Convergence of Densities of Spatial Averages for Stochastic Heat Equation

Gaussian Random Fields, Fractals, SPDEs, and Extremes
University of Alabama in Huntsville

Şefika Kuzgun
August 2, 2021

Work in progress, joint with David Nualart
Table of contents

1. Stochastic Heat Equation with Flat Initial Condition

2. Parabolic Anderson Model with Delta Initial Condition

3. References
Stochastic Heat Equation with Flat Initial Condition
Stochastic Heat Equation

\[
\frac{\partial u}{\partial t} = \frac{1}{2} \frac{\partial^2 u}{\partial x^2} + \sigma(u) \dot{W}, \quad x \in \mathbb{R}, \ t > 0,
\]

(1.1)

- \(u(0, x) = u_0(x) = 1 \)
- \(\dot{W} \) is space-time white noise
- \(\sigma \) nonrandom, Lipschitz
Stochastic Heat Equation

\[
\frac{\partial u}{\partial t} = \frac{1}{2} \frac{\partial^2 u}{\partial x^2} + \sigma(u) \dot{W}, \quad x \in \mathbb{R}, \ t > 0, \tag{1.1}
\]

- \(u(0, x) = u_0(x) = 1 \)
- \(\dot{W} \) is space-time white noise
- \(\sigma \) nonrandom, Lipschitz

Proposition ([Walsh, 1986])

There exists a unique mild solution \(u = \{u(t, x) : (t, x) \in \mathbb{R}_+ \times \mathbb{R}\} \) such that

\[
\sup_{(t,x) \in [0,T] \times \mathbb{R}} \mathbb{E} [\left| u(t, x) \right|^p] = C_{T,p} \tag{1.2}
\]
Spatial Averages

Fix $t > 0$. The process $x \rightarrow u(t, x)$ is stationary.
Spatial Averages

Fix $t > 0$. The process $x \rightarrow u(t, x)$ is stationary. Consider

$$F_{R, t} := \frac{1}{\sigma_{R, t}} \left(\int_{-R}^{R} u(t, x) \, dx - 2R \right)$$
Spatial Averages

Fix $t > 0$. The process $x \rightarrow u(t, x)$ is stationary. Consider

$$F_{R,t} := \frac{1}{\sigma_{R,t}} \left(\int_{-R}^{R} u(t, x) \, dx - 2R \right)$$

where

$$\sigma_{R,t}^2 := \text{Var} \left(\int_{-R}^{R} u(t, x) \, dx \right)$$
Spatial Averages

Fix $t > 0$. The process $x \rightarrow u(t, x)$ is stationary. Consider

$$F_{R,t} := \frac{1}{\sigma_{R,t}} \left(\int_{-R}^{R} u(t, x)dx - 2R \right)$$

where

$$\sigma_{R,t}^2 := \text{Var} \left(\int_{-R}^{R} u(t, x)dx \right) \sim R, \quad [\text{Huang et al., 2020}]$$
Spatial Averages

Fix $t > 0$. The process $x \rightarrow u(t, x)$ is stationary. Consider

$$F_{R,t} := \frac{1}{\sigma_{R,t}} \left(\int_{-R}^{R} u(t, x) dx - 2R \right)$$

where

$$\sigma_{R,t}^2 := \text{Var} \left(\int_{-R}^{R} u(t, x) dx \right) \sim R, \quad [\text{Huang et al., 2020}]$$

Theorem ([Huang et al., 2020])

$$d_{TV}(F_{R,t}, N) \leq \frac{C_t}{\sqrt{R}}. \quad (1.3)$$
Question

What about convergence in densities?
Theorem ([Caballero et al., 1998, Hu et al., 2014])

Assume that

- $v \in \mathbb{D}^{1,6}(\Omega; \mathcal{H})$
- $F = \delta(v) \in \mathbb{D}^{2,6}$ with $\mathbb{E}[F] = 0$, $\mathbb{E}[F^2] = 1$.
- $(D_vF)^{-1} \in L^4(\Omega)$

Then,

$$\sup_{x \in \mathbb{R}} |f_F(x) - \phi(x)| \leq \left(\|F\|_4 \|(D_vF)^{-1}\|_4 + 2 \right) \|1 - D_vF\|_2$$

$$+ \|(D_vF)^{-1}\|_4^2 \|D_v(D_vF)\|_2.$$ \hspace{1cm} (1.4)
Theorem (K. & Nualart (2021+))

Assume

- **H1**: $\sigma : \mathbb{R} \to \mathbb{R} \in C^2$ with σ' bounded and $|\sigma''(x)| \leq C(1 + |x|^m)$, for some $m > 0$.
- **H2**: For some $q > 10$, $\mathbb{E}\left[|\sigma(u(t,0))|^{-q}\right] < \infty$.

Then,

$$\sup_{x \in \mathbb{R}} |f_{F_{R,t}}(x) - \phi(x)| \leq \frac{C_t}{\sqrt{R}}.$$
Theorem (K. & Nualart (2021+))

Assume

- **H1**: $\sigma : \mathbb{R} \to \mathbb{R} \in C^2$ with σ' bounded and $|\sigma''(x)| \leq C(1 + |x|^m)$, for some $m > 0$.
- **H2**: For some $q > 10$, $E \left[|\sigma(u(t,0))|^{-q} \right] < \infty$.

Then,

$$\sup_{x \in \mathbb{R}} |f_{F_{R,t}}(x) - \phi(x)| \leq \frac{C_t}{\sqrt{R}}.$$

Remark

H2 holds if σ is bounded away from zero or if $|\sigma(x)| \leq \Lambda |x|$ [Chen et al., 2016].
Comments on the Proof

For \(t \in [0, T] \) and \(r < s < t \)

\[
\| D_{s,y}u(t, x) \|_p \leq C_{T,p}p_{t-s}(x - y)
\]
Comments on the Proof

For $t \in [0, T]$ and $r < s < t$

- \[\|D_{s,y}u(t, x)\|_p \leq C_{T,p}p_{t-s}(x - y) \]

- [Chen et al., 2020a] If $\sigma(x) = x$ then
 \[\|D_{r,z}D_{s,y}u(t, x)\|_p \leq C_{T,p}p_{t-s}(x - y)p_{s-r}(y - z) \]
Comments on the Proof

For \(t \in [0, T] \) and \(r < s < t \)

- \[\| D_{s,y} u(t, x) \|_p \leq C_{T,p} p_{t-s}(x - y) \]

- [Chen et al., 2020a] If \(\sigma(x) = x \) then
 \[\| D_{r,z} D_{s,y} u(t, x) \|_p \leq C_{T,p} p_{t-s}(x - y) p_{s-r}(y - z) \]

- Under \(H1 \):
 \[\| D_{r,z} D_{s,y} u(t, x) \|_p \leq C_{T,p} \Phi_{r,z,s,y}(t, x) \]
 where
 \[\Phi_{r,z,s,y}(t, x) := p_{t-s}(x - y) \times \left(p_{s-r}(y - z) + \frac{p_{t-r}(z - y) + p_{t-r}(z - x) + 1_{|y-x|>|z-y|}}{(s-r)^{1/4}} \right) \]
Comments on the Proof Continued

- Under **H2**: there exists $R_0 > 0$ such that

$$
\sup_{R \geq R_0} E \left[\left| D_{v_R,t} F_{R,t} \right|^{-p} \right] < \infty.
$$

(1.5)
Parabolic Anderson Model with Delta Initial Condition
Parabolic Anderson Model

\[
\frac{\partial u}{\partial t} = \frac{1}{2} \frac{\partial^2 u}{\partial x^2} + u \dot{W}, \quad x \in \mathbb{R}, \ t > 0, \tag{2.1}
\]

- \(u(0, x) = u_0(x) = \delta_0 \)
- \(\dot{W} \) is space-time white noise
Parabolic Anderson Model

\[\frac{\partial u}{\partial t} = \frac{1}{2} \frac{\partial^2 u}{\partial x^2} + u \dot{W}, \quad x \in \mathbb{R}, \ t > 0, \] (2.1)

- \(u(0, x) = u_0(x) = \delta_0 \)
- \(\dot{W} \) is space-time white noise

Proposition ([Chen and Dalang, 2015])

There exists a unique mild solution \(u = \{u(t, x) : (t, x) \in \mathbb{R}_+ \times \mathbb{R}\} \) such that

\[\sup_{t \in [0, T]} \mathbb{E} [|u(t, x)|^p] \leq C_{T,p} p_t(x). \] (2.2)
Spatial Averages

Fix $t > 0$. The process $x \rightarrow U(t, x) := u(t, x)/p_t(x)$ is stationary [Amir et al., 2011].
Spatial Averages

Fix $t > 0$. The process $x \rightarrow U(t, x) := u(t, x)/p_t(x)$ is stationary [Amir et al., 2011]. Consider

$$G_{R,t} := \frac{1}{\Sigma_{R,t}} \left(\int_{-R}^{R} U(t, x)dx - 2R \right)$$
Spatial Averages

Fix \(t > 0 \). The process \(x \to U(t, x) := u(t, x)/p_t(x) \) is stationary [Amir et al., 2011]. Consider

\[
G_{R,t} := \frac{1}{\Sigma_{R,t}} \left(\int_{-R}^{R} U(t, x) \, dx - 2R \right)
\]

where

\[
\Sigma_{R,t}^2 := \text{Var} \left(\int_{-R}^{R} U(t, x) \, dx \right)
\]
Spatial Averages

Fix \(t > 0 \). The process \(x \to U(t, x) := u(t, x)/p_t(x) \) is stationary [Amir et al., 2011]. Consider

\[
G_{R, t} := \frac{1}{\Sigma_{R, t}} \left(\int_{-R}^{R} U(t, x) dx - 2R \right)
\]

where

\[
\Sigma_{R, t}^2 := \text{Var} \left(\int_{-R}^{R} U(t, x) dx \right) \sim R \log R, \quad [\text{Chen et al., 2020b}]
\]
Spatial Averages

Fix $t > 0$. The process $x \rightarrow U(t, x) := u(t, x)/p_t(x)$ is stationary [Amir et al., 2011]. Consider

$$G_{R,t} := \frac{1}{\Sigma_{R,t}} \left(\int_{-R}^{R} U(t, x)dx - 2R \right)$$

where

$$\Sigma_{R,t}^2 := \text{Var} \left(\int_{-R}^{R} U(t, x)dx \right) \sim R \log R, \quad [\text{Chen et al., 2020b}]$$

Theorem ([Chen et al., 2020b])

$$d_{TV}(G_{R,t}, N) \leq \frac{C_t \sqrt{\log R}}{\sqrt{R}}. \quad (2.3)$$
Theorem (K. & Nualart (2021+))

Fix $\gamma > \frac{19}{2}$. Then, there exists an $R_0 \geq 1$ such that for all $R \geq R_0$

$$\sup_{x \in \mathbb{R}} |f_{G_{R,t}}(x) - \phi(x)| \leq \frac{C_t (\log R)^\gamma}{\sqrt{R}}.$$
References

😊 Thank you for your attention!