, provided p > 2p. (Friz-Victoir ’11).

e For p > 1 we define the p-variation of R as

IRl mvar = SUP (Z)

() (t’

where () and (t/) are partitions on [0, T].
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e Consider a process y such that

OYst = Yéxlt + y;'th + rgﬁ 6Yet = ygxlr + rs1h

where y’, y”, r°, r' are processes satisfying some regularity conditions.

e yis called a controlled paths of X of order 2. Such processes contains
most of the interesting examples. e.g. y = V(X) or y is the solution of a RDE.
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Define the trapezoid rule:

+
tr-Jo (v, X) = Z % O Xttiss -

k

Theorem (Liu-Selk-Tindel '21)

e Suppose that ||R||pvar < co. Then as the mesh size of the partition ()
goes to 0 we have

;
tr-o (v, X) —>/ yidX;  in probability.
0

e Suppose that there exists a constant C > 0 such that
IRl pvar;[s,x0, 7] < C|t — s| for all [s, {] C [0, T]. Then we have

.
tr-75 (v, X) — / yrdX; almost surely.
0
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Ingredients of proof.
With a careful rearrangement of the trapezoid rule one can recast it as

-0 (v, X) =Y h+h+hk+h,
k

where

2

3
h =y 'X;ktkﬂ + ¥4, Kbty +yi X

Bt

1,1 1 /w2
= 5YiKuterr Kuterr = Vi Xigti

1 11y2 1 1" 3
b = Eythtktkﬂ 'ka?k+1 — Y 'ka’k+1

15 1
ls = §rfkfk+1 'kafk+1'
e | is the compensated Riemann sum of fOT yaX.
e | and k are weighted random sums of the forms: -, y; hi, ., and
2ok Vichiaes-
e The convergences of I;, i = 2,3, 4 can be shown based on a transfer

principle combined with some 2d young-type estimates.
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Transfer principle (Liu-Tindel ’19)

e In order to bound a weighted sum Zk o Yuhiyy, .., it suffices to consider
the following elementary weighted sums:

n
2 : hfkfk+17 § : Xkahfkfk+17" 2 : Xkahfkfkﬂ’

s<t <t s<t <t s<t <t
where ¢ is an integer depending on X and h".

e These special weighted sums belong to finite Wiener chaos and are
easier to handle.

o For example, in order to estimate b = 3 >, 5 (Xiy ., - Xbto.s — Xig,,) it
suffices to bound

1 1 1 1 1
D Kty Xty = Xitrr) and D> Xe XKoo, - Kot — Xier)
k

k

e Such transfer principle for limit theorems of weighted sums are obtained
and has been applied to very general weighted sum.
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Let f be a smooth function on R™. Define the midpoint rule:

_q
m- jO (f Z (th + th“ ) . 6thtk+1 N
k=

Corollary

e Suppose that || R||,var < co. Then as the mesh size of the partition ()
goes to 0 we have

-
m-Ty (f(X), X) —>/ f(X;)dX; in probability.
0

o If we assume further that || R|| jvars,gx [0, < C|t — s|. Then the
convergence holds almost surely.
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Ingredients of proof:

For a, b € R? we consider the following mean value identity

f(a) = f(b) (a; b) . %E)Zf(c) (bga>®2 ,

where ¢ € R® satisfies ¢ = a+ 6(b — a) for some 6 € [0, 1].
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Ingredients of proof:

For a, b € R? we consider the following mean value identity

f(a) = f(b) <372L b) . %E)Zf(c) (bg‘?)m ,

where ¢ € R® satisfies ¢ = a+ (b — a) for some 0 € [0, 1].

o Apply the mean value identity with a = X and b = X;,, to the difference
tr-Jo (f(X), X) — m-Jy (f(X), X).

We will obtain some weighted sums similar to /5 and I in the previous proof.

e We conclude that the two numerical integral methods converge to the
same limit.



Thank you very much for your attention!
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