Asymptotics of the density of parabolic Anderson random fields

> Yaozhong Hu University of Alberta at Edmonton

> > jointly with Khoa Le

at CBMS NSF/CBMS Follow-Up Conference: Gaussian Random Fields, Fractals, SPDEs, and Extremes University of Alabama at Huntsville

08/12, 13/2022

(ロ) (同) (三) (三) (三) (○) (○)

Based on a joint work

Hu, Y. and Le, Khoa

Asymptotics of the density of parabolic Anderson random fields.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Ann. Inst. Henri Poincaré Probab. Stat. 58 (2022), 105-133.

Outline

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

- 1. Main equation and motivation
- 2. Noise structure
- 3. Definition of Solution
- 4. Moment bounds and right tails
- 5. Tail probability density
- 6. Malliavin calculus

1. Main equation and motivation

Cauchy problem (multiplicative noise)

$$rac{\partial}{\partial t}u(t,x)=rac{1}{2}\Delta u(t,x)+u(t,x)\dot{W},\quad t>0,x\in\mathbb{R}^d,$$

where
$$u(0, x) = u_0(x)$$
, $\Delta = \sum_{i=1}^d \frac{\partial^2}{\partial x_i^2}$ is the Laplacian,

 \dot{W} = Gaussian noise.

The product $u(t, x)\dot{W}$ is understood in the sense of Skorohod.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

2. Noise structure

$$\mathbb{E}\left[\dot{W}(r,y)\dot{W}(s,z)\right] = \gamma(s-r)\Lambda(y-z).$$

In the above expression we assume that the noise in spatial variable is homogeneous. We shall further assume that

$$\Lambda(x) = \int_{\mathbb{R}^d} e^{-\iota x \xi} \mu(d\xi)$$
, where $\iota = \sqrt{-1}$.

Hypothesis (on γ)

There exist constants c_0 , C_0 and $0 \le \beta < 1$, such that

 $c_0|t|^{-\alpha_0} \leq \gamma(t) \leq C_0|t|^{-\alpha_0}.$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Hypothesis (on Λ)

 Λ satisfies one of the following conditions.

(i) There exist positive constants c_1 , C_1 and $0 < \kappa < 2$ such that

$$\begin{cases} d \geq 2, \\ c_1 |x|^{-\alpha} \leq \Lambda(x) \leq C_1 |x|^{-\alpha} \end{cases}$$

٠

.

・ コット (雪) ・ (目) ・ (目)

(ii) There exist positive constants c_1 , C_1 and κ_i such that

$$\begin{cases} \mathbf{0} < \alpha_i < \mathbf{1}, & \sum_{i=1}^d \alpha_i < \mathbf{2}, \\ \mathbf{C}_1 \prod_{i=1}^d |\mathbf{x}_i|^{-\alpha_i} \le \Lambda(\mathbf{x}) \le \mathbf{C}_1 \prod_{i=1}^d |\mathbf{x}_i|^{-\alpha_i} \end{cases}$$

(iii)

$$\begin{cases} d = 1, \\ \Lambda(x) = \delta(x) & (Dirac \ delta \ function). \end{cases}$$

3. Definitions of the solution

Definition u(t, x) is called mild solution to

$$\frac{\partial}{\partial t}u(t,x)=\frac{1}{2}\Delta u(t,x)+u(t,x)\dot{W},\quad t>0,x\in\mathbb{R}^{d},$$

if

$$u(t,x) = p_t u(0,x) + \int_0^t \int_{\mathbb{R}^d} p_{t-s}(x-y)u(s,y)W(ds,dx).$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

 $p_t(x) = (2\pi t)^{-d/2} \exp\left(-\frac{|x|^2}{2t}\right)$ and the integral is Skorohod

4. Moment bounds and right tails

We assume the following

$$\alpha = \alpha$$
 (Case (i)), $\sum_{i=1}^{d} \alpha_i$ (Case (ii)), 1 (Case (iii)).

Then we have for all $t \ge 0$, $x \in \mathbb{R}^d$, $k \ge 2$,

$$\exp\left(Ct^{\frac{4-2\alpha_0-\alpha}{2-\alpha}}k^{\frac{4-\alpha}{2-\alpha}}\right) \leq \mathbb{E}\left[u_{t,x}^k\right] \leq \exp\left(C't^{\frac{4-2\alpha_0-\alpha}{2-\alpha}}k^{\frac{4-\alpha}{2-\alpha}}\right)$$

where C, C' are constants independent of t and k.

If
$$\Lambda(x) = \delta_0(x)$$
 and \dot{W} is time independent, then,
 $\exp\left(Ct^3k^3\right) \leq \mathbb{E}\left[u_{t,x}^k\right] \leq \exp\left(C't^3k^3\right)$,

where C, C' > 0 are constants independent of *t* and *k*.

Hu, Y.; Huang, J.; Nualart, D. and Tindel, S.

Stochastic heat equations with general multiplicative Gaussian noises: Hölder continuity and intermittency.

・ロ・・日・・ヨ・・ヨ・ ヨ・ シタク

Electron. J. Probab. 20 (2015), no. 55, 50 pp.

Theorem (Hu-Le 2022)

Assume that the initial condition u_0 is uniformly bounded from above and from below by two positive constants. Then, there are positive constants a_0, b_0, c_j , \tilde{c}_j , j = 1, 2, 3 (independent of t and a) such that

$$\begin{split} \tilde{c}_1 \exp\left(-\tilde{c}_2 t^{-\frac{4-2\alpha_0-\alpha}{2}} (\log(\tilde{c}_3 a))^{\frac{4-\alpha}{2}}\right) &\leq P(u(t,x) \geq a) \\ &\leq c_1 \exp\left(-c_2 t^{-\frac{4-2\alpha_0-\alpha}{2}} (\log(c_3 a))^{\frac{4-\alpha}{2}}\right) \end{split}$$

for all
$$a \geq a_0 e^{b_0 t^{eta}}$$
, where $eta = rac{4-2lpha_0-lpha}{2-lpha}$.

Proof Chebyshev inequality for upper bound and Paley-Zygmund inequality,

$${\sf P}\left(Z_{arepsilon,\delta}(t,x)\geq rac{1}{2}\mathbb{E}Z_{arepsilon,\delta}(t,x)
ight)\geq rac{|\mathbb{E}Z_{arepsilon,\delta}(t,x)|^2}{4\mathbb{E}|Z_{arepsilon,\delta}(t,x)|^2}$$

for lower bound.

Left tail

Theorem (Hu-Le 2022)

Let t > 0 and $x \in \mathbb{R}^d$ be fixed. there are positive constants C, c_i , i = 1, ..., 5 such that for every $t > 0, x \in \mathbb{R}^d$ and for every $0 < r < \frac{1}{2} \exp\{-c_4 e^{c_5 t^{\beta}}\}$,

$$P\left(\frac{u(t,x)}{p_t * u_0(x)} \le r\right) \le C \exp\left\{-\left[c_1 \exp\left(-c_3 t^{\beta}\right) |\log(2r)| + c_2 \sqrt{1+t^{\beta}}\right]^2\right\}$$

In the case when \dot{W} is a space time white noise with spatial dimension one (that is $d = \alpha_0 = \alpha = \beta = 1$), the above theorem yields

$$P\left(rac{u(t,x)}{p_t * u_0(x)} \le r
ight) \le C \exp\left\{-\left(c_1 \exp\left(-c_3 t\right) |\log(2r)| + c_2 \sqrt{1+t}
ight)^2
ight\},$$

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

for sufficiently small r > 0.

This is consistent with the result of Moreno, Flores, Gregorio R. AP 42 (2014), 1635-1643. in which u_0 is the Dirac mass. However, in this one dimensional space time white noise case if the initial condition is the Dirac delta mass at 0, then a recent work of Corwin and Ghosal (Lower tail of the KPZ equation, Duke Math. J. 169 (2020), 1329-1395) improves the above bound as follow:

$$P(u(t,0) \le r) \simeq \exp\left\{-c_1 t^{-1/2} (c_2 + |\log r|)^{5/2}\right\}$$

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

for sufficiently small r > 0 and for all $t \le T_0$.

Amir, G.; Corwin, I. and Quastel, J.

Probability distribution of the free energy of the continuum directed random polymer in 1 + 1 dimensions.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Comm. Pure Appl. Math. 64 (2011), no. 4, 466-537.

$$p(t,x) = rac{1}{\sqrt{2\pi t}} e^{-rac{x^2}{2t}}.$$
 $F(t,x) = \log\left(rac{u(t,x)}{p(t,x)}
ight)$
 $F_T(s) = P\left(F(T,x) + rac{T}{4!} \le s
ight).$

$$\begin{aligned} \operatorname{Ai}(x) &= \frac{1}{\pi} \int_0^\infty \cos\left(\frac{1}{3}t^3 + xt\right) dt \\ \mathcal{K}_\sigma(x, y) &= \int_{-\infty}^\infty \sigma(t) \operatorname{Ai}(x+t) \operatorname{Ai}(y+t) dt \\ \mathcal{F}_T(s) &= \int_{\tilde{\mathcal{C}}} \frac{d\tilde{\mu}}{\tilde{\mu}} e^{-\tilde{\mu}} \det\left(I - \mathcal{K}_{\sigma_{T,\tilde{\mu}}}\right)_{L^2(\mathcal{K}_T^{-1}a, \infty)} , \end{aligned}$$

where

$$\begin{split} \sigma_{T,\tilde{\mu}} &= \frac{\tilde{\mu}}{\tilde{\mu} - e^{-K_T t}} \\ a &= a(s) = s - \log \sqrt{2\pi T} \\ K_t &= 2^{-1/3} T^{1/3} \\ \tilde{C} &= \left\{ e^{i\theta} \right\}_{\frac{\pi}{2} \leq \theta \leq \frac{3\pi}{2}} \cup \{ x + \pm i \}_{x > 0} \; . \end{split}$$

◆□ > ◆□ > ◆ Ξ > ◆ Ξ > → Ξ → のへで

5. Tail probability density

For any (t, x), u(t, x) is a random variable.

Is u(t, x) continuous type?

Can one find a pdf $\rho(t, x; y)$ such that

$$P(u(t,x) \in A) = \int_A
ho(t,x;y) dy$$
, $orall$ Borel set A ?

What is the form of $\rho(t, x; y)$?

What $\rho(t, x; y)$ looks like When $y \to \infty$?

If $u_0(x) \ge 0$, then $u(t, x) \ge 0$ almost surely. This means $\rho(t, x; y) = 0$ when y < 0. $\lim_{y \to 0+} \rho(t, x; y) = 0$?

How fast does $\rho(t, x; y)$ converge to 0 when $y \rightarrow 0+$?

Case 1: Large y (right tail)

Theorem (Hu-Le 2022)

Suppose $|u_0| \le c < \infty$. Then, the law of u(t, x) has a density $\rho(t, x; y)$ with respect to the Lebesgue measure. Moreover, there are positive constants $c_1, c_2, c_3, \tilde{c}_1, \tilde{c}_3$ and $\tilde{c}_3 > 0$ such that

$$\tilde{c}_{1}t^{-\frac{4-2\alpha_{0}-\alpha}{2}}\exp\left\{-\tilde{c}_{2}t^{-\frac{4-2\alpha_{0}-\alpha}{2}}(\log(\tilde{c}_{3}y))^{\frac{4-\alpha}{2}}\right\} \\ \leq \rho(t,x;y) \leq c_{1}t^{-\frac{4-2\alpha_{0}-\alpha}{4}}\exp\left\{-c_{2}t^{-\frac{4-2\alpha_{0}-\alpha}{2}}(\log(c_{3}y))^{\frac{4-\alpha}{2}}\right\}$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

for every t > 0 and for y sufficiently large.

Case 2: Small y (left tail)

Theorem (Hu-Le 2022)

Assume that the initial condition u_0 is uniformly bounded from above and from below by two positive constants. For fixed T > 0, there are positive constants C, a_0 , b_0 and $c_1(T)$, $c_2(T)$ such that for every $t \in [0, T]$, $x \in \mathbb{R}^d$ and $0 < y < a_0 e^{-b_0 t^{\beta}}$

$$\rho(t, x; y) \leq Ct^{-\frac{4-2\alpha_0-\alpha}{4}} \exp\left\{-\left(-c_1(T)\log y - c_2(T)\right)^2\right\}.$$

In particular, when the noise W is one dimensional space-time white, we have

$$\rho(t, x; y) \leq Ct^{-\frac{1}{4}} \exp\left\{-\left(-c_1 \log y - c_2\right)^2\right\}.$$

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

The tool to use is Malliavin calculus

D. Nualart

The Malliavin calculus and related topics (Second edition).

Springer-Verlag, Berlin, 2006.

Hu, Y.

Analysis on Gaussian spaces.

World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2017.

(ロ) (同) (三) (三) (三) (○) (○)

Preferred Publisher of Leading Thinkers

218/16 817 PM

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

8.00.00.10.20.00.00 1

6. Malliavin Calculus

Newton calculus, Itô calculus

Malliavin calulus

 $\Omega = C_0([0, T], \mathbb{R})$ = The set of all continuous functions ω starting at 0 ($\omega(0) = 0$).

It is a Banach space with the sup norm $\|\omega\| = \sup_{0 \le t \le T} |\omega(t)|$.

 ${\mathcal F}$ be the $\sigma\text{-algebra}$ generated by the open sets

P is the canonical Wiener measure on (Ω, \mathcal{F}) such that $B_t : \Omega \to \mathbb{R}$ defined by $B_t(\omega) = \omega(t)$ is the standard Brownian motion.

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

A functional from $\Omega \to \mathbb{R}$ is called a Wiener functional.

Example

1.
$$B_t$$
 2. $\int_0^T |B_t|^p dt$
3. $\sup_{0 \le t \le T} |B_t|$
4. $I_{\{\sup_{0 \le t \le T} |B_t|\}}$

5.
$$\int_0^T f(t) dB_t$$
, where $f : [0, T] \to \mathbb{R}$ s.t. $\int_0^T f^2(t) dt < \infty$
6. multiple Itô-Wiener integral $I_n(f_n) = \int_{[0, T]^n} f_n(t_1, \cdots, t_n) dB_{t_1} \cdots dB_{t_n}$, where $f_n : [0, T]^n \to \mathbb{R}$ is symmetric and $\int_{[0, T]^n} f_n^2(t_1, \cdots, t_n) dt_1 \cdots dt_n < \infty$.

7.
$$x_{t_0}$$
, $dx_t = b(x_t)dt + \sigma(x_t)dB_t$.

8. Functionals of the form $F = f(\int_0^T h_1(t) dB_t, ..., \int_0^T h_n(t) dB_t)$ is dense in $L^2(\Omega, \mathcal{F}, P)$,

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

where *f* can be the sets of all polynomials, smooth functions of polynomial growth, smooth functions of compact supports

```
h_1, h_2, \dots, h_n, \dots is ONB of L^2([0, T])
```

Itô-Wiener's chaos expansion theorem:

Any $F \in L^2(\Omega, \mathcal{F}, P)$ can be written as

$$F=\sum_{n=0}^{\infty}I_n(f_n)\,,$$

where

$$f_n \in L^2([0, T]^n)$$
 and $I_n(f_n) = \int_{[0, T]^n} f_n(t_1, \cdots, t_n) dB_{t_1} \cdots dB_{t_n}$.

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

Exercises: 1. Find the chaos expansion for $I_{\{\sup_{0 \le t \le t} |B_t| \le \varepsilon\}}$

2. Find the chaos expansion of x_t , where $dx_t = b(x_t)dt + \sigma(x_t)dB_t$, $x_0 = x$.

Nonlinear functional analysis on a Banach space with a measure (infinite dimensional harmonic analysis)

Gaussian measure (Lebesgue measure does not exist in infinite dimensions)

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Why Malliavin derivative?

 $egin{aligned} & x_{t_0} \ , dx_t = b(x_t) dt + \sigma(x_t) dB_t. \ & x_{t_0} \ : \Omega o \mathbb{R}^d ext{ is not continuous.} \end{aligned}$

Example: $\int_0^T (B_t^2 dB_t^1 - B_t^2 dB_t^1)$

Malliavin, P.

Stochastic calculus of variation and hypoelliptic operators. Proceedings of the International Symposium on Stochastic Differential Equations (Res. Inst. Math. Sci., Kyoto Univ., Kyoto, 1976), pp. 195-263, Wiley, New York-Chichester-Brisbane, 1978.

Malliavin derivative

Let $(B_t; t \ge 0)$ be a standard Brownian motion.

Given $F = f(\int_0^T h_1(t) dB_t, ..., \int_0^T h_n(t) dB_t)$, where $h_1, h_2, ..., h_n, ...$ are continuous functions of *t* and constitute an orthonormal basis of $L^2([0, T])$

$$D_t F = \sum_{i=1}^n \frac{\partial f}{\partial x_i} (\int_0^T h_1(t) dB_t, \dots, \int_0^T h_n(t) dB_t) h_i(t).$$

The derivative operator D is a closable and unbounded operator

$$\|F\|_{1,p}^{p} = E(|F|^{p}) + E\left(\int_{0}^{T} |D_{t}F|^{2} dt\right)^{p/2}$$

Higher order derivatives

 $\|F\|_{k,p}$

Spaces $\mathbb{D}_{1,p}$, $\mathbb{D}_{k,p}$

If $F = I_q(f_q)$, then

$$D_t F = \sum_{q=1}^{\infty} q I_{q-1}(f_q(\cdot, t)).$$

If $F = \sup_{0 \le t \le T} B_t$, then

$$D_t F = I_{[0,\theta_T]}(t),$$

where θ_T is the unquee maximum point of B_t over [0, T]

chain rule, $D_t g(F) = g'(F) D_t F$

Malliavin calculus can be developed for general Gaussian processes, for Poisson processes, Lévy processes

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

 $H = L^2([0, T])$

Denote by δ the adjoint operator of D (*divergence* operator) $E(\delta(u)F) = E(\langle DF, u \rangle_H)$ for any $F \in \mathbb{D}_{1,2}$.

Ornstein-Uhlenbeck operator

$$\delta DF = -LF.$$

Meyer's inequality

$$c_{\rho} \|F\|_{k,\rho} \le \|(I+L)^{k/2}F\|_{\rho} \le C_{\rho} \|F\|_{k,\rho}.$$

Interpolation inequality (Decreusefond-Hu-Üstünel)

$$\|(I+L)^{1/2}F\|_p \leq \frac{2}{\Gamma(1/2)}\|F\|_p^{1/2}\|(I+L)V\|_p^{1/2}.$$

Combined with Meyer's inequality

$$\|DF\|_{\rho} \leq C_{\rho}(\|F\|_{\rho} + \|F\|_{\rho}^{1/2} \|D^{2}F\|_{\rho}^{1/2})$$

Key formula

Lemma

Let $F \in \mathbb{D}^{1,2}$ such that $\frac{DF}{\|DF\|_{\mathcal{H}}^2} \in Dom(\delta)$. Then the law of F has a continuous and bounded density given by

$$p(x) = E\left[\mathbf{1}_{\{F > x\}}\delta\left(\frac{DF}{\|DF\|_{H}^{2}}\right)\right].$$

Proof

$$p(x) = \int_{\mathbb{R}} \delta_{x}(y)p(y)dy = E(\delta_{x}(F))$$

$$= E\left(\frac{d}{dy}\mathbf{1}_{\{y \ge x\}}|_{y=F}\right)$$

$$= E\left[\langle D(\mathbf{1}_{\{F>x\}}), DF \rangle_{H}\frac{1}{\|DF\|_{H}^{2}}\right]$$

$$= E\left[\mathbf{1}_{\{F>x\}}\delta\left(\frac{DF}{\|DF\|_{H}^{2}}\right)\right].$$

Another formula

$$p(x) = E\left(\frac{d}{dy}\mathbf{1}_{\{y \ge x\}}\big|_{y=F}\right)$$
$$= E\left[\langle D\left(\mathbf{1}_{\{F>x\}}\right), \xi \rangle_{H}\frac{1}{\langle DF, \xi \rangle_{H}}\right]$$
$$= E\left[\mathbf{1}_{\{F>x\}}\delta\left(\frac{\xi}{\langle DF, \xi \rangle_{H}}\right)\right].$$

For any smooth function of compact support g

$$\int_{\mathbb{R}} g(x) E\left[\mathbf{1}_{\{F>x\}} \delta\left(\frac{u}{\langle DF, u \rangle_{H}}\right)\right] dx$$

$$= E\left[\int_{-\infty}^{F} g(x) dx \delta\left(\frac{u}{\langle DF, u \rangle_{H}}\right)\right]$$

$$= E\left[\langle D \int_{-\infty}^{F} g(x) dx, \frac{u}{\langle DF, u \rangle_{H}} \rangle_{H}\right]$$

$$= E\left[\langle g(F) DF, \frac{u}{\langle DF, u \rangle_{H}} \rangle_{H}\right]$$

$$= \mathbb{E}\left[g(F)\right]$$

(big) problem of negative moments

Lemma Let

$$b(t) = \left(8\sup_{x \in \mathbb{R}^d} \frac{\mathbb{E}u^2(t,x)}{|\boldsymbol{\rho}_t * u_0(x)|^2}\right)^{-1}$$

.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

For every p > 0 and every $(t, x) \in \mathbb{R}_+ imes \mathbb{R}^d$, we have

$$\mathbb{E}|u(t,x)|^{-p} \leq 2^p e^{2p\sqrt{\lambda(t)\log\frac{2}{b(t)}}} \left(1+4\sqrt{\pi p^2\lambda(t)}e^{p^2\lambda(t)}\right)|p_t * u_0(x)|^{-p}.$$

Lemma

For every T > 0 and p > 0, there exist positive constants C, c_T such that

$$\mathbb{E}\|\textit{Du}(t,x)\|_{\mathcal{H}}^{-2p} \leq \textit{Ce}^{c_Tp^2}t^{-p(2-\alpha_0-\frac{\alpha}{2})} \quad \textit{for all } t,x \in [0,T] \times \mathbb{R}^d \,.$$

For any \mathbb{H} -valued random variable *F* in $\mathbb{D}^{1,2}(\mathcal{H})$, it is well-known that

$$\rho(t, x; y) = \mathbb{E}\left[I_{\{u(t, x) \ge y\}}\delta\left(\frac{F}{\langle Du(t, x), F \rangle_{\mathbb{H}}}\right)\right]$$
$$= \mathbb{E}\left[I_{\{u(t, x) \ge y\}}\left(\frac{\delta(F)}{\langle Du(t, x), F \rangle_{\mathbb{H}}} + \frac{\langle D \langle Du(t, x), F \rangle_{\mathbb{H}}, F \rangle_{\mathbb{H}}}{\langle Du(t, x), F \rangle_{\mathbb{H}}^2}\right)\right]$$

With the choice

$$F(\tau,\xi) = \varphi(\tau,\xi,t,x) = \mathbf{1}_{[0,t)}(\tau)p_{t-\tau}(x-\xi)u(\tau,\xi)$$

the above identity becomes

$$\rho(t,x;y) = \mathbb{E}\left[I_{\{u(t,x)\geq y\}}\left(\frac{u(t,x)-p_t*u_0(x)}{A(t,x)}+\frac{\langle D.A(t,x),\varphi(\cdot,t,x)\rangle_{\mathbb{H}}}{A(t,x)^2}\right)\right],$$

where

$$A(t,x) = \langle Du(t,x), \varphi(\cdot,t,x) \rangle_{\mathbb{H}}.$$

Since $||Du||_{\mathbb{H}}$ and *u* have finite moments, we see that A(t, x) also has finite moments of all orders.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

$$\begin{aligned} \mathcal{A}(t,x) &= \\ \int_{\mathbb{R}^{2d+2}} \mathcal{D}_{\tau,\xi} u(t,x) \mathbf{1}_{[0,t]}(\tau') \mathcal{p}_{t-\tau'}(x-\xi') u(\tau',\xi') \gamma_0(\tau-\tau') \gamma(\xi-\xi') d\xi d\xi' d\tau d\tau' \end{aligned}$$

Its Malliavin derivative is

$$\begin{split} D_{\lambda,\eta} \mathcal{A}(t,x) &= \\ \int_{\mathbb{R}^{2d+2}} D^2_{\tau,\xi,\lambda,\eta} u(t,x) \mathbf{1}_{[0,t]}(\tau') p_{t-\tau'}(x-\xi') u(\tau',\xi') \gamma_0(\tau-\tau') \\ \gamma(\xi-\xi') d\xi d\xi' d\tau d\tau' + \int_{\mathbb{R}^{2d+2}} D_{\tau,\xi} u(t,x) \mathbf{1}_{[0,t]}(\tau') p_{t-\tau'}(x-\xi') D_{\lambda,\eta} u(\tau,\xi') \\ \gamma_0(\tau-\tau') \gamma(\xi-\xi') d\xi d\xi' d\tau d\tau' \,. \end{split}$$

Thus, $D_{\lambda,\eta}u(t,x) \ge 0$ and $D^2_{\tau,\xi,\lambda,\eta}u(t,x) \ge 0$. This implies that $A(t,x) \ge 0$ and $D_{\lambda,\eta}A(t,x) \ge 0$. Clearly, we have $F \ge 0$ and hence

 $\langle D.A(t,x), \varphi(\cdot,t,x) \rangle_{\mathbb{H}} \geq 0.$

As a consequence,

$$\rho(t, x; y) \geq \mathbb{E}\left[I_{\{u(t, x) \geq y\}} \frac{u(t, x) - p_t * u_0(x)}{A(t, x)}\right]$$

When $y > p_t * u_0(x) + 1$, we have $u(t, x) - p_t * u_0(x) > 1$ on the event $\{u(t, x) > y\}$. This means

$$\rho(t, x; y) \geq \mathbb{E}\left[\frac{I_{\{u(t, x) \geq y\}}}{A(t, x)}\right]$$

٠

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Applying Hölder inequality,

$$\left(\mathbb{E}\left[I_{\{u(t,x)\geq y\}}\right]\right)^2 \leq \mathbb{E}\left(\frac{I_{\{u(t,x)\geq y\}}}{A(t,x)}\right)\left(\mathbb{E}A(t,x)\right) \,.$$

Thus

$$\rho(t,x;y) \geq \frac{\left(P(u(t,x) \geq y)\right)^2}{\mathbb{E}A(t,x)}.$$

THANKS