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In the last few decades, lots of progress has been made in the study
of potential theoretic properties for various types of jump processes in
open subsets D (or their closures) of Rd . These include killed
isotropic α-stable processes, more general killed symmetric Lévy
processes, their reflected and censored versions.

In these studies, the jump kernel JD(x , y) of the process in the open
set D (or its closure D) is either the restriction of the jump kernel of
the original process in Rd or comparable to such a kernel and it does
not tend to zero as x or y tends to the boundary of D.

In this sense, one can say that the corresponding integro-differential
operator is uniformly elliptic.
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Subordinate killed Brownian motions and subordinate killed Lévy
processes form another important class of Markov processes. In
case of a stable subordinator, the generator of the subordinate killed
Brownian motion is the spectral fractional Laplacian. The spectral
fractional Laplacian and, more generally, fractional powers of Dirichlet
elliptic differential operators in domains have been studied by quite a
few people in the PDE community.

In contrast with killed Lévy processes and censored processes, the
jump kernel of a subordinate killed Lévy process in an open subset
D ⊂ Rd tends to zero near the boundary of D. In this sense, the
Dirichlet forms of subordinate killed Lévy processes are degenerate
near the boundary. Partial differential equations degenerate at the
boundary have been studied a lot in the PDE literature.
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In two recent papers, Kim-S.-Vondracek (TAMS, 2019) and
Kim-S.-Vondracek (Pot. Anal., 2019), we studied the potential theory
of those processes. There were some unexpected results.

These processes are natural and important, but its structure is too
rigid for applications. In some sense we are just dealing with
particular processes. Is there is a general theory behind all these?

Reently, the results of Kim-S.-Vondracek (TAMS, 2019) and
Kim-S.-Vondracek (Pot. Anal., 2019) have been used a guideline to
build a general framework
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Let Rd
+ = {x = (x̃ , xd ) : xd > 0}, j(|x − y |) = |x − y |−α−d , 0 < α < 2.

Let B(x , y) be a function on Rd
+ × Rd

+ satisfying the following
assumptions:

(A1) B(x , y) = B(y , x) for all x , y ∈ Rd
+.

(A2) If α ≥ 1, then there exist θ > α− 1 and C1 > 0 such that

|B(x , x)− B(x , y)| ≤ C1

(
|x − y |
xd ∧ yd

)θ

.
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(A3) There exist C2 ≥ 1 and parameters β1, β2, β3 ≥ 0, with β1 > 0 if
β3 > 0, and β2 > 0 if β4 > 0, such that

C−1
2 B̃(x , y) ≤ B(x , y) ≤ C2B̃(x , y) , x , y ∈ Rd

+ ,

where B̃(x , y) is defined to be

(xd ∧ yd

|x − y |
∧ 1

)β1
(xd ∨ yd

|x − y |
∧ 1

)β2
[
log

(
1 +

(xd ∨ yd ) ∧ |x − y |
xd ∧ yd ∧ |x − y |

)]β3

×

×
[
log

(
1 +

|x − y |
(xd ∨ yd ) ∧ |x − y |

)]β4

.
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(A4) For all x , y ∈ Rd
+ and a > 0, B(ax ,ay) = B(x , y). In case d ≥ 2,

for all x , y ∈ Rd
+ and z̃ ∈ Rd−1, B(x + (z̃,0), y + (z̃,0)) = B(x , y).

In the next two sections, we always assume that

d > (α+ β1 + β2) ∧ 2, p ∈ ((α− 1)+, α+ β1) and

J(x , y) = |x − y |−d−αB(x , y) on Rd
+ × Rd

+ with B satisfying (A1) − (A4).
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Let ed = (0̃,1). To every parameter p ∈ ((α− 1)+, α+ β1), we
associate a constant C(p) = C(α,p,B) ∈ (0,∞) defined as

C(p) =∫
Rd−1

1
(|ũ|2 + 1)(d+α)/2

∫ 1

0

(sp − 1)(1 − sα−p−1)

(1 − s)1+α
B
(
(1 − s)ũ,1), sed

)
dsdũ ,

In case d = 1, C(p) is defined as

C(p) =
∫ 1

0

(sp − 1)(1 − sα−p−1)

(1 − s)1+α
B
(
1, s

)
ds.

Note that limp↓(α−1)+ C(p) = 0, limp↑α+β1 C(p) = ∞ and that the
function p 7→ C(p) is strictly increasing.
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Let κ(x) = C(p)x−α
d on Rd

+.

Define

E(u, v) :=1
2

∫
Rd

+

∫
Rd

+

(u(x)− u(y))(v(x)− v(y))J(x , y)dy dx

+

∫
Rd

+

u(x)v(x)κ(x)dx .

Let F be the closure of C∞
c (Rd

+) under E1(u,u) = E(u,u) + (u,u).
Then (E ,F) is a Dirichlet form, degenerate at the boundary due to
(A3).

Let ((Yt)t≥0, (Px)x∈Rd
+
) be the associated Hunt process with lifetime ζ.

We add a cemetery point ∂ to the state space Rd
+ and define Yt = ∂

for t ≥ ζ. The process Y is transient.
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In [KSV1], we proved that the Harnack inequality and Carleson’s
estimate hold for the non-negative harmonic functions of Y . For
d ≥ 2 and w̃ ∈ Rd−1, we define Dw̃ (a,b) to be
{x = (x̃ , xd ) ∈ Rd

+ : |x̃ − w̃ | < a, xd < b}. When d = 1, Dw̃ (a,b)
stands for the interval (0,b).

Theorem 1(Boundary Harnack principle), [KSV1, KSV2]

Suppose p ∈ ((α− 1)+, α+ (β1 ∧ β2)). Then there exists C ≥ 1 such
that for all r > 0, w̃ ∈ Rd−1, and any non-negative function f in Rd

+

which is harmonic in Dw̃ (2r ,2r) with respect to Y and vanishes
continuously on B((w̃ ,0),2r) ∩ ∂Rd

+, we have

f (x)
xp

d
≤ C3

f (y)
yp

d
, x , y ∈ Dw̃ (r/2, r/2).

Theorem 2, [KSV1, KSV2]

If α+ β2 ≤ p < α+ β1, then the boundary Harnack principle is not
valid for Y .
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A function G : Rd
+ × Rd

+ → [0,∞] is called the Green function for Y if
G is the density of the occupation time:

Ex

∫ ζ

0
f (Yt)dt =

∫
Rd

+

G(x , y)f (y)dy , x ∈ Rd
+.

Theorem 3, [KSV2]

The process Y admits a Green function G : Rd
+ × Rd

+ → [0,∞] such
that G(x , ·) is continuous in Rd

+ \ {x} and regular harmonic with
respect to Y in Rd

+ \ B(x , ϵ) for any ϵ > 0. Moreover,

(1) If p ∈ ((α− 1)+, α+ 1
2 [β1 + (β1 ∧ β2)]), then on Rd

+ × Rd
+,

G(x , y) ≍ 1
|x − y |d−α

(
xd

|x − y |
∧ 1

)p ( yd

|x − y |
∧ 1

)p

. (1)
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Theorem 3 (cont), [KSV2]

(2) If p = α+ β1+β2
2 , then on Rd

+ × Rd
+,

G(x , y) ≍ 1
|x − y |d−α

(
xd

|x − y |
∧ 1

)p ( yd

|x − y |
∧ 1

)p

×

×
(
log

(
1 +

|x − y |
(xd ∨ yd ) ∧ |x − y |

))β4+1

.

(3) If p ∈ (α+ β1+β2
2 , α+ β1), then on Rd

+ × Rd
+,

G(x , y) ≍ 1
|x − y |d−α

(
xd ∧ yd

|x − y |
∧ 1

)p (xd ∨ yd

|x − y |
∧ 1

)2α−p+β1+β2

×

×
(
log

(
1 +

|x − y |
(xd ∨ yd ) ∧ |x − y |

))β4

.



Introduction and overview Main Results with killing Main results without killing Heat kernel estimates

Outline

1 Introduction and overview

2 Main Results with killing

3 Main results without killing

4 Heat kernel estimates



Introduction and overview Main Results with killing Main results without killing Heat kernel estimates

In proving the results of the previous section, the strict positivity of the
killing function was used in an essential way in several places. This
includes the proof of finite lifetime, Carleson estimate, and decay of
the Green function at the boundary.

What happens if the killing function is identically zero?

In [KSV3], we studied this case. Throughout this section, we assume
the killing function is identically zero. It is easy to show that when
α ∈ (0,1], the process Y will not approach ∂Rd

+ at the end of its
lifetime, so there is no “boundary theory”. So in this section, we also
assume α ∈ (1,2).
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Theorem 4 (Hardy inequality), [KSV3]

Then there exists C = C(α) ∈ (0,∞) such that for all u ∈ F ,

E(u,u) ≥ C
∫
Rd

+

u(x)2

xα
d

dx .

As a consequence we can get that the lifetime of Y is finite with
probability 1. Furthermore

(a) For all x ∈ Rd
+, Px(Yζ− ∈ ∂Rd

+) = 1;
(b) There exists a constant n0 ≥ 2 such that for all x ∈ Rd

+,
Px

(
τB(x,n0xd ) = ζ

)
> 1/2.
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(a) implies that Y is transient. (b) plays an important role in the proof
of Carleson’s estimate.

Combining these with some results from [KSV1, KSV2], we can prove
the following results.
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Theorem 5 (Boundary Harnack principle), KSV3

There exists C ≥ 1 such that for all r > 0, w̃ ∈ Rd−1, and any
non-negative function f in Rd

+ which is harmonic in Dw̃ (2r ,2r) with
respect to Y and vanishes continuously on B((w̃ ,0),2r) ∩ ∂Rd

+, we
have

f (x)
xα−1

d

≤ C
f (y)
yα−1

d

, x , y ∈ Dw̃ (r/2, r/2).

Theorem 6, [KSV3]

Then there exists C > 1 such that for all x , y ∈ Rd
+,

C−1
(

xd

|x − y |
∧ 1

)α−1 ( yd

|x − y |
∧ 1

)α−1 1
|x − y |d−α

≤ G(x , y)

≤ C
(

xd

|x − y |
∧ 1

)α−1 ( yd

|x − y |
∧ 1

)α−1 1
|x − y |d−α

.
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Now we have Green functions estimates. Can get get sharp
two-sided heat kernel estimates also? Fix κ ∈ [0,∞). That is, we are
dealing with the case either with or without critical killing. Let p(t , x , y)
be the heat kernel of Y . We will not need the assumption
d > (α+ β1 + β2) ∧ 2.

Theorem 7, (CKSV)

Suppose that (A1)-(A4) hold. Then the process Y have a heat kernel
p : (0,∞)× Rd

+ × Rd
+ → (0,∞) which is jointly continuous. Moreover,

the heat kernel p has the following estimates: For x ∈ Rd
+ and t > 0,

let x t := x + t1/αed .
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Theorem 7 (Cont)

(a) If β2 < α+ β1, Then p(t , x , y) is comparable with(
1 ∧ xd

t1/α

)p (
1 ∧ yd

t1/α

)p
B̃β1,β2,β3,β4(x

t , y t)

(
t−d/α ∧ t

|x − y |d+α

)
≍

(
1 ∧ xd

t1/α

)p (
1 ∧ yd

t1/α

)p
(

t−d/α ∧ tB̃β1,β2,β3,β4(x
t , y t)

|x t − y t |d+α

)
.
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Theorem 7 (Cont)

(b) If β2 > α+ β1, Then p(t , x , y) is comparable with(
1 ∧ xd

t1/α

)p (
1 ∧ yd

t1/α

)p
(

t−d/α ∧ t
|x − y |d+α

)[
B̃β1,β2,β3,β4(x

t , y t)

+

(
1 ∧ t

|x − y |α

)
B̃β1,β1,0,β3(x

t , y t) logβ3

(
e +

|x − y |
x t

d ∧ y t
d ∧ |x − y |

)]
.
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Theorem 7 (Cont)

(c) If β2 = α+ β1, Then p(t , x , y) is comparable with(
1 ∧ xd

t1/α

)p (
1 ∧ yd

t1/α

)p
(

t−d/α ∧ t
|x − y |d+α

)[
B̃β1,β2,β3,β4(x

t , y t)

+

(
1 ∧ t

|x − y |α

)
B̃β1,β1,0,β3+β4+1(x t , y t) logβ3

(
e +

|x − y |
x t

d ∧ y t
d ∧ |x − y |

)]
.
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Recall

E(u, v) =1
2

∫
Rd

+

∫
Rd

+

(u(x)− u(y))(v(x)− v(y))J(x , y)dy dx

+

∫
Rd

+

u(x)v(x)κ(x)dx .

Let F be the closure of C∞
c (Rd

+) under E1. Then (E ,F) is a regular
Dirichlet form on L2(Rd

+). We denote the associated Hunt process by
Y (reflected process)

Actually, we can also get two-sided heat kernel estimates for Y . They
correspond to the estimates in Theorem 7 with p replaced by 0.
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Integrating our heat kernel estimates, we can get sharp two-sided
Green function estimates. In these way, we can get rid of the
assumption d > (α+ β1 + β2) ∧ 2 from [KSV2]

Before proving two-sided heat kernel estimates, we first prove a
Nash-type inequality. Using this inequality, one can show that that
there exists c > 0 such that

p(t , x , y) ≤ c
(

t−d/α ∧ t
|x − y |d+α

)
,

for all t > 0 and x , y ∈ Rd
+.

For the two-sided heat kernel estimates, the upper bound is the more
difficult one. The following consequence of the Lévy system formula
is repeatedly used to obtain the upper bound.



Introduction and overview Main Results with killing Main results without killing Heat kernel estimates

Integrating our heat kernel estimates, we can get sharp two-sided
Green function estimates. In these way, we can get rid of the
assumption d > (α+ β1 + β2) ∧ 2 from [KSV2]

Before proving two-sided heat kernel estimates, we first prove a
Nash-type inequality. Using this inequality, one can show that that
there exists c > 0 such that

p(t , x , y) ≤ c
(

t−d/α ∧ t
|x − y |d+α

)
,

for all t > 0 and x , y ∈ Rd
+.

For the two-sided heat kernel estimates, the upper bound is the more
difficult one. The following consequence of the Lévy system formula
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Lemma 8

Let V1 and V3 be open subsets of Rd
+ with dist(V1,V3) > 0. Set

V2 := Rd
+ \ (V1 ∪ V3). For any x ∈ V1, y ∈ V3 and t > 0, it holds that

p(t , x , y) ≤ Px(τV1 < t < ζ) sup
s≤t, z∈V2

p(s, z, y)

+ dist(V1,V3)
−d−α

∫ t

0

∫
V3

∫
V1

pV1(t − s, x ,u)B(u,w)p(s, y ,w)dudwds.

For the two-sided heat kernel estimates, the upper bound is the more
difficult one. I now give some of the main ingredients for establishing
the upper bound.

The next step is to prove the following preliminary upper bound:



Introduction and overview Main Results with killing Main results without killing Heat kernel estimates

Lemma 8

Let V1 and V3 be open subsets of Rd
+ with dist(V1,V3) > 0. Set

V2 := Rd
+ \ (V1 ∪ V3). For any x ∈ V1, y ∈ V3 and t > 0, it holds that

p(t , x , y) ≤ Px(τV1 < t < ζ) sup
s≤t, z∈V2

p(s, z, y)

+ dist(V1,V3)
−d−α

∫ t

0

∫
V3

∫
V1

pV1(t − s, x ,u)B(u,w)p(s, y ,w)dudwds.

For the two-sided heat kernel estimates, the upper bound is the more
difficult one. I now give some of the main ingredients for establishing
the upper bound.

The next step is to prove the following preliminary upper bound:



Introduction and overview Main Results with killing Main results without killing Heat kernel estimates

Lemma 8

Let V1 and V3 be open subsets of Rd
+ with dist(V1,V3) > 0. Set

V2 := Rd
+ \ (V1 ∪ V3). For any x ∈ V1, y ∈ V3 and t > 0, it holds that

p(t , x , y) ≤ Px(τV1 < t < ζ) sup
s≤t, z∈V2

p(s, z, y)

+ dist(V1,V3)
−d−α

∫ t

0

∫
V3

∫
V1

pV1(t − s, x ,u)B(u,w)p(s, y ,w)dudwds.

For the two-sided heat kernel estimates, the upper bound is the more
difficult one. I now give some of the main ingredients for establishing
the upper bound.

The next step is to prove the following preliminary upper bound:



Introduction and overview Main Results with killing Main results without killing Heat kernel estimates

Lemma 9
There exists a constant C > 0 such that

p(t , x , y) ≤ C
(

1 ∧ xd

t1/α

)p (
1 ∧ yd

t1/α

)p
(

t−d/α ∧ t
|x − y |d+α

)
,

for all t > 0 and x , y ∈ Rd
+.

For p < α, Lemma 9 is not too difficult to prove. To get rid of the
condition p < α, we have to use a bootstrap method (induction).

To get sharp upper bound estimates, we have use a bootstrap
method again. The final form of our two-sided heat kernel estimates
tells us quite some detailed analysis are involved.
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Thank you!
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