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Ship motions

3 rotational (roll, pitch, yaw) and 3 linear (surge, sway, heave) motions.
The focus here will typically be on roll, pitch, heave motions.

What do motions depend on? Ship geometry and loading, operational
parameters (heading, speed) and surrounding sea (spectrum involving
significant wave height, modal period, and so on). Computer code used as
well. Randomness is due to random waves.2

2Waves are typically generated from a spatio-temporal Gaussian (or thought so) field.
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Ship motions

The time series of roll (left) and pitch (right) obtained by the SimpleCode
for 10mins at 0.5s sampling rate. The ship geometry is the ONR
tumblehome top (THT). The heading is at 45◦, the speed is 6 knots, the
waves are modeled using Bretschneider spectrum in open ocean (with the
significant height of 9m, the mean zero-crossing period of 10.65s, etc).
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Extremes

Rare (extreme) events: These include:

A. Extreme ship motion (e.g. roll exceeding a certain large angle);

B. Capsizing of a ship (through pure loss of stability);

C. Surfriding and broaching-to;

D. Extreme loads (due to waves and/or slamming)

Basic problems: These include:

Estimate the (small) probabilities of these rare events from the data
obtained through a ship motion simulator (SimpleCode, LAMP, etc);

Understand distribution tails of the “metrics” associated with these
rare events, through reduced-order models.

This is important in e.g. ship design and concerning ship stability. The talk
is also about the interplay of Statistics, Stochastic Dynamics, Multifidelity
Methods, Naval Architecture in addressing/understanding these problems.
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Estimating probabilities of rare events

Direct estimation of probabilities of rare events from long records of ship
motion should be avoided for several reasons: events are rarely observed,
many conditions to consider, a desire to have methodology that can be
applied to other data (e.g. from a basin) where long records are not
available. (Analytic calculation is not a possibility either. Other
approaches though exist.)

Instead of direct estimation, estimation of the probability of a rare event is
first recast as the problem of estimation of the exceedance probability

P(Y > y∗),

where Y is some variable (“metric”) related to the rare event of interest
and y∗ is some large critical value, given independent observations
Y1, . . . ,Yn of Y , with no values of Yi typically larger than y∗. Then,
“standard” methods of Extreme Value Theory in Statistics are used to
extrapolate data distribution into the tail to estimate the exceedance
probability. (This is also about a distribution tail.)
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Exceedance probability for extreme motion

Extreme motion: For the probability of extreme motion as e.g. roll
exceeding a certain large angle y∗, Y is taken as a suitable envelope peak
of a ship motion.
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Statistical solution: peaks-over-threshold (PoT)

Peaks-over-threshold (PoT) approach from Extreme Value Theory:
The idea is to fit a generalized Pareto distribution (GPD) to the data
above an intermediate threshold and use it for extrapolation:

P(Y > y∗) = P(Y > u)P(Y > y∗|Y > u) ≈ P(Y > u)F u,ξ,σ(y∗),

where F u,ξ,σ(y) is the complementary CDF of the GPD given by

F u,ξ,σ(y) =


(

1 + ξ(y−u)
σ

)−1/ξ

, u < y , if ξ > 0,

e−
y−u
σ , u < y , if ξ = 0,(

1 + ξ(y−u)
σ

)−1/ξ

, u < y < u + (−σξ ), if ξ < 0,

where ξ, σ and u are the shape, scale and threshold parameters. Some
issues: (i) estimating GPD parameters, (ii) setting a threshold u, (iii)
constructing a confidence interval for exceedance probability, etc.
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Application to peaks/extreme motion

THT hull, Heading 45◦, etc. Roll motion, target 60◦. Left: The
probability (rate) estimates with confidence intervals for 100 runs of
100hrs each. Right: Same but using different confidence intervals.
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Such plots are used for validation of the proposed methods. The average
value of shape parameter estimates is 0.19 (with standard error of 0.13).
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Statistical solution: PoT

“Annoying” features: The PoT approach generally works but e.g. (i)
automatic threshold u selection methods are available but they are not
failproof, (ii) negative shape parameter estimates can lead to large upper
confidence intervals: e.g., the Weibull distribution P(Y > y) = e−y

2
with

sample size N = 2, 000:

Implicit assumption in PoT: Data need to be on the “correct”
distribution tail. What about tails with with changing character? Any
real-world examples where this not the case and the PoT fails/struggles?
(In my limited experience, this is the rule rather than the exception.)
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Piecewise linear (PWL) random oscillator

PWL oscillator: As a model for ship roll, the system satisfies the equation

Ẍ + 2δẊ + r(X ) = sẆ (t)

with white noise excitation Ẇ (t) and restoring force3

r(x) = ω2
0x1{|x |≤xm} − (kw2

0 x ± w2
0 xm(k + 1))1{|x |>xm}.

Notes: |x | ≤ xm: linear regime; |x | > xm: non-linear regime; ω0: natural
frequency; xm: “knuckle” point; xv : point of vanishing stability.

3For linear restoring, the system is Gaussian.
Vladas Pipiras (UNC) Extremes and ship motions August 3, 2021 10 / 24



PWL random oscillator

PDF of response/derivative: In the statistically steady state, it is given
by

f (x , ẋ) = Ce−
4δ
s2 ( 1

2
ẋ2+V (x))

with normalizing constant C and potential V (x) =
∫ x

0 r(y)dy .

“Capsizing:” Condition on the system to be inside the separatrix, that is,
for |ẋ | < xs(x) with ẋs(x) =

√
2(V (xv )− V (x)).

PDF of (conditioned) response: fs(x) ∝
∫ ẋs(x)
−ẋs(x) f (x , ẋ)dẋ for |x | < xv .
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PWL random oscillator: PDF tail regimes/Cases of interest

PDF of (conditioned) response:

3 tail regimes:

(I) Gaussian core: x ∈ [0, xm]
(II) Heavy tail (possibly power-law): x ∈ [xm, xf ]

(III) Light (bounded) tail: x ∈ [xf , xv ]

Cases:

Good: Data in (I)-(II), target in (II)
Bad 1: Data in (I), no/little data in (II), target in (II)
Bad 2: Data in (I)-(II), target in (III)
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Good case: Data in (I)-(II), target in (II)

Setting: Target x∗ = xf , P(X > xf ) = 7.22× 10−5.
Sample N = 3, 000, P(X > xm) = 0.012, N · P(X > xm) = 36.

Note: Several cases with small estimated probability: Automatic threshold
selection methods had difficulties in finding the “right” threshold.
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Bad case 1: Data in (I), no/little data in (II), target in (II)

Setting: Target x∗ = xf , P(X > xf ) = 7.22× 10−5.
Sample N = 500, P(X > xm) = 0.012, N · P(X > xm) = 6.

Note: A number of cases with small estimated probability: (a) when no
confidence interval is computed, the estimated shape parameter is typically
smaller than −0.5, (b) if confidence interval is computed, it is very large
on its upper side.
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Data example of extreme ship motions

PoT analysis on envelope peaks from roll motion: THT geometry, 9m
significant wave height, 15sec modal period, 90 degree heading, etc. Left:
100 hour datasets. Right: 10 hour datasets.

Notes: This is along the same lines as bad case 1. Conclusion: Need to
understand the underlying physics and e.g. adjust for sample sizes or use
other approaches (such as fitting the exponential tail or the heavy tail).
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PoT analysis for heavy-tailed distributions

If heavy (power-law) tail is expected as for peaks/extreme motion, a
natural possibility is to use PoT with Pareto or heavy tail:

P(Y > y) ≈ Cy−1/ξ, for large y ,

where ξ > 0 is a parameter and C is a constant (possibly replaced by a
function which varies “slowly”). There are estimators which ensure ξ > 0.
Comparing POTs with heavy tail and GPD for peaks data:
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Ship motion codes: LAMP and SC

Large Amplitude Motion Program (LAMP): The higher-fidelity LAMP
is based on a 3-dimensional potential flow panel method integrating
pressures over the submerged hull and incorporating a direct calculation of
Froude-Krylov and hydrostatic (FKHS), radiation, diffraction and other
forces.

LAMP-2 3-D body-nonlinear method
LAMP-1 body-linearized 3-D method
LAMP-0 “Hydrostatics only” formulation

Simple Code (SC) and reduced-order ODE models: The lower-fidelity
but computationally more efficient SC and similar ODE models may
assume a particular, e.g. linear and separable, form of FKHS forces, and
furthermore capture radiation forces through (constant) added mass and
damping coefficients. Currently, SC does not incorporate diffraction forces.
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LAMP, SC and reduced-order models

Focus on the case of head seas, with the resulting heave ζg and pitch θ.4

LAMP: The equations of motion can be expressed as{
mζ̈g = F3,fkhs + F3,hd

IY θ̈ = F5,fkhs + F5,hd

with Fi,hd = Fi,rad + Fi,dif .

SC, etc: Assuming −Fi ,rad ' Ai3ζ̈g + Ai5θ̈ + Bi3ζ̇g + Bi5θ̇, the SC
program solves{

(m + A33)ζ̈g + A35θ̈ + B33ζ̇g + B35θ̇ + F3(ζg , θ, t) = 0

(IY + A55)θ̈ + A53ζ̈g + B53ζ̇g + B55θ̇ + F5(ζg , θ, t) = 0.

An assumption of small motions leads to the separation of restoring and
excitation in FKHS forces, for example, as{

(m + A33)ζ̈g + A35θ̈ + B33ζ̇g + B35θ̇ + C33ζg + C35θ + F3k(t) = 0

(IY + A55)θ̈ + A53ζ̈g + B53ζ̇g + B55θ̇ + C53ζg + C55θ + F5k(t) = 0.

Calibration is another problem of interest.
4E.g. the elastic beam equation M∂2w/∂t2 + EI∂4w/∂x4 = q(t, x) is of interest for

slamming loads.
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LAMP and SC

Setting: ONR topsides flared hull geometry; 180◦ heading; Sea state 8;
etc.

Basic question: Can SC data help answer (e.g. extreme value) questions
about LAMP?

Vladas Pipiras (UNC) Extremes and ship motions August 3, 2021 19 / 24



MF estimation for extremes: Extrapolation

Extrapolation framework: If parametric distributions (e.g. Weibull,
Gumbel, Gaussian, etc.) are used for extrapolation, we have a framework
when under suitable conditions, more lower-fidelity data (e.g. SC) can help
in estimation of extremal quantities of high-fidelity model (e.g. LAMP).
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MFMC estimation: non-rare problem

Setting: Have (independent) samples (X
(1)
1 ,X

(2)
1 ), . . . , (X

(1)
n1 ,X

(2)
n1 ) from

(X (1),X (2)), and additional samples X
(2)
n1+1, . . . ,X

(2)
n2 for some n2 > n1.

MF estimator: To estimate the unknown mean EX (1), set

µ̂mf = X
(1)
n1

+ α(X
(2)
n2
− X

(2)
n1

) = αX
(2)
n2

+ (X
(1)
n1
− αX (2)

n1
),

where α ∈ R and X n = 1
n

∑n
i=1 Xi .

Baseline estimator: µ̂bl = X
(1)
n1

.

Punchline: If X (1) and X (2) are correlated enough, then

Var(µ̂mf ) < Var(µ̂bl),

so that the resulting confidence intervals are smaller for MF estimator.
Naturally, α = argmina Var(µ̂mf ).
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MF estimation for extremes: Selective sampling

Sampling framework: LAMP could be run only for selective SC records,
for example, with largest record maxima/minima among many records.

20 top and 20 bottom SC record maxima are from the total of 2,000 SC
records, but many more could easily be considered.
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MF estimation for extremes: Selective sampling

Importance sampling: Illustration with 300 points of bivariate standard
Gaussian for SC, LAMP and correlation ρ = 0.8. SC records selected
uniformly over the value range and kernel density estimation with suitable
weights for LAMP data.

Notes: No such benefit when e.g. ρ = 0. Other methods based on GPR,
multi-armed bandits are also being investigated.
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