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1. Main equation and motivation

Cauchy problem (multiplicative noise)

, 1 _
%u(tx) éAu(t,x)+u(t,x)W, t>0,xeRY,

a9
where u(0, x) = up(x Z 5 is the Laplacian,
—q i

W = Gaussian noise.

The product u(t, x) W is understood in the sense of Skorohod.



2. Noise structure

E[W(ry)W(s,2)] = s—nAy-2).

In the above expression we assume that the noise in spatial variable
is homogeneous. We shall further assume that

A(x) = /Rd e~ u(d¢), where +=+/—1.

Hypothesis (on )
There exist constants ¢y, Co and 0 < 8 < 1, such that

Colt|~* < A(t) < Colt| ™.



Hypothesis (on A)
N satisfies one of the following conditions.

(i) There exist positive constants ¢y, C; and 0 < k < 2 such that

d>2,
cr|x|7 < A(x) < Cy|x|=.
(i) There exist positive constants ¢, Cy and k; such that

O<ai<1, Y% ai<2,
o1 10 1l < A(x) < Cy T, x|~

(i)

d=1,
{/\(x) = 0(x) (Dirac delta function).



3. Definitions of the solution

Definition
u(t, x) is called mild solution to

a%u(t, X) = 5Au(t,X) +u(t, )W, t>0,x¢€ RY,

t
u(t, x) = pru(0, x) + / / (X~ y)uls.y) W(ds, ).

pi(x) = (2rt) 792 exp ( L ) and the integral is Skorohod



4. Moment bounds and right tails
We assume the following

d
a=a(Case()), Y ai(Casel(i)), 1(Case ).

i=1
Then we have forall t > 0,x € R  k > 2,

exp (Ctpgiioaiak;%g> <E [u{fx] < exp (C't%kg%)
where C, C’ are constants independent of t and k.
If A(x) = o(x) and W is time independent, then,
exp (Ct3k3) <E [U;(,x] < exp (C’t3k3) ,
where C, C’ > 0 are constants independent of t and k.

Hu, Y.; Huang, J.; Nualart, D. and Tindel, S.

Stochastic heat equations with general multiplicative Gaussian
noises: Holder continuity and intermittency.

Electron. J. Probab. 20 (2015), no. 55, 50 pp.



Theorem (Hu-Le 2022)

Assume that the initial condition uq is uniformly bounded from above
and from below by two positive constants. Then, there are positive
constants ap, by, ¢j, ¢, j = 1,2,3 (independent of t and a) such that

4—2ag—

&1 exp (—52t77(|0g(03a)) == )< P(u(t, x) > a)

4—20g9—a —a
< oy exp (—th =P (log(cza)) 2 )

B _ _
for all a > ape™!", where g = +=5%=2

Proof Chebyshev inequality for upper bound and Paley-Zygmund
inequality,

1 |]EZE 6(t7 X)|2
_ ST TR Al
P (Zsa(f x) = 5EZ 5(t, X)) = 4E|Z 5(t,X)2

\V]

for lower bound.



Left tail

Theorem (Hu-Le 2022)

Lett > 0 and x € RY be fixed. there are positive constants C, c;,
i=1,...,5 such that for every t > 0,x € R? and for every

0<r<iexp{—cse™},

P <u(t7x) < "> < Cexp{_ [01 exp (—cst”) |log(2r)| + szr} '

Pt * Uo(X)

In the case when W is a space time white noise with spatial
dimension one (thatis d = ag = a = 8 = 1), the above theorem
yields

P (pu(tx) < r) < Cexp{_ (01 exp (—Cst) | log(2r)| + C2m>2} ’

t % Up(X)

for sufficiently small r > 0.



This is consistent with the result of Moreno, Flores, Gregorio R. AP
42 (2014), 1635-1643. in which vy is the Dirac mass. However, in this
one dimensional space time white noise case if the initial condition is
the Dirac delta mass at 0, then a recent work of Corwin and Ghosal
(Lower tail of the KPZ equation, Duke Math. J. 169 (2020),
1329-1395) improves the above bound as follow:

P(u(t,0) <r) ~exp {_01 t71/2(02 + |log I’|)5/2}

for sufficiently small r > 0 and for all t < T.



Amir, G.; Corwin, |. and Quastel, J.

Probability distribution of the free energy of the continuum directed
random polymer in 1 + 1 dimensions.

Comm. Pure Appl. Math. 64 (2011), no. 4, 466-537.

p(t.x) = Z=e =.




e 1
Ai(x) = :T/o cos(3t3+xt> dt

K(x.y) = /jo o (1) Ai(x + 1) Ai(y + t)dt

dji

FT(S ‘/“‘C' feiﬂ det (/ - KUT’ﬂ)LZ(KTT1a, OO) [}
where
i
oT.n — /] — e—KTt

a = a(s)=s—logvanT
Kt _ 2—1/37‘1/3
c = {e""}%<9<3l U{x+ £}, -

=7="2



5. Tail probability density

For any (t, x), u(t, x) is a random variable.
Is u(t, x) continuous type?

Can one find a pdf p(t, x; y) such that

P(u(t, x) € A) = /p(t,x;y)dy7 V Borel set A?
A

What is the form of p(t, x; y)?
What p(t, x; y) looks like When y — co?

If up(x) > 0, then u(t, x) > 0 almost surely. This means p(t, x;y) =0
when y <0. limy_o4 p(t,x;y) =07

How fast does p(t, x; y) converge to O when y — 0+7?



Case 1: Large y (right tail)

Theorem (Hu-Le 2022)

Suppose |uy| < ¢ < co. Then, the law of u(t, x) has a density
o(t, x; y) with respect to the Lebesgue measure. Moreover, there are
positive constants ¢y, ¢y, C3, €1, €3 and ¢; > 0 such that

4—2ap—a

Gt ep{ &t (log(&y) 7"

4—2a5—a 4—2ap—a

Seltxiy) ot e {_C2t_+(|0g(03y))%a}

for every t > 0 and for y sufficiently large.



Case 2: Small y (left tail)

Theorem (Hu-Le 2022)

Assume that the initial condition uq is uniformly bounded from above
and from below by two positive constants. For fixed T > 0, there are
positive constants C, ag, by and ¢((T), c2(T) such that for every
te[0,T],x eR?and0 < y < age—b!”

4—2ap—a

pt,x;y) < Ct- ¢ exp {— (—ci(T)logy — Cz(T))Q} :

In particular, when the noise W is one dimensional space-time white,
we have

p(t,x;y) < Cti exp{f(fc1 logy — 02)2} .



The tool to use is Malliavin calculus
D. Nualart
The Malliavin calculus and related topics (Second edition).

Springer-Verlag, Berlin, 2006.

Hu, Y.
Analysis on Gaussian spaces.

World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2017.
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6. Malliavin Calculus
Newton calculus, It6 calculus
Malliavin calulus

Q = Cy([0, T],R) = The set of all continuous functions w starting at 0
(w(0) = 0).

It is a Banach space with the sup norm [|w|| = supg<;< 1 |w(t)|-
F be the o-algebra generated by the open sets

P is the canonical Wiener measure on (2, F) such that B; : Q@ — R
defined by B;(w) = w(t) is the standard Brownian motion.

A functional from 2 — R is called a Wiener functional.

Example

1.8 2. []|BlPat
3. SUPo<t<T |Bt|

4. I{SUPogzgr\Br\}



5. fo (t)dB;, where f: [0, T] — R s.t. fo 2(t)dt < oo

6. multiple 1t6-Wiener integral I,(f,) = f[o 0 fn fa(t1,- -+ ,t0)dBy, -+ - dBy,,
where f, : [0, T]" — R is symmetric and

(-, ty)dt - - - dt, < co.
.71

7. Xt, 7dXt = b(Xt)dt + U(X{)dBf.

8. Functionals of the form F = f(f (H)dB;, ... fo »(t)dB;) is dense
in LZ(Q,J-", P),

where f can be the sets of all polynomials, smooth functions of
polynomial growth, smooth functions of compact supports

hy,ho,--- By, is ONB of L2([0, T])



[t6-Wiener’s chaos expansion theorem:

Any F € [?(Q, F, P) can be written as

oo

where

f, € L2(0,T]") and l,,(f,,):/ fo(tr,- ,12)0B, -
[o,7]"

Exercises: 1. Find the chaos expansion for /i, _,_ |8/<<}

2. Find the chaos expansion of x;, where
ax; = b(Xt)dt + O'(X[)dBt , X0 = X.

dB,, .



Nonlinear functional analysis on a Banach space with a measure
(infinite dimensional harmonic analysis)

Gaussian measure (Lebesgue measure does not exist in infinite
dimensions)



Why Malliavin derivative?

Xy, , AX; = b(X;)dt 4+ o(x:)dBs.
Xy, : 2 — RY is not continuous.
Example: [, (B2dB] — B2dB})
Malliavin, P.

Stochastic calculus of variation and hypoelliptic operators.
Proceedings of the International Symposium on Stochastic
Differential Equations (Res. Inst. Math. Sci., Kyoto Univ., Kyoto,
1976), pp. 195-263, Wiley, New York-Chichester-Brisbane, 1978.



Malliavin derivative
Let (B;; t > 0) be a standard Brownian motion.

Given F = f( [, h(t)dBy, ..., [] ha(t)dBr), where hy, hp, - by, ---

are continuous functions of t and constitute an orthonormal basis of
L2([0, T])

D/F = Z /m (B, ..., / hn(t)dBr)h

The derivative operator D is a closable and unbounded operator

T p/2
|FIE, = E(FP)+E ( / ID.FI? dt)
0

Higher order derivatives

1Fllkp

Spaces D1 p, Dk p



If F = I(fy), then

DiF =) qlg-1(fg(-, 1))
q=1

DTF = I[O,GT](t),
where 07 is the ungiue maximum point of B; over [0, T]

chain rule, D:g(F) = g'(F)D:F

Malliavin calculus can be developed for general Gaussian processes,
for Poisson processes, Lévy processes



H = L?([0, T])
Denote by ¢ the adjoint operator of D (divergence operator)
E(6(u)F) = E({(DF,u)y) forany F € Dy .

Ornstein-Uhlenbeck operator
SDF = —LF.

Meyer’s inequality
Coll Fllp < II(1+ LY"2Flp < Coll Fllxp -

Interpolation inequality (Decreusefond-Hu-UstUneI)

I(/+ L)'2F|, < IFIS 21+ L)V 2

r(1/2) /2)
Combined with Meyer’s inequality

1/2 1/2
IDF|p < Co(lIFllo + | F Il 2IID2F15%)



Key formula
Lemma y

Let F € D2 such that HDFH2 € Dom(6). Then the law of F has a
continuous and bounded density given by

DF
p(x)=E [1{F>x}5 < >
IDF

px) = / 5:0)P(y)dy = E (5(F))

d
E <dy1 {y>x} ‘y_F>

(D(14r>xy)  DF)n L ]

IDF |,
DF
= E |1 1)
{F>x}
l (nDFi)

Proof

= E




Another formula
d
P00 = E(gGenl,r)

- fotie o

(DF,&)n
= E [1{F>X}5 ((DF%@/-/)} .




For any smooth function of compact support g

0 i)
[ rF

- - ,
= E|(D Q(X)dX7>H>H]

~ E|(g(F)DF, -~ >H}

(big) problem of negative moments



Lemma

Let
—1

bit) = (8 sup 1))

xekd [Pt * Uo(X)[?

For every p > 0 and every (t,x) € Ry x R?, we have

E|u(t, x)| P < 2Pe?PV D 1E oty (1 + 4, /7rp2)\(t)ep2*(’)> D¢ * Uo(X)] P

Lemma
Forevery T > 0 and p > 0, there exist positive constants C, cr such
that

E||Du(t, x)|| ;27 < Ce t=PR=0=%)  foralit,x € [0, T] x RY.



For any H-valued random variable F in D'2(#), it is well-known that

E
05 = [ (i )|
) 5(F) (D(Du(t, X), F)u, F)u
=K [/{u(t,x)zy} ((Du(t, x), F)u (Du(t, x), F>]%1 >}

With the choice

F(Ta 5) = @(Ta 57 ta X) = 1[071) (T)pT—T(X - f)U(T7 g)
the above identity becomes

— Py * D.A(t, x), o(-, t,
p(t,x;y) =E {I{u(t,x)zy} (u(t’ X)A(f;) tox) ¢ (t:\(()t’i()zt X)>H>} :

where

A(t, x) = (Du(t, x), (-, t, X))m -

Since || Dul|i and u have finite moments, we see that A(t, x) also has
finite moments of all orders.



Alt,x) =
/R D eu(t, x) 110, q(7" )Pt (x = EYu(r", & Y0(T — 7')y(§ — £)dEdE drdr’

lts Malliavin derivative is
D)\WA(Z’, X) =
/]de+2 DZ ¢\, u(t, X)10,q(7")pr—r (X = (T, € )r0(r = 7')

’Y(g - 5/)dfd§/d7d7-l + / Dﬂfu(ta X)1 [OJ](T/)pt—‘r’(X - 5/)D)\717U(7—7 gl)

R2d+2

Y0(r = 7)(¢ — €)dede drdr.

Thus, D, ,u(t,x) >0 and D? e Ut x) > 0. This implies that
A(t,x) > 0and D, ,A(t, x) > > O Clearly, we have F > 0 and hence

(DA, X), ¢(-, t, X))z > 0.



As a consequence,

u(t, x) — pr * Uo(X
p(t7x;y)2E[l{u(t,x)>y} ( )A(f ;) ’ )}

When y > p; x up(x) + 1, we have u(t, x) — ps * Up(x) > 1 on the event
{u(t, x) > y}. This means

/

{u(t.x)>y}
YY>E |22

p(t,x,y)_IE[ At x) ]

Applying Hélder inequality,
]
(E [fu2p])* < E (W) (BA(t, X)) -
Thus

(P(u(t, x) > ))
EA(t, x)

p(t,x;y) >

><
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