
Asymptotics of the density of parabolic
Anderson random fields

Yaozhong Hu

University of Alberta at Edmonton

jointly with Khoa Le

at CBMS NSF/CBMS Follow-Up Conference: Gaussian
Random Fields, Fractals, SPDEs, and Extremes

University of Alabama at Huntsville

⁄, ⁄



Based on a joint work

Hu, Y. and Le, Khoa

Asymptotics of the density of parabolic Anderson random fields.

Ann. Inst. Henri Poincaré Probab. Stat. 58 (2022), 105-133.



Outline

1. Main equation and motivation

2. Noise structure

3. Definition of Solution

4. Moment bounds and right tails

5. Tail probability density

6. Malliavin calculus



1. Main equation and motivation

Cauchy problem (multiplicative noise)

∂

∂t
u(t , x) =

1
2

∆u(t , x) + u(t , x)Ẇ , t > 0, x ∈ Rd ,

where u(0, x) = u0(x), ∆ =
d∑

i=1

∂2

∂x2
i

is the Laplacian,

Ẇ = Gaussian noise.

The product u(t , x)Ẇ is understood in the sense of Skorohod.



2. Noise structure

E
[
Ẇ (r , y)Ẇ (s, z)

]
= γ(s − r)Λ(y − z) .

In the above expression we assume that the noise in spatial variable
is homogeneous. We shall further assume that

Λ(x) =

∫
Rd

e−ιxξµ(dξ) , where ι =
√
−1 .

Hypothesis (on γ)
There exist constants c0,C0 and 0 ≤ β < 1, such that

c0|t |−α0 ≤ γ(t) ≤ C0|t |−α0 .



Hypothesis (on Λ)
Λ satisfies one of the following conditions.

(i) There exist positive constants c1,C1 and 0 < κ < 2 such that{
d ≥ 2 ,
c1|x |−α ≤ Λ(x) ≤ C1|x |−α .

(ii) There exist positive constants c1,C1 and κi such that{
0 < αi < 1 ,

∑d
i=1 αi < 2 ,

c1
∏d

i=1 |xi |−αi ≤ Λ(x) ≤ C1
∏d

i=1 |xi |−αi .

(iii) {
d = 1 ,
Λ(x) = δ(x) (Dirac delta function).



3. Definitions of the solution

Definition
u(t , x) is called mild solution to

∂

∂t
u(t , x) =

1
2

∆u(t , x) + u(t , x)Ẇ , t > 0, x ∈ Rd ,

if

u(t , x) = ptu(0, x) +

∫ t

0

∫
Rd

pt−s(x − y)u(s, y)W (ds,dx) .

pt (x) = (2πt)−d/2 exp

(
−|x |

2

2t

)
and the integral is Skorohod



4. Moment bounds and right tails
We assume the following

α = α ( Case (i)) ,
d∑

i=1

αi ( Case (ii)) , 1 ( Case (iii)) .

Then we have for all t ≥ 0 , x ∈ Rd , k ≥ 2,

exp
(

Ct
4−2α0−α

2−α k
4−α
2−α

)
≤ E

[
uk

t,x
]
≤ exp

(
C′t

4−2α0−α
2−α k

4−α
2−α

)
where C,C′ are constants independent of t and k .

If Λ(x) = δ0(x) and Ẇ is time independent, then,

exp
(
Ct3k3) ≤ E

[
uk

t,x
]
≤ exp

(
C′t3k3) ,

where C,C′ > 0 are constants independent of t and k .

Hu, Y.; Huang, J.; Nualart, D. and Tindel, S.

Stochastic heat equations with general multiplicative Gaussian
noises: Hölder continuity and intermittency.

Electron. J. Probab. 20 (2015), no. 55, 50 pp.



Theorem (Hu-Le 2022)
Assume that the initial condition u0 is uniformly bounded from above
and from below by two positive constants. Then, there are positive
constants a0,b0, cj , c̃j , j = 1,2,3 (independent of t and a) such that

c̃1 exp
(
−c̃2t−

4−2α0−α
2 (log(c̃3a))

4−α
2

)
≤ P(u(t , x) ≥ a)

≤ c1 exp
(
−c2t−

4−2α0−α
2 (log(c3a))

4−α
2

)
for all a ≥ a0eb0tβ , where β = 4−2α0−α

2−α .

Proof Chebyshev inequality for upper bound and Paley-Zygmund
inequality,

P
(

Zε,δ(t , x) ≥ 1
2
EZε,δ(t , x)

)
≥ |EZε,δ(t , x)|2

4E|Zε,δ(t , x)|2

for lower bound.



Left tail

Theorem (Hu-Le 2022)
Let t > 0 and x ∈ Rd be fixed. there are positive constants C, ci ,
i = 1, . . . ,5 such that for every t > 0, x ∈ Rd and for every
0 < r < 1

2 exp{−c4ec5tβ},

P
(

u(t , x)

pt ∗ u0(x)
≤ r
)
≤ C exp

{
−
[
c1 exp

(
−c3tβ

)
| log(2r)|+ c2

√
1 + tβ

]2
}
.

In the case when Ẇ is a space time white noise with spatial
dimension one (that is d = α0 = α = β = 1), the above theorem
yields

P
(

u(t , x)

pt ∗ u0(x)
≤ r
)
≤ C exp

{
−
(

c1 exp (−c3t) | log(2r)|+ c2
√

1 + t
)2
}
,

for sufficiently small r > 0.



This is consistent with the result of Moreno, Flores, Gregorio R. AP
42 (2014), 1635-1643. in which u0 is the Dirac mass. However, in this
one dimensional space time white noise case if the initial condition is
the Dirac delta mass at 0, then a recent work of Corwin and Ghosal
(Lower tail of the KPZ equation, Duke Math. J. 169 (2020),
1329-1395) improves the above bound as follow:

P(u(t ,0) ≤ r) ' exp
{
−c1t−1/2(c2 + | log r |)5/2

}
for sufficiently small r > 0 and for all t ≤ T0.



Amir, G.; Corwin, I. and Quastel, J.

Probability distribution of the free energy of the continuum directed
random polymer in 1 + 1 dimensions.

Comm. Pure Appl. Math. 64 (2011), no. 4, 466-537.

p(t , x) = 1√
2πt

e−
x2
2t .

F (t , x) = log

(
u(t , x)

p(t , x)

)

FT (s) = P
(

F (T , x) +
T
4!
≤ s

)
.



Ai(x) =
1
π

∫ ∞
0

cos

(
1
3

t3 + xt
)

dt

Kσ(x , y) =

∫ ∞
−∞

σ(t) Ai(x + t) Ai(y + t)dt

FT (s) =

∫
C̃

d µ̃
µ̃

e−µ̃ det
(
I − KσT ,µ̃

)
L2(K−1

T a, ∞)
,

where

σT ,µ̃ =
µ̃

µ̃− e−KT t

a = a(s) = s − log
√

2πT
Kt = 2−1/3T 1/3

C̃ =
{

eiθ}
π
2 ≤θ≤

3π
2
∪ {x +±i}x>0 .



5. Tail probability density

For any (t , x), u(t , x) is a random variable.

Is u(t , x) continuous type?

Can one find a pdf ρ(t , x ; y) such that

P(u(t , x) ∈ A) =

∫
A
ρ(t , x ; y)dy , ∀ Borel set A?

What is the form of ρ(t , x ; y)?

What ρ(t , x ; y) looks like When y →∞?

If u0(x) ≥ 0, then u(t , x) ≥ 0 almost surely. This means ρ(t , x ; y) = 0
when y < 0. limy→0+ ρ(t , x ; y) = 0?

How fast does ρ(t , x ; y) converge to 0 when y → 0+?



Case 1: Large y (right tail)

Theorem (Hu-Le 2022)
Suppose |u0| ≤ c <∞. Then, the law of u(t , x) has a density
ρ(t , x ; y) with respect to the Lebesgue measure. Moreover, there are
positive constants c1, c2, c3, c̃1, c̃3 and c̃3 > 0 such that

c̃1t−
4−2α0−α

2 exp
{
−c̃2t−

4−2α0−α
2 (log(c̃3y))

4−α
2

}
≤ ρ(t , x ; y) ≤ c1t−

4−2α0−α
4 exp

{
−c2t−

4−2α0−α
2 (log(c3y))

4−α
2

}
for every t > 0 and for y sufficiently large.



Case 2: Small y (left tail)

Theorem (Hu-Le 2022)
Assume that the initial condition u0 is uniformly bounded from above
and from below by two positive constants. For fixed T > 0, there are
positive constants C,a0,b0 and c1(T ), c2(T ) such that for every
t ∈ [0,T ], x ∈ Rd and 0 < y < a0e−b0tβ

ρ(t , x ; y) ≤ Ct−
4−2α0−α

4 exp
{
− (−c1(T ) log y − c2(T ))2

}
.

In particular, when the noise Ẇ is one dimensional space-time white,
we have

ρ(t , x ; y) ≤ Ct−
1
4 exp

{
− (−c1 log y − c2)2

}
.



The tool to use is Malliavin calculus

D. Nualart

The Malliavin calculus and related topics (Second edition).

Springer-Verlag, Berlin, 2006.

Hu, Y.

Analysis on Gaussian spaces.

World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2017.
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6. Malliavin Calculus
Newton calculus, Itô calculus

Malliavin calulus

Ω = C0([0,T ],R) = The set of all continuous functions ω starting at 0
(ω(0) = 0).

It is a Banach space with the sup norm ‖ω‖ = sup0≤t≤T |ω(t)|.

F be the σ-algebra generated by the open sets

P is the canonical Wiener measure on (Ω,F) such that Bt : Ω→ R
defined by Bt (ω) = ω(t) is the standard Brownian motion.

A functional from Ω→ R is called a Wiener functional.

Example
1. Bt 2.

∫ T
0 |Bt |pdt

3. sup0≤t≤T |Bt |
4. I{sup0≤t≤T |Bt |}



5.
∫ T

0 f (t)dBt , where f : [0,T ]→ R s.t.
∫ T

0 f 2(t)dt <∞

6. multiple Itô-Wiener integral In(fn) =
∫
[0,T ]n

fn(t1, · · · , tn)dBt1 · · · dBtn ,
where fn : [0,T ]n → R is symmetric and∫
[0,T ]n

f 2
n (t1, · · · , tn)dt1 · · · dtn <∞.

7. xt0 ,dxt = b(xt )dt + σ(xt )dBt .

8. Functionals of the form F = f (
∫ T

0 h1(t)dBt , ...,
∫ T

0 hn(t)dBt ) is dense
in L2(Ω,F ,P),

where f can be the sets of all polynomials, smooth functions of
polynomial growth, smooth functions of compact supports

h1,h2, · · · ,hn , · · · is ONB of L2([0,T ])



Itô-Wiener’s chaos expansion theorem:

Any F ∈ L2(Ω,F ,P) can be written as

F =
∞∑

n=0

In(fn) ,

where

fn ∈ L2([0,T ]n) and In(fn) =

∫
[0,T ]n

fn(t1, · · · , tn)dBt1 · · · dBtn .

Exercises: 1. Find the chaos expansion for I{sup0≤t≤ |Bt |≤ε}

2. Find the chaos expansion of xt , where
dxt = b(xt )dt + σ(xt )dBt , x0 = x .



Nonlinear functional analysis on a Banach space with a measure
(infinite dimensional harmonic analysis)

Gaussian measure (Lebesgue measure does not exist in infinite
dimensions)



Why Malliavin derivative?

xt0 ,dxt = b(xt )dt + σ(xt )dBt .

xt0 : Ω→ Rd is not continuous.

Example:
∫ T

0

(
B2

t dB1
t − B2

t dB1
t
)

Malliavin, P.

Stochastic calculus of variation and hypoelliptic operators.
Proceedings of the International Symposium on Stochastic
Differential Equations (Res. Inst. Math. Sci., Kyoto Univ., Kyoto,
1976), pp. 195-263, Wiley, New York-Chichester-Brisbane, 1978.



Malliavin derivative
Let (Bt ; t ≥ 0) be a standard Brownian motion.

Given F = f (
∫ T

0 h1(t)dBt , ...,
∫ T

0 hn(t)dBt ), where h1,h2, · · · ,hn, · · ·
are continuous functions of t and constitute an orthonormal basis of
L2([0,T ])

DtF =
n∑

i=1

∂f
∂xi

(

∫ T

0
h1(t)dBt , ...,

∫ T

0
hn(t)dBt )hi (t).

The derivative operator D is a closable and unbounded operator

‖F‖p
1,p = E(|F |p) + E

(∫ T

0
|DtF |2 dt

)p/2

Higher order derivatives

‖F‖k,p

Spaces D1,p, Dk,p



If F = Iq(fq), then

DtF =
∞∑

q=1

qIq−1(fq(·, t)).

If F = sup0≤t≤T Bt , then

DtF = I[0,θT ](t) ,

where θT is the unqiue maximum point of Bt over [0,T ]

chain rule, Dtg(F ) = g′(F )DtF

Malliavin calculus can be developed for general Gaussian processes,
for Poisson processes, Lévy processes



H = L2([0,T ])

Denote by δ the adjoint operator of D (divergence operator)

E(δ(u)F ) = E(〈DF ,u〉H) for any F ∈ D1,2.

Ornstein-Uhlenbeck operator

δDF = −LF .

Meyer’s inequality

cp‖F‖k,p ≤ ‖(I + L)k/2F‖p ≤ Cp‖F‖k,p .

Interpolation inequality (Decreusefond-Hu-Üstünel)

‖(I + L)1/2F‖p ≤
2

Γ(1/2)
‖F‖1/2

p ‖(I + L)V‖1/2
p .

Combined with Meyer’s inequality

‖DF‖p ≤ Cp(‖F‖p + ‖F‖1/2
p ‖D2F‖1/2

p )



Key formula
Lemma
Let F ∈ D1,2 such that DF

‖DF‖2
H
∈ Dom(δ). Then the law of F has a

continuous and bounded density given by

p (x) = E

[
1{F>x}δ

(
DF

‖DF‖2
H

)]
.

Proof

p (x) =

∫
R
δx (y)p(y)dy = E (δx (F ))

= E
(

d
dy

1{y≥x}
∣∣
y=F

)
= E

[
〈D
(
1{F>x}

)
,DF 〉H

1

‖DF‖2
H

]

= E

[
1{F>x}δ

(
DF

‖DF‖2
H

)]
.



Another formula

p (x) = E
(

d
dy

1{y≥x}
∣∣
y=F

)
= E

[
〈D
(
1{F>x}

)
, ξ〉H

1
〈DF , ξ〉H

]
= E

[
1{F>x}δ

(
ξ

〈DF , ξ〉H

)]
.



For any smooth function of compact support g

∫
R

g(x)E
[
1{F>x}δ

(
u

〈DF ,u〉H

)]
dx

= E

[∫ F

−∞
g(x)dxδ

(
u

〈DF ,u〉H

)]

= E

[
〈D
∫ F

−∞
g(x)dx ,

u
〈DF ,u〉H

〉H

]

= E
[
〈g(F )DF ,

u
〈DF ,u〉H

〉H
]

= E [g(F )]

(big) problem of negative moments



Lemma
Let

b(t) =

(
8 sup

x∈Rd

Eu2(t , x)

|pt ∗ u0(x)|2

)−1

.

For every p > 0 and every (t , x) ∈ R+ × Rd , we have

E|u(t , x)|−p ≤ 2pe2p
√
λ(t) log 2

b(t)

(
1 + 4

√
πp2λ(t)ep2λ(t)

)
|pt ∗ u0(x)|−p .

Lemma
For every T > 0 and p > 0, there exist positive constants C, cT such
that

E‖Du(t , x)‖−2p
H ≤ CecT p2

t−p(2−α0−α2 ) for all t , x ∈ [0,T ]× Rd .



For any H-valued random variable F in D1,2(H), it is well-known that

ρ(t , x ; y) = E
[
I{u(t,x)≥y}δ

(
F

〈Du(t , x),F 〉H

)]
= E

[
I{u(t,x)≥y}

(
δ(F )

〈Du(t , x),F 〉H
+
〈D〈Du(t , x),F 〉H,F 〉H
〈Du(t , x),F 〉2H

)]
With the choice

F (τ, ξ) = ϕ(τ, ξ, t , x) = 1[0,t)(τ)pt−τ (x − ξ)u(τ, ξ)

the above identity becomes

ρ(t , x ; y) = E
[
I{u(t,x)≥y}

(
u(t , x)− pt ∗ u0(x)

A(t , x)
+
〈D·A(t , x), ϕ(·, t , x)〉H

A(t , x)2

)]
,

where
A(t , x) = 〈Du(t , x), ϕ(·, t , x)〉H .

Since ‖Du‖H and u have finite moments, we see that A(t , x) also has
finite moments of all orders.



A(t , x) =∫
R2d+2

Dτ,ξu(t , x)1[0,t](τ
′)pt−τ ′(x − ξ′)u(τ ′, ξ′)γ0(τ − τ ′)γ(ξ − ξ′)dξdξ′dτdτ ′ .

Its Malliavin derivative is

Dλ,ηA(t , x) =∫
R2d+2

D2
τ,ξ,λ,ηu(t , x)1[0,t](τ

′)pt−τ ′(x − ξ′)u(τ ′, ξ′)γ0(τ − τ ′)

γ(ξ − ξ′)dξdξ′dτdτ ′ +

∫
R2d+2

Dτ,ξu(t , x)1[0,t](τ
′)pt−τ ′(x − ξ′)Dλ,ηu(τ, ξ′)

γ0(τ − τ ′)γ(ξ − ξ′)dξdξ′dτdτ ′ .

Thus, Dλ,ηu(t , x) ≥ 0 and D2
τ,ξ,λ,ηu(t , x) ≥ 0. This implies that

A(t , x) ≥ 0 and Dλ,ηA(t , x) ≥ 0. Clearly, we have F ≥ 0 and hence

〈D·A(t , x), ϕ(·, t , x)〉H ≥ 0 .



As a consequence,

ρ(t , x ; y) ≥ E
[
I{u(t,x)≥y}

u(t , x)− pt ∗ u0(x)

A(t , x)

]
.

When y > pt ∗ u0(x) + 1, we have u(t , x)− pt ∗ u0(x) > 1 on the event
{u(t , x) > y}. This means

ρ(t , x ; y) ≥ E
[

I{u(t,x)≥y}

A(t , x)

]
.

Applying Hölder inequality,

(
E
[
I{u(t,x)≥y}

])2 ≤ E
(

I{u(t,x)≥y}

A(t , x)

)
(EA(t , x)) .

Thus

ρ(t , x ; y) ≥ (P(u(t , x) ≥ y))2

EA(t , x)
.
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