A physical model with cyclical long-range dependence

Vladas Pipiras (UNC-Chapel Hill)

CBMS, August, 2022

Cyclical long-range dependence (LRD)

Continuous time: Stationary process $Y = \{Y_t\}_{t \in \mathbb{R}}$. Assume $\mathbb{E}Y_t = 0$ for simplicity.

Spectrum: For some frequency $\nu_0 > 0$,

$$S(
u)\simeq C_S(
u_0-
u)^{-2\delta}, ext{ as }
u\uparrow
u_0,$$

with $\delta \in (0, 1/2)$ and constant $C_S > 0.^1$

ACVF: For $R(h) = \mathbb{E}Y_{t+h}Y_t = \int_0^\infty \cos(h\nu)S(\nu)d\nu$,

$$R(h)\simeq C_R\cos(
u_0h+\phi_R)h^{2\delta-1}, ext{ as } h
ightarrow\infty.$$

Notes: $\int_0^\infty |R(h)| dh = \infty$, but $\left| \int_0^\infty R(h) dh \right| < \infty$. Traditional LRD can be thought as above with $\nu_0 = 0$.

Vladas Pipiras (UNC)

¹More generally, divergence can occur on both sides of the frequency ν_0 , and more than one fixed frequency can be considered. Other names used as well. $\nu_0 = 0$

For small fixed $\epsilon > 0$,

$$\int_{\nu_0-\epsilon}^{\nu_0} e^{ih\nu} S(\nu) d\nu \simeq C_S \int_{\nu_0-\epsilon}^{\nu_0} e^{ih\nu} (\nu_0-\nu)^{-2\delta} d\nu = C_S e^{ih\nu_0} \int_0^{\epsilon} e^{-ihz} z^{-2\delta} dz$$

$$=C_{\mathcal{S}}e^{ih\nu_0}h^{2\delta-1}\int_0^{\epsilon h}e^{-ix}x^{-2\delta}dx\simeq C_{\mathcal{S}}a_{\delta}e^{i(h\nu_0+\phi_{\delta})}h^{2\delta-1},$$

as $h \to \infty.$ Thus, we expect that

$$R(h) \simeq C_R \cos(\nu_0 h + \phi_R) h^{2\delta - 1},$$

as $h \to \infty$.

< ∃ > <

Cyclical LRD

Squared process: Under Gaussianity, $R_2(h) = 2(R(h))^2$, so that

$$R_2(h)\simeq 2C_R^2\cos^2(
u_0h+\phi_R)h^{4\delta-2}$$

or

$$R_2(h) \simeq C_R^2 h^{4\delta-2} + C_R^2 \cos(2\nu_0 h + 2\phi_R) h^{4\delta-2}.$$

Notes:

$$\int_0^\infty R_2(h)dh \left\{ \begin{array}{l} < \infty \\ = \infty \end{array} \right\} \Leftrightarrow \left\{ \begin{array}{l} \delta \in (0, \frac{1}{4}) \\ \delta \in [\frac{1}{4}, \frac{1}{2}) \end{array} \right\} \Leftrightarrow \left\{ \begin{array}{l} \mathrm{SRD} \\ \mathrm{LRD} \end{array} \right\}.$$

For $\delta \in (\frac{1}{4}, \frac{1}{2})$, expect

$$\mathcal{S}_2(
u)\simeq \mathcal{C}_{1,\mathcal{S}}
u^{-4\delta+1}, ext{ as }
u \downarrow 0, \quad \simeq \mathcal{C}_{2,\mathcal{S}}(2
u_0-
u)^{-4\delta+1}, ext{ as }
u \uparrow 2
u_0,$$

When $\delta = \frac{1}{4}$, still expect logarithmic divergence. (This cannot be seen just considering the spectra.)

Vladas Pipiras (UNC)

CBMS, 2022 4 / 14

(Non)Central limit theorems:

$$\frac{1}{T} \int_0^T Y_t^2 dt \simeq \left\{ \begin{array}{c} \text{Normal, } \delta \in (0, \frac{1}{4}) \\ \text{Non-Normal, } \delta \in (\frac{1}{4}, \frac{1}{2}) \end{array} \right\} \Leftrightarrow \left\{ \begin{array}{c} \text{SRD} \\ \text{LRD} \end{array} \right\}.$$

Normal QQ-plots for averages of squared LRD series, $\delta = 0.2$ and 0.3:

The boundary case $\delta = \frac{1}{4}$ seems unresolved.

This is important in e.g. setting confidence intervals for the variance.

Vladas Pipiras (UNC)

Origins: Hosking (1981), "Fractional differencing," Biometrika, last para:

Finally we mention two other processes involving fractional differencing which may prove useful in applications. The fractional equal-root integrated moving-average process is defined by $\nabla^q y_t = (1 - \theta B)^q a_t$, $|q| < \frac{1}{2}$, $|\theta| < 1$; as a forecasting model it corresponds to 'fractional order multiple exponential smoothing'. The process $(1 - 2\phi B + B^2)^d y_t = a_t$, $|d| < \frac{1}{2}$, $|\phi| < 1$, exhibits both long-term persistence and quasiperiodic behaviour; its correlation function resembles a hyperbolically damped sine wave.

There were a number of follow-up papers looking at this phenomenon, with some applications. But it has largely stayed at the margins of LRD research. E.g. pp. 185-191 in Giraitis et al. (2012; 500+ pages); pp. 496-499 in Beran et al. (2013; 800+ pages); no mention in Pipiras and Taqqu (2017; 600+ pages); etc.

No known physical model leading to this phenomenon.

イロト 不得 トイラト イラト 一日

Wave elevation model

Longuet-Higgins model: Along x-direction and time t,

$$\zeta(x,t) = \sum_{n=1}^{N} a_n \cos(k_n(\cos \mu_0)x - w_n t + \phi_n)$$

with frequencies w_n , amplitudes $a_n = \sqrt{2S(w_n)\Delta w}$ for spectrum S(w), heading μ_0 , random phases ϕ_n , and wave numbers

$$k_n = w_n^2/g.$$
 (Dispersion relation)

At x = 0,

$$\zeta_0(t) = \sum_{n=1}^N a_n \cos(-w_n t + \phi_n)$$

ACVF:

$$R(h) = \sum_{n=1}^{N} \cos(hw_n) S(w_n) \Delta w \simeq \int_0^\infty \cos(hw) S(w) dw.$$

Non-zero forward speed: Setting $x = U_0 t$ for speed U_0 , the model becomes

$$\zeta_e(t) = \sum_{n=1}^N a_n \cos(-w_{e,n}t + \phi_n)$$

for encounter frequencies

$$w_{e,n} = w_n - \frac{U_0}{g} (\cos \mu_0) w_n^2 = w_n - q w_n^2.$$

ACVF:

$$R(h) = \sum_{n=1}^{N} \cos(hw_{e,n}) S(w_n) \Delta w \simeq \int_0^\infty \cos(hw_e) S(w) dw.$$

Original and transformed spectra

Note: With $w_e = w - qw^2 = w - \frac{U_0}{g} \cos \mu_0 w^2$ and for q > 0 $(\mu_0 \in (-\frac{\pi}{2}, \frac{\pi}{2}))$,

$$\int_0^\infty \cos(hw_e)S(w)dw = \int_0^\infty \cos(h\nu)\widetilde{S}(\nu)d\nu,$$

where

$$\widetilde{S}(
u) = rac{S(w_1(
u)) + S(w_2(
u))}{(1 - 4q
u)^{1/2}} + rac{S(w_3(
u))}{(1 + 4q
u)^{1/2}}$$

for $u \in (0, 1/4q)$, and

$$\widetilde{S}(
u) = rac{S(w_3(
u))}{(1+4q
u)^{1/2}}$$

for $u \in (1/4q,\infty)$. So cyclical LRD with

$$\delta = \frac{1}{4}.$$

(This is directly related to the dispersion relation.) $_{-}$

Vladas Pipiras (UNC)

Original and transformed spectra

Vladas Pipiras (UNC)

CBMS, 2022 10 / 14

Transformed spectrum and ACF

The decay will always be slow but magnitude of ACF coefficients at lags will depend on the underlying spectrum and speed.

CBMS, 2022 11 / 14

Ship motion: The plot presents one such ACF for the pitch motion from a 30-minute-long record. This is for the flared variant of the ONR Topsides Geometry Series, in sea state 6, the heading of 45°, and traveling at 25 kts.

For the same pitch motion process:

How to put confidence intervals, e.g., on the variance?

Key takeaway: Model for wave elevation and ship motions at non-zero speed characterized by (cyclical) LRD.

Question: What is going on with another motion, so-called roll?

Other physical models for cyclical LRD?