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Some background

In this work, we are interested in the following stochastic heat
equation on Rd (d ≥ 1), also known as parabolic Anderson model
(PAM):

!
"

#

∂

∂t
u(t, x) =

1

2
∆u(t, x) + u(t, x)Ẇ (t, x) , t > 0 ;

u(0, x) = u0(x) = 1 , x ∈ Rd .
(1)
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Some interpretations of PAM:

• diffusion mechanism: ∆ =
$d

i=1
∂2

∂x2i
is the Laplacian in Rd ;

• random potential: Ẇ (t, x) = ∂1+d

∂t∂x1···∂xd W (t, x) where
W (t, x) is a centered Gaussian field;

• u(t, x) describes a heat flow through a field of random
sources;

• u(t, x) describes the population density with random birth
and death rates.
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Covariance functions

The covariance function of Ẇ (t, x) is given formally by

Cov(Ẇ (t, x), Ẇ (s, y)) = γ0(s − t)γ(x − y) . (2)

• Space time white, i.e., d = 1, γ0(t) = δ0(t) and γ(x) = δ0(x);

• Riesz potential, i.e., γ0(t) = cα0 |t|−α0 and γ(x) = cα,d |x |−α

where α0 ∈ (0, 1) and α ∈ (0, d).

Remark: In this two cases, γ0(t) and γ(x) are locally integrable.
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• Fractional, i.e.,

γ0(t) = cH0 |t|2H0−2 , γ(x) =
d%

j=1

γj(xj) =
d%

j=1

cHj ,d |xj |
2Hj−2 ,

(3)
with the Hurst parameters (H0,H1, · · · ,Hd) satisfying
H0 ∈ (12 , 1] and Hj ∈ (0, 1] ∀j = 1, · · · , d .

Remark: In this case, γ0(t) is integrable, γj(xj) is locally
integrable if H ∈ (1/2, 1] (regular) but is NOT locally integrable if
H ∈ (0, 1/2) (rough).
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Wiener chaos expansion

We consider the mild solution to (1):

u(t, x) = 1 +

& t

0

&

Rd

Gt−s(x − y)u(s, y)W (ds, dy) (4)

where Gt(x) =
1√
2πt

exp(− |x |2
2t ) is the heat kernel.

Iterating the mild solution, we have the Wiener chaos expansion:

u(t, x) =
∞'

n=0

un(t, x) = 1 +
∞'

n=1

1

n!
In(fn(·, t, x)) . (5)
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Here In(·) denotes the multiple stochastic integrals

In(fn(·, t, x)) =
&

Rn
+×Rnd

fn(t1, x1, · · · , tn, xn, t, x)
n%

j=1

W (dtj , dxj) ,

and

fn(·, t, x) := fn(t1, x1, · · · , tn, xn, t, x) (6)

=
'

σ∈Sn

Gt−tσ(n)
(x − xσ(n))Gtσ(n)−tσ(n−1)

(xσ(n) − xσ(n−1)) · · ·

× Gtσ(2)−tσ(1)
(xσ(2) − xσ(1))1{0<tσ(1)<···<tσ(n)<t}

is the symmetrization of the product of heat kernel Gt(x).
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The solvability of (1) is reduced to two problems:

(i) The first one is to evaluate E
(
u2n(t, x)

)
.

(ii) The second one is to show the convergence of

E
(
u2(t, x)

)
=

∞'

n=0

E
(
u2n(t, x)

)
.
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Some Known results

◮ γ0(·) = δ0(·): Dalang (Electron. J. Probab. 1999) obtianed

Dalang’s condition ⇔
*
α < 2 Riesz kernel noise
$d

j=1 αj < 2 regular fractional noise

(7)
is necessary and sufficient for the existence of the mild
solution to (1).
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◮ γ0(t) = cα0 |t|−α0 : Hu-Huang-Nualart-Tindel (Electron. J.
Probab. 2015) obtianed the Dalang’s condition (7) is
sufficient for the solvability problem of (1);

◮ γ0(t) = cα0 |t|−α0 and γ(x) = cα,d |x |−α: Balan-Conus (Stat.
Probab. Lett. 2014) proved that the Dalang’s condition (7) is
also neccesary.

Xiong Wang Solvability of PAM with rough noise



Background and known results
Our main results

Two key inequalities
Some key steps

PAM and rough noise
Wiener chaos expansion
Known results

◮ Consider hyperbolic Anderson model (HAM) (i.e., we replace
∂
∂t by ∂2

∂t2
in (1)).

In the case of γ0(t) = cα0 |t|−α0 , γ(x) = cα,d |x |−α or

γ(x) =
+d

j=1 cαj |x |−αj , Chen-Deya-Song-Tindel (2021+)
showed that

α0 + α < 3 or α0 +
d'

j=1

αj < 3

is the necessary and sufficient condition for HAM to admit
a unique solution.
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When the noise is rough?

◮ Chen (AIHP 2019, 2020) obtained some sufficient conditions
on the parameters (H0,H1, · · · ,Hd);

◮ Chen-Hu (2021+) obtained some sharpened conditions. In
particular, when d = 1 they showed that

!
,"

,#

H + H0 >
3

4
is a sufficient condition (8)

H + 2H0 >
5

4
is a necessary condition (9)

for (1) to be solvable.

◮ There are some results on the L2(Ω) boundedness of n-th
chaos.
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Main results

In this talk, we focus on the rough noise and one dimensional case.
Namely,

d = 1 ,H0 × H ∈ (1/2, 1)× (0, 1/2)

with H = H1.
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Results on n-th chaos

Theorem (Hu-Liu-Wang 2022)

If d = 1, H0 ≥ 1
2 and 0 < H < 1

2 , then the necessary and sufficient
condition so that E[un(t, x)2] < +∞ for n > 1 is

H + 2H0 >
5

4
. (10)

Remark: when d > 1 and general fractional noise, we refer the
result Theorem 4.1 in our preprint.
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Figure: BL region (red) and HLS region (yellow)
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Result on the chaos expansion

Theorem (Hu-Liu-Wang 2022)

Let u(t, x) be the solution candidate to (1). Suppose d = 1,
H0 >

1
2 and H = H1 <

1
2 . If (H0,H) ∈ A1 ∪A2, where

A1 = {(H0,H) ∈ (1/2, 1)× (1/20, 1/4) : 2H0 + H > 5/4} ; (11)

A2 = {(H0,H) ∈ (1/2, 1)× (0, 1/20) : 4H0 + 12H > 3} , (12)

then

E[|u(t, x)|2] =
∞'

n=0

E[|un(t, x)|2] < +∞. (13)

Xiong Wang Solvability of PAM with rough noise



Background and known results
Our main results

Two key inequalities
Some key steps

Results on n-th chaos
Result on the chaos expansion

Figure: The regions A1 and A2

It is not hard to see that if
H > 0.05 (or H0 < 0.6),
then the condition

H + 2H0 >
5

4

is both necessary and
sufficient.
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Hardy-Littlewood-Sobolev inequality

Lemma (Hardy-Littlewood-Sobolev inequality)

For any ϕ ∈ L1/H0(Rn), it holds

&

Rn

&

Rn

ϕ(&r)ϕ(&s)
n%

i=1

|si−ri |2H0−2d&rd&s ≤ Cn
H0

-&

Rn

|ϕ(&r)|1/H0d&r

.2H0

,

(14)
where CH0 > 0.
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Hölder-Young-Brascamp-Lieb inequality

Definition (Brascamp-Lieb datum)

We say (c1, L1), · · · , (cm, Lm) to be a Brascamp-Lieb datum on
Rn. This is, each ci is a positive number and each Lj is a surjective
linear mapping from Rn onto Rni for some ni ∈ N.

For each Brascamp-Lieb datum, we can consider the m-linear
Brascamp-Lieb inequality

&

Rn

m%

j=1

fj(Ljx)
cjdx ≤ CBL

m%

j=1

-&

Rnj

fj(x)dx

.cj

(15)

where fj : Rnj → R+ are non-negative measurable functions and
CBL is the best constant for which the inequality holds.
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Theorem (Brascamp-Lieb, Adv. Math. 1976)

For a Brascamp-Lieb datum as above, assume that there exists a
positive definite matrix A such that

A−1 =
m'

j=1

cjL
∗
j (LjAL

∗
j )

−1Lj . (16)

Then the Brascamp-Lieb constant associated with the datum is

CBL =

/
det(A)+m

j=1 det(LjAL
∗
j )

cj

0 1
2

(17)

and the equality in (15) is archived for the Gaussian functions

fj(x) = exp

-
−1

2
〈(LjAL∗j )−1x , x〉

.
, 1 ≤ j ≤ m .
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BCCT inequality

Theorem (Bennett-Carbery-Christ-Tao, Geom. Funct. Anal.
2008)

Let (c1, L1), · · · , (cm, Lm) to be a Brascamp-Lieb datum. Then
the Brascamp-Lieb constant CBL is finite if and only if the
following dimension conditions hold

n =
m'

j=1

cjnj ; (18)

dim(V ) ≤
m'

j=1

cj dim(Lj(V )) for all subspaces V ⊆ Rn . (19)
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We need to consider the local version of (15)

&

|x |≤1

m%

j=1

fj(Ljx)
cjdx ≤ CBL

m%

j=1

-&

Rnj

fj(x)dx

.cj

. (20)

Corollary (Bennett-Carbery-Christ-Tao, Geom. Funct. Anal.
2008)

A necessary and sufficient condition for (20) holds with
0 < KBL < ∞ for all nonnegative measurable functions fj is that
every subspace V ⊆ Rn satisfies the dimension condition

codimRn(V ) ≥
'

j

cjcodimRnj (Lj(V )) . (21)
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Second moment bound of n-th chaos

We are trying to use the HLS inequality and HYBL inequality to
estimate the integral on the simplex

E[|un(t, x)|2]≲
tn(H+2H0−1)

n!

'

σ,ρ

'

!ρ∈Dn

&

T1(&sσ)×T1(&rρ)

n%

i=1

|sσ(i+1) − sσ(i)|−ρi

×
n−1%

i=1

|rρ(i+1) − rρ(i)|−ρi

n%

i=1

γ0(si − ri )d&sd&r ,

(22)

with ρ = (ρ1, · · · , ρn) ∈ Dn is given by ρi = (34 − H)− αi
2 (

1
2 − H)

and

αi ∈ {0, 1, 2} , αi +αi+1 ≥ 1 ,
n'

i=1

αi = n . (23)
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Some key steps

First idea (HLS inequality): We can bound (22) by

Cn
H0

n!

'

!ρ∈Dn

1

2
&

[0,1]n

3
'

σ

n%

i=1

|sσ(i+1) − sσ(i)|−ρi1sσ

4 1
H0

ds

5

6
2H0

≤Cn
H0
(n!)2H0−1

'

!ρ∈Dn

/&

T1(&s)

n%

i=1

|si+1 − si |
− ρi

H0

02H0

≤
Cn
H0
(n!)2H0−1

Γ(n[1− (12 − H
2 )/H0])2H0

since
n'

i=1

ρi = (
1

2
− H

2
)n

≤ Cn

(n!)H
.
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The condition for us to apply the HLS inequality is

ρi
H0

< 1 ⇔
3
4 − H

H0
< 1 ,

1
2 − H

2

H0
< 1 ,

1
2 − H

2

H0
< 1

⇔ H + H0 >
3

4
.
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Second idea (HYBL inequality): First by Cauchy Schwarz
inequality and then Hölder inequality, (22) is bound by

E[|un(t, x)|2]≲tn(H+2H0−1)
'

!ρ∈Dn

'

σ

&

T1(&sσ)×T1(&rσ)

n%

i=1

|sσ(i+1) − sσ(i)|−ρi

×
n−1%

i=1

|rσ(i+1) − rσ(i)|−ρi

n%

i=1

γ0(si − ri )d&sd&r

=n!tn(H+2H0−1)
'

!ρ∈Dn

&

T1(&s)×T1(&r)

n%

i=1

|si+1 − si |−ρi

×
n−1%

i=1

|ri+1 − ri |−ρi

n%

i=1

γ0(si − ri )d&sd&r ,

where ρ = (ρ1, · · · , ρn) ∈ Dn is given by ρi = (34 −H)− αi
2 (

1
2 −H).
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Recall {αi : i = 1, · · · , n} are defined by (23). Then it is relatively
easy to see the case αi = 0 implies that H0 + H > 3

4 must hold.

However, the fact αi + αi+1 ≥ 1 inspires the following trick.

*
Case 1: αi = 0 ,αi+1 ∕= 0 , we use the HYBL inequality ;

Case 2: αi ∕= 0 , we use the HLS inequality .

(24)

The Case 2 can be treated as before, so we skip the details.
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Case 1: When α1 = 0, α2 ∕= 0, we integrate s1, s2, r1, r2 first.
Namely, we write now

I(ρ, γ) :=
&

T1(&s3)×T1(&r3)
(1− sn)

−ρn(1− rn)
−ρn

n%

i=3

γ0(si − ri ) (25)

×
n−1%

i=3

|si+1 − si |−ρi

n−1%

i=3

|ri+1 − ri |−ρiI2(s3, r3)d&s3d&r3 ,

where ρ1 =
3
4 − H, ρ2 =

3
4 − H − α2

2 (12 − H), γ = 2− 2H0 and

I2(s3, r3) :=
&

0<s1<s2<s3
0<r1<r2<r3

2%

i=1

|si − ri |−γ |s3 − s2|−ρ2 |r3 − r2|−ρ2

|s2 − s1|−ρ1 |r2 − r1|−ρ1ds1ds2dr1dr2 . (26)
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We shall employ HYBL inequality to show that

sup
0≤s3,r3≤1

I2(s3, r3) ≤ CBL < +∞ .

We can find fj(·) and establish the BL datum (cj =
1
pj
, Lj)

according to the form of I2(s3, r3). For example,

f1(x) = |x |−ρ11{0<x<r3} , L1(s, r) = r2 − r1 c1 =
1

p1
> ρ1 .
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Dimension conditions

Key condition: We select V = span{(1, 1, 1, 1)}. Then

co dimR(L1(V )) = 1 , co dimR(L3(V )) = 0 , co dimR(L5(V )) = 1 ,

co dimR(L2(V )) = 1 , co dimR(L4(V )) = 0 , co dimR(L6(V )) = 1 .

Then, in this case the dimension condition (21) is

codimRn(V )

≥
'

j

cjcodimRnj (Lj(V )) ⇔

3 ≥c1 + c2 + c5 + c6

>ρ1 + ρ1 + γ + γ

=(
3

2
− 2H) + 4− 4H0

⇔ H + 2H0 >
5

4
. (27)
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Remark: The condition H + 2H0 >
5
4 is also proven to be

necessary, i.e., E[|un(t, x)|2] = ∞ if H + 2H0 ≤ 5
4 .
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Boundedness of Wiener chaos expansion

We obtain that

E[|un(t, x)|2] ≤
*

Cn

(n!)H
tn(H+2H0−1) if H + H0 >

3
4 , using HLS ;

Cnn!tn(H+2H0−1) if H + 2H0 >
5
4 , using HYBL .

It is then natural to interpolate these two inequalities and obtain

E[|u(t, x)|2] =
∞'

n=1

E[|un(t, x)|2] < +∞. (28)
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Sketch of proof: Recall that

E[|un(t, x)|2] ≤Cnn!
'

α

&

R2n
+

&

Rn

1
p
+ 1

q
=1

7 89 :
1

n!

'

σ

;f (t,x)n,σ (&r,η) · 1

n!

'

ς

;f (t,x)n,ς (&s,η)

×
n%

j=1

|ηj |(1−2H)αj

9 :7 8
k+k ′=1

n%

i=1

|si − ri |−γ

9 :7 8
m+m′=1

dηd&sd&r .
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Applying Hölder inequality, we get

E[|un(t, x)|2] ≤Cnn!
'

α

-&

R2n
+

Ψn,τ (&r,&s)
n%

i=1

|si − ri |−pmγd&sd&r

. 1
p

×
-&

R2n
+

Ψn,τ ′(&r,&s)
n%

i=1

|si − ri |−qm′γd&sd&r

. 1
q

=:Cnn!
'

α

J1(p,m, k)9 :7 8
HLS≲ 1

n!

×J2(q,m
′, k ′)9 :7 8

HYBL∼Cn

,

where τj = kp(1− 2H)αj , τ
′
j = k ′q(1− 2H)αj and

Ψn,τ (&r,&s) :=

&

Rn

1

n!

'

σ

;f (t,x)n,σ (&r,η) · 1

n!

'

ς

;f (t,x)n,ς (&s,η)
n%

j=1

|ηj |τjdη .
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As a result,

E[u(t, x)2] ≤
∞'

n=0

n!
'

π

J1 × J2

≤
∞'

n=0

Cn(n!)1−
2
q
+[ 1

2q
+ k′

2
(1−2H)]

.

To guarantee E[|u(t, x)|2] < +∞, we must have

1 < p <
5

2k(1− 2H) + 8m(1− H0)
∧ 1

2m(1− H0)
; (29)

1 < q <
3

2k ′(1− 2H) + 4m′(1− H0)
∧ 1

2m′(1− H0)
; (30)

1 < q <
3

k ′(1− 2H) + 2
. (31)
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By selecting parameters p (q), m (m′), and k (k ′) properly, we
obtain the result in Theorem 2.2.
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Thanks for your attention!
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