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Many thanks to the
United States’ NSF & Spain’s Ministerio de Ciencia e Innovación

Davar Khoshnevisan (Salt Lake City, Utah) Optimal regularity of SPDEs 1 / 15



A constant-coefficient example

Let Ẇ = Ẇ (t , x) denote space-time white noise on R+ × R; that is,

Ẇ is a centered random Gaussian distribution with correlations given
somewhat formally by

Cov[Ẇ (t , x) , Ẇ (s , y)] = δ0(t − s)δ0(x − y) s, t ≥ 0, x , y ∈ R.

Consider the following linear stochastic heat equation:

∂tu(t , x) = ∂2
xu(t , x) + Ẇ (t , x),

subject to u(0) = 0

The solution is of course

u(t , x) =

∫
(0,t)×R

p(t − s , y − x)W (ds dy),

where p(t , x) = (4πt)−1/2 exp{−x2/(4t)} = heat kernel
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Cov[Ẇ (t , x) , Ẇ (s , y)] = δ0(t − s)δ0(x − y) s, t ≥ 0, x , y ∈ R.

Consider the following linear stochastic heat equation:

∂tu(t , x) = ∂2
xu(t , x) + Ẇ (t , x),
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Cov[Ẇ (t , x) , Ẇ (s , y)] = δ0(t − s)δ0(x − y) s, t ≥ 0, x , y ∈ R.

Consider the following linear stochastic heat equation:

∂tu(t , x) = ∂2
xu(t , x) + Ẇ (t , x),
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A constant-coefficient example
∂tu = ∂2

xu + Ẇ

Theorem (Krylov-Rozovskii, 1972; Pardoux, 1972)

u is continuous with probability one. In fact,

u ∈
⋂
α< 1

2

C
α/2,α
loc ((0 ,∞)× R) a.s.

Theorem (mentioned as aside – we will not return to this)

With probability one:

(Lei-Nualart, 2009) For every t > 0 fixed,
u(t) = fBM( 1

4 ) + C∞-process

(Foondun-K-Mahboubi, 2009) For every x ∈ R fixed,
u(· , x) = BM + C∞-process
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Other SPDEs
∂tu = ∆u + b(u) + Ḟ Cov[Ḟ (t , x), Ḟ (s , y)] = δ0(t − s)Γ(x − y)

Ḟ= centered generalized Gaussian noise with [φ1, φ2 ∈ S (Rd)]

Cov

[∫
(0,t)×Rd

φ1(x)F (ds dx) ,

∫
(0,s)×Rd

φ2(x)F (ds dx)

]
= (s ∧ t) 〈φ1 φ2 ∗ Γ〉L2(Rd ) s, t > 0,

where Γ is a positive-definite tempered Borel measure on Rd

Now consider the following SPDE: For t > 0 and x ∈ Rd ,

∂tu(t , x) = ∆u(t , x) + b(u(t , x)) + Ḟ (t , x),

subject to u(0) ∈ L∞(Rd) being non random (say)

b : R→ R is non-random and Lipschitz continuous
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Other SPDEs
∂tu = ∆u + b(u) + Ḟ Cov[Ḟ (t , x), Ḟ (s , y)] = δ0(t − s)Γ(x − y)

Theorem (Dalang, 1999)

The SPDE has a random-field solution u if∫
Rd

Γ̂(dξ)

1 + ‖ξ‖2
<∞.

When b ≡ 0, this condition is necessary and sufficient.

Theorem (Sanz-Solé–Sarra, 2000; 2002)

u= Hölder continuous if there exists η ∈ (0 , 1) such that∫
Rd

Γ̂(dξ)

1 + ‖ξ‖2η
<∞.

Both theories also allow multiplicative-noise models
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A heat generalization
∂tH = LH + Ḟ , H(0) = 0, Cov[Ḟ (t , x), Ḟ (s , y)] = δ0(t − s)Γ(x − y)

L = generator of a Lévy process X = {Xt}t≥0 on Rd

Let p(t) denote the transition functions of X ; that is,

p(t ,F ) = P{Xt ∈ F} for t > 0 and Borel sets F ⊂ Rd

p = the fundamental solution for ∂t −L

By solution we mean

H(t , x) =

∫
(0,t)×Rd

p(t − s , y − x)F (ds dy)

though with a little care since p is not always a function

When does this make sense (↔ the SPDE is well posed)?

When is the solution Hölder continuous?
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A wave generalization
∂2
t W = LW + Ḟ , W (0) = 0, ∂tW (0+) = 0,

Cov[Ḟ (t , x), Ḟ (s , y)] = δ0(t − s)Γ(x − y)

L = generator of a Lévy process X = {Xt}t≥0 on Rd with d = 1, 2, 3

ϕ = the fundamental solution for ∂2
t −L

By solution we mean

W (t , x) =

∫
(0,t)×Rd

ϕ(t − s , y − x)F (ds dy)

though with a little care since ϕ is in general a pseudo-measure

When does this make sense (↔ the SPDE is well posed)?

When is the solution Hölder continuous?
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A harmless non-degeneracy condition

We must assume from now on that X is genuinely d-dimensional;
that is,

ψ−1(0) = 0,

where E exp(iξ · Xt) = exp(−tψ(ξ))

Lévy-Khintchine formula:

ψ(ξ) = −ia · ξ + 1
2ξ · Aξ +

∫
Rd

[
1− eiy ·ξ + i(y · ξ)1B(0,1)(y)

]
ν(dy),

where ν(F ) = expected number of jumps of X in F by time 1

If ψ(ξ) = 0 for some ξ 6= 0, then use

Reψ(ξ) = 1
2ξ · Aξ +

∫
Rd

[1− cos(y · ξ)] ν(dy),

to see that A does not have full rank AND X can only have jumps
with magnitude of form y where ξ · y ∈ (2πZ)d . Moreover, a ⊥ ξ
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On H and W

Recall that

∂tH = LH + Ḟ , H(0) = 0

∂2
tW = LW + Ḟ , W (0) = ∂tW (0+) = 0, d = 1, 2, 3

Theorem (Brzézniak-van Neerven, 2003; K-Kim, 2015)

Assume that X is genuinely d-dimensional. Then, H and/or W are
well-defined random fields if and only if∫

Rd

Γ̂(dξ)

1 + Reψ(ξ)
<∞.

2Reψ = characteristic exponent of X − X ′ [replica symmetry]
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On H and W

Assume X is genuinely d-dimensional

Theorem (K–Sanz-Solé, 2022)

H and/or W are Hölder continuous in t for every x if and only if∫
Rd

|ψ(ξ)|a Γ̂(dξ)

1 + Reψ(ξ)
<∞ for some a ∈ (0 , 1);

H and/or W are Hölder continuous in x for one – hence every – t > 0 iff∫
Rd

‖ξ‖2b Γ̂(dξ)

1 + Reψ(ξ)
<∞ for some b ∈ (0 , 1)

Fact (Bochner, 30’s): |ψ(ξ)| . 1 + ‖ξ‖2

These NASCs remain valid for nonlinear SPDEs with additive noise
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H and/or W are Hölder continuous in t for every x if and only if∫
Rd

|ψ(ξ)|a Γ̂(dξ)

1 + Reψ(ξ)
<∞ for some a ∈ (0 , 1);
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|ψ(ξ)|a Γ̂(dξ)

1 + Reψ(ξ)
<∞ for some a ∈ (0 , 1);

H and/or W are Hölder continuous in x for one – hence every – t > 0 iff∫
Rd

‖ξ‖2b Γ̂(dξ)

1 + Reψ(ξ)
<∞ for some b ∈ (0 , 1)

Fact (Bochner, 30’s): |ψ(ξ)| . 1 + ‖ξ‖2

These NASCs remain valid for nonlinear SPDEs with additive noise
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Continuity

Standard method: A Kolmogorov-type continuity condition; e.g.,

Theorem (Slutsky, 1937; Lévy, 1948; Čencov, 1956; Dudley, 1967;
Garsia-Rodemich-Rumsey, 1970; . . . )

If {Xt}t∈T is a real-valued stochastic process and T ⊂ RN is compact,
and if there exist α1, . . . , αN ∈ (0 , 1] and k >

∑N
j=1 α

−1
j such that

‖Xt − Xs‖Lk (Ω) .
N∑
j=1

|tj − sj |αj uniformly for all s, t ∈ T ,

then X is continuous a.s. In fact, with probability one,
|Xt − Xs | .

∑N
j=1 |tj − sj |αjq for every q ∈ (0 , 1− k−1

∑N
j=1 α

−1
j ).

This is optimal (Hahn-Klass, 1977; Kôno, 1978; Ibragimov, 1979)

Needs a slight adjustment since optimal αj ’s aren’t so easy to find
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Garsia-Rodemich-Rumsey, 1970; . . . )

If {Xt}t∈T is a real-valued stochastic process and T ⊂ RN is compact,
and if there exist α1, . . . , αN ∈ (0 , 1] and k >

∑N
j=1 α

−1
j such that

‖Xt − Xs‖Lk (Ω) .
N∑
j=1

|tj − sj |αj uniformly for all s, t ∈ T ,

then X is continuous a.s. In fact, with probability one,
|Xt − Xs | .

∑N
j=1 |tj − sj |αjq for every q ∈ (0 , 1− k−1

∑N
j=1 α

−1
j ).

This is optimal (Hahn-Klass, 1977; Kôno, 1978; Ibragimov, 1979)
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Garsia-Rodemich-Rumsey, 1970; . . . )

If {Xt}t∈T is a real-valued stochastic process and T ⊂ RN is compact,
and if there exist α1, . . . , αN ∈ (0 , 1] and k >

∑N
j=1 α

−1
j such that

‖Xt − Xs‖Lk (Ω) .
N∑
j=1

|tj − sj |αj uniformly for all s, t ∈ T ,

then X is continuous a.s. In fact, with probability one,
|Xt − Xs | .

∑N
j=1 |tj − sj |αjq for every q ∈ (0 , 1− k−1

∑N
j=1 α

−1
j ).

This is optimal (Hahn-Klass, 1977; Kôno, 1978; Ibragimov, 1979)
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Continuity: Part I

I will describe the slight adjustment for one-parameter processes,
since that is all that one ultimately needs

Let X = {Xt}t∈[0,1] be a real-valued stochastic process and write

g(r) = sup
s,t∈[0,1]
|s−t|≤r

‖Xt − Xs‖Lk (Ω),

and suppose g is finite everywhere.

Lemma

If
∫ 1

0 r−1−ag(r) dr <∞ for some a ∈ (0 , 1), then g(r) . ra.
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Proof

The proof is short and abelian/tauberian (fractal?):∫ 1
0 g(r) dr

r1+a <∞⇔
∑∞

n=0 enag(en) <∞⇒ limn→∞ enag(e−n) = 0

If s ∈ (e−n−1 , e−n] then

g(s)

sa
≤ e(n+1)ag(e−n) . 1.

Corollary

If ∫ 1

0
sup

s,t∈[0,1]
|s−t|≤r

‖Xt − Xs‖Lk (Ω)
dr

r1+a
<∞ for some a ∈ (1/k , 1),

then X is Hölder continuous.

Davar Khoshnevisan (Salt Lake City, Utah) Optimal regularity of SPDEs 13 / 15



Proof

The proof is short and abelian/tauberian (fractal?):∫ 1
0 g(r) dr

r1+a <∞⇔
∑∞

n=0 enag(en) <∞⇒ limn→∞ enag(e−n) = 0

If s ∈ (e−n−1 , e−n] then

g(s)

sa
≤ e(n+1)ag(e−n) . 1.

Corollary

If ∫ 1

0
sup

s,t∈[0,1]
|s−t|≤r

‖Xt − Xs‖Lk (Ω)
dr

r1+a
<∞ for some a ∈ (1/k , 1),
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Continuity: Part II

For a converse we will need the following.

Lemma

If f : (0 , 1)→ R+ is measurable and
∫ 1

0 r−1−af (r) dr =∞ for some
a ∈ (0 , 1), then lim supr→0+ r−bf (r) =∞ for every b > a.

Proof.

1 WLOG f is increasing; else replace f (r) by sups∈(0,r) f (s)
2 Reverse the previous proof:∫ 1

0

f (r)
dr

r1+a
=∞⇔

∞∑
n=0

enaf (e−na) =∞⇒ f (e−na) ≥ e−nb,

for infinitely many values of n; for otherwise,

∞∑
n=0

enaf (e−n) ≤
∞∑
n=0

en(a−b) <∞.
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Continuity: Part II

This yields the following.

Lemma

If ∫∫
(0,1)2

‖Xt − Xs‖Lk (Ω)
dt ds

|t − s|1+a
=∞

for some a ∈ (0 , 1), then lim sups→t |t − s|−b‖Xt − Xs‖Lk (Ω) > 0 if b > a.

Finally, by the Paley-Zygmund inequality (1932),

P
{
|Xt − Xs | ≥ 1

2‖Xt − Xs‖L1(Ω)

}
≥
‖Xt − Xs‖2

L1(Ω)

4‖Xt − Xs‖2
L2(Ω)

If X is Gaussian then the right-hand side = (2π)−1;
If X is Gaussian then ‖Xt − Xs‖L1(Ω) = Ck‖Xt − Xs‖Lk (Ω);
If X is Gaussian then it has good 0-1 laws (Kallianpur, 1970;
Cambanis-Rajput, 1973).
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