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The model in the talk is the hyperbolic Anderson Model
(HAM)

o2u B W
a_tg(tvx) —AU(t,X)+ (X)U(t,X)

ou d
u(0,x) =1 and a(O,X) =0 XER

where {W(x); x € R?} is a mean-zero generalized stationary
Gaussian field such that

Cov (W(x),W(y)) =7(x—y) x,yeRr

with v(-) > 0. In this talk, d = 1,2, 3.
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Set-up of our model

Mathematically, the hyperbolic Anderson equation is
defined by following mild equation

u(t,x) =1+ /Ot/Rd G(t —s,x — y)u(s,y)W(dy)ds

where the stochastic integral on the right hand side is defined in
the sense of Stratanovich, i.e., a proper limit of

/t/ G(t —s,x — y)u(s,y)W.(x)ds (as e — 0)
0 Jrd
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Mathematical set-up

and G(t, x) is the fundamental solution defined by the
deterministic wave equation

092G
W(B X) = AG(t7 X)

oG

G(0,x) =0 and =

(0,x) = do(x) xR
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Chaos expansion

Iterating the mild equation infinite times we formally have

with Ip(t,x) = 1 and the recurrent relation

Sur1(t,x) = /Ot/Rd G(t—s,x — y)Su(s, y)W(dy)ds
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Chaos expansion

Iterating this relation we have

:/ / er(t—rn,yn—X)---G(rz—r1,Y2—Y1)]
(R L J10,0%
x W(dxy) - -- W(dx,)

k=1

where the conventions xo = x and s, = 0 are adopted and the
second equality follows from the substitutions sy =t —r, .1 and

Xk = Ykt —X (k=1,---n).
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Set-up of our model

Essentially, the expansion
u(t,x) = ZSn(t7 X)
n=0

is a stochastic version of what is called Feynman-Kac formula
and is formulated by Dalang, Mueller and Tribe (2008).

We recently proved that this expansion £2-converges, and
solves the hyperbolic Anerson equation under the Dalng’s

condition ]
/ Wﬂ(dﬁ) < o0
Rd
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Set-up of our model

where p(d¢) is the spectral measure of the covariance function
v(+) determined by the relation

v(x) :/ e“*u(dx) x €r¢
RY

Prior to our progress, Balan (2022+) had reached the same
conclusion under a more restrictive condition

1 1/2
/Rd (1 +|5|2> ulde) < o
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In this talk, our attention is on the intermittency of the
system, i.e., the asymptotic behavior of the integer moments

EuP(t,x) or E|u(t,x)[P
ast — oo or p — oo. In the remaining of the talk, we assume
Y(ex) =c*y(x) ¢>0, xeRr?

for some o > 0. In this case, Dalang’s condition requests
O<a<?
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Main theorem

Theorem (Chen-Hu)
Assume that0 < o« < 2. Then

im 52 g mur(t x) = 32 O pis (2M =
m -« 10 u X) = =&
o0 s 2 P \4-a

foranyp=1,2,---, and

lim p_g%g log E |u(t, x)|? =
p—o0

for any t > 0. where

m=sip{( [ st-eeoems) [ wawre)

Chen (Dept of Mathematics, UTK) Hyperbolic Anderson equation August 12, 2022, CBMS Conference, Huntsuvil



Corollary

Corollary. When W(x) (x € R) is an 1-dimensional white noise

(i.e., 7(-) = do(*));

1,/3
. ap ey L4l 3 4o
tiTot log EuP(t, x) 5\ 2P p=1,2,---.

1
pIi_}rr;o p~22logE [u(t, x)|P = §</gt3/2 vVt >0
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In recent work by Balan, R., Chen, L. and Chen, X. (2022),
the same p-limit and a slighly different t-limit

4—a

—a _ 1/2\ 3=a
fim 5 ogs u(t 0P =25 bl — 1) (50 )

are obtained in Skorokhod regime, under the condition
0<a<d.
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Chaos expansion

We only prove the large-t part. First, under our intial
codition u(t, x) is stationary in x. So we make x = 0 in our proof.

From .
= S,(t,0)
n=0

we have

EuP(t, 0) Z > EHSltO

n=0 ly+- +1pfn =

:i Z EHSltO Zt*“ Z Eﬁslj(ho)

n=0 ly4-+lp=2n  j=1 n=0 Li4+-+p=2n j=1

where the last step follows from scaling.
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Series decomposition of & uP(t, x)

Assume that we can prove

1 2
nhjo]o - Iog(n!)a_o‘( Z E H Sy, (1, 0))
lj+-4lp=2n  j=1
1\3- , _[(2M"/2 4-a
—Iog(§> P (4—04)
Then the proof is completed by the computation

00 p
tI_|>r1>1o {5a Ioth(4_°‘)n( Z E H Si,(1, O))

n=0 Li4+-+p=2n j=1

00 3_ g . 2M1/2 4—a\ n
tlngot3a|ogz n|3a(<_) p4 (4—04) )
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Reduction to high moment asymptotics

where the last step follows from the elementary fact that
riog S0 _ gt
; =1/~ _ v
tILrgot Iogz R ~0 0,y > 0)
n=0
with v = 3 — a- and t being replaced by 4.

In summary, the proof of our theorem is reduced to the
proof of

I°)
nIer;O%Iog(n!)S_a( Z ]EHSIJ.(LO))

http=2n  j=

_ |og (%)3—ap4_a (24/\11;2>4—a
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Laplacian moment representation

The following moment representation plays a fundamental
role in our result:

Theorem (Representation of Stratonovich moment)
Forany A >0,andn=0,1,2,---,

/ e NS, (t,0)dt

— %%(%)n/ooo exp{ - %21‘}150 [/ot W(B(s))ds} ndt as.

where B(s) is a d-dimensional Brownian motion independent of

W with B(0) = 0, and "E” is the expectation with respect to the
Brownian motion.
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Mathematical set-up

This relation largely related to he generalized function
G(t, x). Its spatial Fourier transform that takes form to all d > 1:
sin([<11)
.
uniform for all d > 1. In the dimensions d = 1,2, 3, G(t, x) can
be expressed explicitly as

G(t,€) =

(14 d=1
5 <t =
T Vx<y _
G(t,X): Z——tz_ |X|2 d=2
1
\ 4—m0t(dX) d = 3

August 12, 2022, CBMS Conference, Huntsuvil
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Mathematical set-up

where o;(dx) is the surface measure on {x € R%; |x| = t}.

The reason that we limit our discussionto d =1,2,3
because these are only cases where G(t, x) > 0.

The reason behind is a simple fact that

/ e‘“G(t,x)dt:%/ e X2p(t, x)dt x c R
0 0

for any A > 0, where p(t, x) is the density of B(t):

1 X
p(t,X):WeXp{—z—t} (t,X)ERJrXRd
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Laplacian moment representation

Indeed, the both sides has the same Fourier transform

/e’f"‘[/ e”G(t,x)dt]dx
RY 0

e in|&|t 1
_ oS 13 of —
/o €] N2+ [EJ2

_ 1 - —X\2t/2 i 1 2
_é/o e exp{ §|§| t}dt

—/ e E/ e‘*zt/zp(t,x)dt] dx
RY 0

for every ¢ € RY.
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Laplacian moment representation

Therefore,

/ e MS,(t,0)dt
0

= / dte”/ dX/ dS(H G(Sk — Sk—1, Xk — Xk1))
0 (rR9)" [0,

k=1
n

. ( Il W(xk)>
oy /(Rd)n ab((i[1 /0 T e MGt e — xk1dt) <k]:[1 W(xk)>
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Laplacian moment representation

— )\ (%)n/(Rd)n dx<k1£[1 /OOO e 12p(t, xi — xk_1)dt)
X (kli W(Xk))

_ %(%)n/ooodtexp{ a /m ds
X /(Rd)n dx(,ﬁp(SK — Sk—1, Xk — Xk—1)) (H W(Xk)>

k=1
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Laplacian moment representation

Given (sy,---,8,) € [0, t]2, the random vector
(B(s1),- -+, B(sn)) has the joint density

n
A
fsi o sn(Xt, oo Xn) = HP(Sk — Sk—1, Xk — Xk—1)

So we have h
/(Rd)n dx ( k]} P(Sk — Sk_1, Xk — Xk_1 )) (E W(xk))
=K, f[ W (B(s«))
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Laplacian moment representation

Finally,
/Oo e S, (t,0)dt
2
/ dl‘exp % }/[M]’é dSEoH W( (sx))
2
2
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Laplacian moment representation

Corollary (Laplacian moment representation)
Given \y,--- ,X\p >0,

o

p
| didpen{->at} Y =][8(0.0
(RF)P j=1

h4-tlp=2n  j=1

- <1ﬁ%> o[- 324)
Z/Q/tk ())dsdr}n n=012...

XEO|:
J k=1

where Bi(t),- - - , By(t) are independent d-dimensional Brownian
motions starting at 0.

o’
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Laplacian moment representation

Proof.

p p

/ dt1---dtpexp{—ZA,z;} N I B0
(RT)P j h+-+lp=2n j=1

S SIN | JACRETR)

/1+ +lp 2[7] 1

R~

h+-+lp=2n
) (113) ] 2
- (5 ol dl‘1~~-dtpexp{—— A2
2 E 2/ Jiwop 2 ,221 J
1 Pt 2n
E W (B;
X (2n)! 0[21:/0 ( !(S))ds]
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Laplacian moment representation

The remaining of the proof relies on the fact that
conditioning on the Brownian motions,

p &,

3 / W (By(s))ds
=170

is normal with zero mean and the variance

P bt
Z/O/O v(Bj(s) — Bk(r))dsdr

J,k=1
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Laplacian moment representation

Consequently,

e {Z A W(Eﬁ(s))ds} )

2”n' [Z /tj/tk (1)) dsdr ’

J,k=1

Together with the computation by far, this completes the proof. o
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Laplacian moment asymptotics

We now start the proof of the main theorem. The first step
is to show

p p
JLTOEIOgH +pdl‘1---dl‘pexp{—.ZZ‘,-} Z E || Si(t,0)
(RT) j=1 h+-+h=2n  j=1
= log 2M2"
Taking Ay = --- = X\, = 1 in Laplacian moment representation, it
is equivalent to
im  log oy - alpexp { 1 Xp: i}
Im —log —= e adlpexpy — = -
n—oco N g (n|)2 (=) 1 P p 2 P "/

i /Otj/oth(Bj(S) - Bk(r))dsdr}n — log 2° M 2"

X Egqg |:
j,k=1
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Upper bound of Laplacian moment

By Parseval’s indentity

P b i b - ,
Z / / W(Bj(s) N Bk(r))der _/ p(d§) E / e'¢Bi(s) ds
jk=170 /0 e 2 ),

2 d t} 1 l} £B(s) 2
= P et i€-Bi(s
=(ti+-+1) /Rdu(dﬁ)zt1+_”+tpq/oe (5) s

j=1
2

t.
_/l eif'Bj(s)ds
ti Jo
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Upper bound of Laplacian moment

where the inequality follows from Jensen and the last step from
Brownian scaling and homogenity of ~(-).

So we have

{Z/t’/tk ))dsdrr

J,k=1

P, 1,
<(h+--+b)"E t 2z v(Bi(s) — Bj(r))dsdr
po[; INRLRRLL
Sty Y

1.
hetlp=n

><1i1;2_2 ’]Eo[// ))dsdr]lj

n
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Upper bound of Laplacian moment
and therefore

(Rﬂpdh dtpeXp{ ZZQEO{Z / / " (Bi(S) — Bi(r ))dsd,}

j,k=1

< ”!I E:/— /1!-1--/,3!{.1%[%[/01/017(8(8)_B(r))d‘gdr}lj}

X (R+)pdt1-~~dtp(t1+--~+tp)”exp{—%j:iz;}ﬁzf?”f

noy T {ﬁEo{/1/1 (s)—B(r))dsdry}
ot ! =1

x 2P2°%" (HF< +—I>)F(p+2;an>1r<p+4
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Upper bound of Laplacian moment

From the large deviation for self-intersection local time

1 4M N\ 3*
o | —a/2 @
JL@Onlog n!) Eo{// (Bs—B,) dsdr} = log2 (4_0)

That means: We are allowed to do the replacement

]EO{/ / ))dsdr} ~ (1) (20((441\/1&)4;)/,

in our computation

Chen (Dept of Mathematics, UTK) Hyperbolic Anderson equation August 12, 2022, CBMS Conference, Huntsuvil



Upper bound of Laplacian moment

Using Stirling formula

P k
dlty - oy exp { - Z} [Z/ % (B(s) - Bulr ))dsdr]
(&*)P j=1 j k=1
M 4—a

jnlz“af‘"<2;“>"(2a(44_ )" >nr(p+2;0‘n>_1
><F<p—|—4;an> Z 1

/1+---+/p:n
~ (n|)224nMun ( n‘;p; 1 ) ~ (n|)224nM4?an
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Upper bound of Laplacian moment

In summary, we have established the upper bound

1 1 1 <
li —log — dt - - - dt - = li
Inm%SOUOP n Og (n|)2 (R+)p 1 pexp{ 2 ; ]}
b [l " 4
X ]Eo{ / / ))dsdr} <log2*Mz
J,k=1

In the following we prove the lower bound

1 1<
|I,I;lllorcl)f - log —5 (M Jaey dty - - dtpexp{ > ]z_; tj}
b
xEO{Z// v(B ))dsdr} 2|og24./\/l477a
jk=170+0

August 12, 2022, CBMS Conference, Huntsuvil
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Lower bound of Laplacian moment

By Cauchy-Schwartz inequality

,; || 2(B1s) = Butryyasar = [ ()

> {/Rd M(dg)f(g)(z;/ot/ e"éBj(s)ds)r
_ [i [ e [ 9’5'3’(5)"’3)}2

for any non-negative (&) with f(—¢) = f(¢) and

JRLGIFCORE
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Lower bound of Laplacian moment

Therefore

. L; /’f /’k ))dsdr}n
- [; /Rd SIEE) ( /Of/ eig.B,-(s)ds>] 2n
_ H“;p_z” /1f?~n~);p! ﬁﬁo{ /R d u(dg)f(g)( /0 b eis.s,-(s)ds”/f

_ (@n) ,ZZ,H/> dg(Hfgk)
>/

lj
Sk — Sk—1
x/[ . dsHeXp{_T

0,41 K—1
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Lower bound of Laplacian moment

dt1...dtpexp{ Zt,xao[zpj/ot/tk (Bi(s) — By(r ))dsdr]
-j k=1

(RF)P

k

>en) Y H/ u(de) Hfsk)

l+-+lp=2n j=1 Rd)]

I
2 ! Sk — Skt —~ 2}
X/o dte /[Ot]'f; dsHexp{ — ’IZ_;&
j j
— 22m+1(2p)] Z H/d) df)Hf(Sk)(1 +‘Z§i
[ k=1 i=k

/1+ +lp 2[7] 1

:
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Lower bound of Laplacian moment

The spectral method yields that
1 o2y -1
fim os [ w@ [T (1+ 35

- |5|szp1/ [ BV |:I)2 (:]:I?Jr nlz)]

Consequently, we are allowed to do the replacement

/(Rd),j u(ds)ljf<fk)(1 " ) oty

1>

p(f)
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Lower bound of Laplacian moment

Therefore,

1 1 1 <&
||,5r_1>!)r<1)f log !2/R+pdt1...dtpexp{_§j_z1z}}
5 n
XEO{Z// ))dsdr] > log 242(1)

J k=1

Finally, the desired lower bound follows from the relation

2

2(f) — (de) { p(n)e(n +¢)
et ) ol /Rd 2 AT DA T €+ 1)
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Taking “Laplacian inverse”

In summary, we have reached the conclusion that

11 P P
Jim — log — dt1~-dtpexp{—j:211}} 3 IEIIIS/I.(I}-,O)

n! (R+)P h+tp=2n
= log oM
As the last step, we now prove that

I°)
nli_)rrgo%log(n!)S_a( Z ]EHSIJ.(LO))

h+-tlp=2n  j=1

g (1) (B4
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Taking “Laplacian inverse”

We first prove the upper bound

p p
ot dpexo{ =Y 4} > =]]S(4.0)
=

(R+)P htotp=2n =1
p
> dl‘1~~d1‘pexp{—2tj} Z IE:HS/(mm G, )
(RT)P = htthe2n e 1<j<p
p
= { D 0)}
h++hp=2n  j=1
(4—a)n
X aty - - - dt, ex { t}(mm )
/(]R+)p p &P Z / 1</<p !

j=1
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Taking “Laplacian inverse”

By the fact for the i.i.d. exp(1)-random variables 71, - - - , 7p,
min 7; ~ exp(p),

1<j<p
o
(4—a)n
dt; - - dt, ex {— t}( min t-)
(RT)P 1 p P j;/ 1S/’§PI

= p/ooo e Pt4—a)nqgp — (;—)>(4_a)nr(1 + (4 — a)n>

Using Stirling formula we obtain the desired upper bound

1 14
lim sup Iog(n!)3a< Z E HS/I.(1,O))
j

n—oo /1 +"‘+Ip:2n =1

< log (%)3_ap4°‘(24'/\f1;2)4_a
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Taking “Laplacian inverse”

The same argument can be adapted for the lower bound
with some extra effort. Let § > 0 be fixed but small. When

(t,-- ,t) € (n(4 — a—8),n(4 — a+0))°,

4—a+9 .
< (4 — < =T —1....
i< (4 a+5)n_4_a_5121k|2ptk j=1,---,p

So we have

Z ]EﬁS/j(l}-,O)S Z EHS,( —ato min tk,0>

| — o — 0 1<k<p
- Ap=2n  j=1 h+-+p=2n  j=1

_ (4—@—1—6

(4—a)
4—a—51r§nkigptk)4 n Z EHS’I'(1’O)

httlp=2n  j=1
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Taking “Laplacian inverse”

Therefore,
p

p
di--dipexp{ =>4} > =[S0

j=1 h+-tlp=2n  j=1

{ % Ens,m}( 4ot oy

/(n(4o¢6),n(4o¢+§))ﬂ7

h+-+lp=2n =1
P (4—a)n
. (RT)P dhy--- dtp &P { 1221 b } ( 1220 )
2> Ens, e
h+-+pb=2n j=1

x (%)“‘a) r(1 +(4- a)n)
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Concentration of exponential times

To complete the proof for the lower bound, therefore, all
we need is to show

p p
dty---dlyexpy — » E || Si(t,0)
/(n(4—a—5),n(4—a+6))ﬁ { pa },1+_§:2n /1} !
p p
~/ d - apexp { = D4} > E][S,(5,0) (n—0)
(R+)P j=1 h+4tl=2n j=1

for any small 9 > 0. This is proceded below.
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Concentration of exponential times

First recall that
P

p
|.m1|<>gnl ot dpexo{ =>4} > E]]S(4.0)

n—oo N |
(R+)P j=1 htt+lp=2n  j=1
4—a
=log2M ™2z

Working harder on the moment representation, we can prove
that forany Ay,--- ;A\, >0
p

o
lim sup — Iog—/ dt - - dtpexp{ Z)\,t/} Z IEHS;I.(I}-,O)

n—=00 h+-+p=2n j=1
<logaM' + 4= Z A" log
o E
& 2 A2+ AP

The correspondent lower bound is very likely, but we are not
able to prove it.
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Concentration of exponential times

Define the probability measures j,(A) on (RT)P

P P
/Adh---dtpexp{—th} S E[]S(t.0)
_ J=1 J

ht-tlp=2n  j=1

p p
/ dt-dipexp{ =>4} > E]]S,(40)
(z+)p e

j=1  "h+-+lp=2n

1in(A)

Forany (04,--- ,60,) € RP,

1 p
lim sup — Iog/ exp { Z le}}Mn(dﬁ - dly) < N0, -+, 0p)
(R*)P

n—o0 j:1
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Concentration of exponential times

where

4— oL 1—9 h%u—@yz
G- 0p) = =5 ;é; T—01) 2+ +(1-0,)2

when 64, --- ,0, < 1,and A(0y,--- ,6,) = +oc if otherwise.
By the upper bound of Gartner-Ellis theorem,

1
limsup — log pun(NF) < — mf N (b, ) 1)

n—so0 (t, to)EF

for every close set F C (RT)P, where

Nt t)= sup {}:eq A(bs, - - ,9)}

»
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Concentration of exponential times

It is not easy (perhaps) and unnecessary to find the close
form of A*(-). Clearly, A*(,--- ,1,) > 0. Further, we claim that
N (t,--- , 1) > 0whenever ti #4 —aforany 1 <j <p.

Indeed, assume (t, - - , f,) € (R")P that makes
N (t,--- , 1) = 0. We must have

p p - -

4 — o (1 —0;,)2log(1 —0;)72
29/17 = Z _ — i —2
= 2 (1—=0601)24+---+(1 -0,

for every (64, ---6p) € (—o0, 1)P. In particular, for given j, take
0; =0 and 6k = 0 for k # j:

4 -«

0t < log(1 —0)2 = (4 —a)log(1 —6)"
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Concentration of exponential times

Thus,

i < (4—a)%|og(1 -0~ >0

> (4-— a)%log(1 -0~ <0
Letting & — 01 and 6 — 0~ separately, we have t; = 4 — .
Write Gs = (4 — a — 9, 4 — a + §)P. We have, therefore,
inf  A*(t, -, t) >0

(t1,+ ;1) GE

Taking F = Gy in the large deviation upper bound,

1
limsup — log 1n(NGS) < 0

n—oo N
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Concentration of exponential times

In particular,

p p

d--dpexp{ =>4} > E]]S,(40)

nGs j=1 " h+etp=2n  j=1

P p

~ dt1---dtpexp{—th} S 2 [[S(t.0) (n— o)

(RT)P j=1 htotlp=2n  j=1

That is what we try to prove. O
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Thank you!
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