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1. Various (exact or asymptotic) “power-law"s in probability and statistics
—- A brief review

Data with power-law decaying statistics are observed over various complex
systems and stochastic dynamics with power-law behavior are investigated in
diverse fields of science.

There are several types of power-law statistical models. Examples are:

(i). Power-law decaying correlation structure (of a stochastic process)
P. Carpena, P. A. Bernaola-Galván, M. Gómez-Extremera, and A. V. Coronado,

Transforming Gaussian correlations. Applications to generating long-range
power-law correlated time series with arbitrary distribution, Chaos 30 (2020), no.
8, 083140.
M. Fernández-Martínez, M. A. Sánchez-Granero, M. P. Casado Belmonte, and

J. E. Trinidad Segovia, A note on power-law cross-correlated processes, Chaos
Solitons Fractals 138 (2020), 109914.
J. Lee, Generalized Bernoulli process with long-range dependence and fractional

binomial distribution, Depend. Model. 9 (2021), 1-12.
C. Ma, Student’s t vector random fields with power-law and log-law decaying

direct and cross covariances, Stoch. Anal. Appl. 31 (2012), 167-182.
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(ii). Power-law decaying spectrum (of a stochastic process)
S. C. Lim and L. P. Teo, Generalized Whittle-Matérn random field as a model

of correlated fluctuations, J . Phys A: Math. Theor. 42 (2009), 105202

(iii). Distribution or density functions have power-law tails both at zero and
at infinity
X. Gabaix, P. Gopikrishnan, V. Plerou, and H. E. Stanley, A theory of power-law
distributions in financial market fluctuations, Nature 423 (2003), 267-270.

F. Prieto and J. M. Sarabia, A generalization of the power law distribution with
nonlinear exponent, Commun. Nonlinear Sci. Numerical Simul. 42 (2017),
215-228.
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(iv). Power-law characteristic function
A (generalized) Linnik distribution is a univariate distribution with characteristic
function

ϕ(ω) = 1
(1 + α|ω|ν)κ

, ω ∈ R,

where α, ν ∈ (0, 2] and κ are positive constants. In case of κ = 1, ϕ(ω) was
proved by Ju. V. Linnik in 1953 as the characteristic function of a symmetric
distribution on R, and by A. G. Pakes (1998) for every κ > 0.

In the extreme case ν = 2, the distribution corresponds to the variance Gamma
distribution, which reduces to the Laplace (double exponential) distribution if
κ = 1.

the Laplace motion (S. Kotz, T. J. Kozubowski, and K. Podgoorski, The Laplace
Distribution and Generalizations: A Revisit with Applications to Communications,
Economics, Engineering, and Finance, Springer, 2001)
the variance Gamma Lévy process (D. B. Madan and E. Seneta, The variance
gamma (V.G.) model for share market returns, J. Business 63 (1990), 511-524)
the Linnik Lévy process (A. Kumar, A. Maheshwari, and A. Wylomanska, Linnik
Lévy process and some extensions, Physica A 529 (2019), 121539)
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2. Power-law subordinator, power-law Lévy process, and some extensions

A subordinator is a non-negative Lévy process. The law of a subordinator is
better specified by the Laplace transforms of its one-dimensional distributions.

2.1 Power-law subordinator

Theorem 1
If ν ∈ (0, 1], κ1 and κ2 are positive constants, α1 and α2 are nonnegative
constants, κ1 ≤ κ2, and α1 < α2, then there is a power-law subordinator
{Z (x), x ≥ 0} with Laplace transform

E exp(−ωZ (x)) = (1 + α1ω
ν)κ1x

(1 + α2ων)κ2x , ω ≥ 0, x ≥ 0. (1)

Furthermore, this power-law subordinator has the following stochastic
representations.
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(i) If α1 = 0, then {Z (x), x ≥ 0} can be represented as the subordination of a
positive stable subordinator with a Gamma process, i.e.,

Z (x) = Z2(Z1(x)), x ≥ 0,

where {Z1(x), x ≥ 0} is a Gamma process with Laplace transform

E exp(−ωZ1(x)) = (1 + α2ω)−κ2x , ω ≥ 0, x ≥ 0,

{Z2(x), x ≥ 0} is a positive stable subordinator with Laplace transform

E exp(−ωZ2(x)) = exp (−ωνx) , ω ≥ 0, x ≥ 0,

and {Z1(x), x ≥ 0} and {Z2(x), x ≥ 0} are independent.

Special case: α1 = 0 and ν = 1
{Z (x), x ≥ 0} is a Gamma process.
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(ii) When α1 > 0 and κ1 = κ2, {Z (x), x ≥ 0} enjoys a compounded Poisson
process representation

Z (x) =
Λ(x)∑
n=1

WnY
1
νn , x ≥ 0,

where {Λ(x), x ≥ 0} is a Poisson process with mean

EΛ(x) = κ1(lnα2 − lnα1)x ,

{Wn, n ∈ N} is a sequence of independent and identically distributed positive
stable random variables with Laplace transform

E exp(−ωWn) = exp (−ων) , ω ≥ 0, n ∈ N,

{Yn, n ∈ N} is a sequence of independent and identically distributed random
variables with density function

fYn (y) =
exp

(
− y
α2

)
− exp

(
− y
α1

)
(lnα2 − lnα1)y I(0,∞)(y), (2)

and {Λ(x), x ≥ 0}, {Wn, n ∈ N}, and {Yn, n ∈ N} are independent.



(iii) In case of α1 > 0 and κ1 < κ2, {Z (x), x ≥ 0} admits a representation

Z (x) = Z2(Z1(x)) + Z3(x), x ≥ 0,

where {Z1(x), x ≥ 0} is a Gamma process with Laplace transform

E exp(−ωZ1(x)) = (1 + α2ω)−(κ2−κ1)x , ω ≥ 0, x ≥ 0,

{Z2(x), x ≥ 0} is a positive stable process with Laplace transform

E exp(−ωZ2(x)) = exp (−ωνx) , ω ≥ 0, x ≥ 0,

{Z3(x), x ≥ 0} is the power-law subordinator in Part (ii),
and {Zk(x), x ≥ 0} (k = 1, 2, 3) are independent.

Simply speaking,
Part (iii) = Part (i) +Part (ii) an independent summation
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2.2 Power-law Lévy process

Theorem 2
Suppose that ν ∈ (0, 1], κ1 and κ2 are positive constants, α1 and α2 are
nonnegative constants, κ1 ≤ κ2, and α1 < α2.

If {Z2(x), x ≥ 0} is Brownian motion with zero mean and covariance function
2min(x1, x2), x1 ≥ 0, x2 ≥ 0,

and is independent with a power-law subordinator {Z1(x), x ≥ 0} whose
Laplace transform is identical to (1),

then
Z (x) = Z2(Z1(x)), x ≥ 0,

is a power-law Lévy process with characteristic function

E exp(ı ωZ (x)) =
(
1 + α1|ω|2ν

)κ1x

(1 + α2|ω|2ν)κ2x , ω ∈ R, x ≥ 0, (3)

where ı denotes the imaginary unit.

Moreover, {Z (x), x ≥ 0} has the following stochastic representations.
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stable process with a Gamma process, and, more precisely,

Z (x) = Z2(Z1(x)), x ≥ 0, (4)

where {Z1(x), x ≥ 0} is a Gamma process with Laplace transform (1 + α2ω)−κ2x ,
{Z2(x), x ≥ 0} is a stable process with characteristic function exp

(
−|ω|2νx

)
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{Z1(x), x ≥ 0} and {Z2(x), x ≥ 0} are independent.

In this case {Z (x), x ≥ 0} is called a Linnik Lévy process
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2.3 Some extensions

The pair of power-law Lévy processes in Theorems 1 and 2 have not only their
own roles but also their important contributions to be used as the building blocks
to construct other pairs of Lévy processes on [0,∞).
For instance, suppose that {ak , k ∈ N} is a summable sequence of nonnegative

numbers, and that {Yk(x), x ≥ 0, k ∈ N} is a sequence of independent copies of
power-law subordinators with Laplace transform (1). Then

Z (x) =
∞∑

k=1
akYk(x), x ≥ 0,

is a subordinator with Laplace transform

E exp (−ωZ (x)) =
∞∏

k=1

(1 + α1aνkων)κ1x

(1 + α2aνkων)κ2x , ω ≥ 0, x ≥ 0.

Similarly, a Lévy process is obtained with characteristic function

E exp (ı ωZ (x)) =
∞∏

k=1

(
1 + α1|ak |2ν |ω|2ν

)κ1x

(1 + α2|ak |2ν |ω|2ν)κ2x , ω ∈ R, x ≥ 0.



Example 1

Let β be a nonnegative constant, and Z (x) =
∞∑

k=1

Yk (x)(
π2(k− 1

2 )2+β
) 1

ν
, x ≥ 0.

If {Yk(x), x ≥ 0, k ∈ N} is an independent sequence of power-law subordinators
with Laplace transform (1), then {Z (x), x ≥ 0} is a hyperbolic cosine ratio
subordinator with Laplace transform

E exp (−ωZ (x)) =
(

cosh(
√
β)
)(κ2−κ1)x

(
cosh

(
(α1ω

ν + β)
1
2
))κ1x

(
cosh

(
(α2ων + β)

1
2
))κ2x , ω ≥ 0, x ≥ 0.

Alternatively, a hyperbolic cosine ratio Lévy process with characteristic function

E exp (ıωZ (x)) =
(

cosh(
√
β)
)(κ2−κ1)x

(
cosh

((
α1|ω|2ν + β

) 1
2
))κ1x

(
cosh

(
(α2|ω|2ν + β)

1
2
))κ2x , ω ∈ R, x ≥ 0,

is obtained if {Yk(x), x ≥ 0, k ∈ N} is an independent sequence of power-law
Lévy processes with characteristic function (3).



Example 2
Let β be a nonnegative constant. If {Yk(x), x ≥ 0, k ∈ N} is an independent
sequence of power-law subordinators with Laplace transform (1), where
κ1 = κ2 = κ, then

Z (x) =
∞∑

k=1

Yk(x)
(π2k2 + β)

1
ν

, x ≥ 0,

is a hyperbolic sine ratio subordinator with Laplace transform

E exp (−ωZ (x)) =

 (α2ω
ν + β)

1
2 sinh

(
(α1ω

ν + β)
1
2
)

(α1ων + β)
1
2 sinh

(
(α2ων + β)

1
2
)
κx

, ω ≥ 0, x ≥ 0.

Alternatively, a hyperbolic sine ratio Lévy process with characteristic function

E exp (ıωZ (x)) =

(α2|ω|2ν + β
) 1

2 sinh
((
α1|ω|2ν + β

) 1
2
)

(α1|ω|2ν + β)
1
2 sinh

(
(α2|ω|2ν + β)

1
2
)
κx

, ω ∈ R, x ≥ 0,

results from assuming that {Yk(x), x ≥ 0, k ∈ N} is an independent sequence of
power-law Lévy processes with characteristic function (3), where κ1 = κ2 = κ.



Example 3
Let

Z (x) =
(
4π4)− 1

ν

∞∑
k=1
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k − 1

2
) 4

ν

, x ≥ 0.
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α

1
4
1 ω

ν
4
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+ cos

(
α

1
4
1 ω

ν
4

))κ1x

(
cosh

(
α

1
4
2 ω

ν
4

)
+ cos

(
α

1
4
2 ω

ν
4

))κ2x , ω ≥ 0, x ≥ 0.

Alternatively, a Lévy process with characteristic function

E exp (ıωZ (x)) = 2(κ2−κ1)x
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(
α

1
4
1 |ω|

ν
2

)
+ cos

(
α

1
4
1 |ω|

ν
2

))κ1x

(
cosh

(
α

1
4
2 |ω|

ν
2

)
+ cos

(
α

1
4
2 |ω|

ν
2
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is obtained if {Yk(x), x ≥ 0, k ∈ N} is an independent sequence of power-law
Lévy processes with characteristic function (3).



Example 4
Let κ1 = κ2 = κ and

Z (x) =
(
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with Laplace transform (1), then {Z (x), x ≥ 0} is a subordinator with Laplace
transform
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α

1
4
1 ω

ν
4
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− cos

(
α

1
4
1 ω

ν
4
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cosh
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1
4
2 ω

ν
4
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1
4
2 ω
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4
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Alternatively, a Lévy process with characteristic function
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α

1
4
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ν
2
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α

1
4
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ν
2
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1
4
2 |ω|

ν
2
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α

1
4
2 |ω|

ν
2
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results from the assumption that {Yk(x), x ≥ 0, k ∈ N} is an independent
sequence of power-law Lévy processes with characteristic function (3).



3. Power-law vector random field and some extensions

3.1 Power-law vector random field
An m-variate random field {Z(x), x ∈ D} is said to be a power-law random field,
if it takes the form

Z(x) =
√
2UY(x) + µ(x), x ∈ D, (5)

where U is a nonnegative random variable with with Laplace transform

E exp(−ωU) = (1 + α1ω
ν)κ1

(1 + α2ων)κ2 , ω ≥ 0, (6)

{Y(x), x ∈ D} is an m-variate Gaussian random field
with mean zero and covariance matrix function C(x1, x2),

U and {Y (x), x ∈ D} are independent,
µ(x) is a (non-random) function on D,
ν ∈ (0, 1],
0 < κ1 ≤ κ2,
0 ≤ α1 < α2.



Finite-dimensional characteristic functions

The power-law vector random field enjoys exact power-law finite-dimensional
characteristic functions, and it is infinitely divisible.

Theorem 3
If {Z(x), x ∈ D} is an m-variate power-law random field of the form (5), then, for
every n ∈ N and any distinct xk ∈ D (k = 1, . . . , n), an mn-variate random vector
(Z ′(x1), . . . ,Z ′(xn))′ possesses the characteristic function

E exp
(
ı

n∑
k=1

ω′kZ(xk)
)

= exp
(
ı

n∑
k=1

ω′kµ(xk)
) (1+α1

(
n∑

i=1

n∑
j=1

ω′
i C(xi ,xj )ωj

)ν)κ1

(
1+α2

(
n∑

i=1

n∑
j=1

ω′
i C(xi ,xj )ωj

)ν)κ2 ,

ω1, . . . ,ωn ∈ Rm.
(7)

Special cases
α1 = 0: a Linnik vector random field,
α1 = 1 and ν = 1: a variance Gamma vector random field,
α1 = 0, κ2 = 1 and ν = 1: a Laplace (or double exponential) vector random field.
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every n ∈ N and any distinct xk ∈ D (k = 1, . . . , n), an mn-variate random vector
(Z ′(x1), . . . ,Z ′(xn))′ possesses the characteristic function

E exp
(
ı

n∑
k=1

ω′kZ(xk)
)

= exp
(
ı

n∑
k=1

ω′kµ(xk)
) (1+α1

(
n∑

i=1

n∑
j=1

ω′
i C(xi ,xj )ωj

)ν)κ1

(
1+α2

(
n∑

i=1

n∑
j=1

ω′
i C(xi ,xj )ωj

)ν)κ2 ,

ω1, . . . ,ωn ∈ Rm.
(7)

Special cases
α1 = 0: a Linnik vector random field,
α1 = 1 and ν = 1: a variance Gamma vector random field,
α1 = 0, κ2 = 1 and ν = 1: a Laplace (or double exponential) vector random field.



3.2 Some extensions
It may be employed as the building block to construct other random fields.

Suppose that {ak , k ∈ N} is a summable sequence of real numbers, and that
{Zk(x), x ∈ D, k ∈ N} is a sequence of independent copies of m-variate
power-law random fields with finite-dimensional characteristic functions (7), where
µ(x) ≡ 0. Define an m-variate random field

Z(x) =
∞∑

k=1
akZk(x), x ∈ D. (8)

It is an m-variate elliptically contoured random field with finite-dimensional
characteristic functions

E exp
(
ı

n∑
j=1
ω′jZ(xj)

)
=

∞∏
k=1

(
1 + α1|ak |2ν

(
n∑

i=1

n∑
j=1
ω′iC(xi , xj)ωj

)ν)κ1

(
1 + α2|ak |2ν

(
n∑

i=1

n∑
j=1
ω′iC(xi , xj)ωj

)ν)κ2 ,

ωk ∈ Rm, xk ∈ D, k ∈ {1, . . . , n}, n ∈ N.



Example 1

In (8) taking ak =
(
π2 (k − 1

2
)2 + β

)− 1
2ν (k ∈ N) yields an m-variate random

field with finite-dimensional characteristic functions

E exp
(
ı

n∑
j=1
ω′jZ(xj)

)

=

(
cosh

(√
β
))κ2−κ1

cosh

(α1

(
n∑

i=1

n∑
j=1
ω′iC(xi , xj)ωj

)ν
+ β

) 1
2


κ1

cosh

(α2

(
n∑

i=1

n∑
j=1
ω′iC(xi , xj)ωj

)ν
+ β

) 1
2


κ2 ,

ωk ∈ Rm, xk ∈ D, k ∈ {1, . . . , n}, n ∈ N.

In particular, it reduces to an m-variate hyperbolic cosine ratio random field if
κ1 = κ2, and an m-variate hyperbolic secant random field if α1 = 0.



Example 2

For α1 = 0 and α2 = α2, if ak = (πk)−
1
ν , k ∈ N, then {Z(x), x ∈ D} is an

m-variate (generalized) logistic random field with finite-dimensional characteristic
functions

E exp
(
ı

n∑
j=1
ω′jZ(xj)

)
=


α

(
n∑

i=1

n∑
j=1
ω′iC(xi , xj)ωj

) ν
2

sinh

α( n∑
i=1

n∑
j=1
ω′iC(xi , xj)ωj

) ν
2




κ

,

ωk ∈ Rm, xk ∈ D, k ∈ {1, . . . , n}, n ∈ N.



Example 3

Let α1 = 0 and κ1 = κ2 = κ. Given ak =
(
π2k2 + β

)− 1
2ν , k ∈ N, (8) is an

m-variate random field with finite-dimensional characteristic functions

E exp

(
ı

n∑
j=1

ω
′
j Z(xj )

)

=



(
α2

(
n∑

i=1

n∑
j=1

ω′
i C(xi , xj )ωj

)ν

+ β

) 1
2

sinh

((
α1

(
n∑

i=1

n∑
j=1

ω′
i C(xi , xj )ωj

)ν

+ β

) 1
2
)

(
α1

(
n∑

i=1

n∑
j=1

ω′
i C(xi , xj )ωj

)ν

+ β

) 1
2

sinh

((
α2

(
n∑

i=1

n∑
j=1

ω′
i C(xi , xj )ωj

)ν

+ β

) 1
2
)


κ

,

ωk ∈ Rm
, xk ∈ D, k ∈ {1, . . . , n}, n ∈ N.

It tends to an m-variate hyperbolic sine ratio random field, as β → 0+ and ν → 1.



Example 4

For κ1 = κ2 = κ and βk = α
1
4
k > 0 (k = 1, 2), in (8) taking ak =

(
2π2k2)− 1

ν

(k ∈ N) yields an m-variate random field with finite-dimensional characteristic
functions

E exp

(
ı

n∑
j=1

ω′
jZ(xj)

)

=


cosh

(
β1

(
n∑

i=1

n∑
j=1
ω′

iC(xi , xj)ωj

) ν
4
)
− cos

(
β1

(
n∑

i=1

n∑
j=1
ω′

iC(xi , xj)ωj

) ν
4
)

cosh

(
β2

(
n∑

i=1

n∑
j=1
ω′

iC(xi , xj)ωj

) ν
4
)
− cos

(
β2

(
n∑

i=1

n∑
j=1
ω′

iC(xi , xj)ωj

) ν
4
)


κ

,

ωk ∈ Rm, xk ∈ D, k ∈ {1, . . . , n}, n ∈ N.



Example 5

For κ1 = κ2 = κ and βk = α
1
4
k (k = 1, 2), letting ak =

(
2π2 (k − 1

2
))− 1

ν (k ∈ N)
in (8) results in an m-variate random field with finite-dimensional characteristic
functions

E exp

(
ı

n∑
j=1

ω′
jZ(xj)

)

=


cosh

(
β1

(
n∑

i=1

n∑
j=1
ω′

iC(xi , xj)ωj

) ν
4
)

+ cos

(
β1

(
n∑

i=1

n∑
j=1
ω′

iC(xi , xj)ωj

) ν
4
)

cosh

(
β2

(
n∑

i=1

n∑
j=1
ω′

iC(xi , xj)ωj

) ν
4
)

+ cos

(
β2

(
n∑

i=1

n∑
j=1
ω′

iC(xi , xj)ωj

) ν
4
)


κ

,

ωk ∈ Rm, xk ∈ D, k ∈ {1, . . . , n}, n ∈ N.


	 
	 
	 
	 

