Phase Analysis of a Stochastic Reaction-Diffusion Equation

Davar Khoshnevisan

University of Utah http://www.math.utah.edu/~davar

Joint work with Kunwoo Kim (Postech, Korea) Carl Mueller (U Rochester) Shang-Yuan Shiu (NCU, Taiwan)

Many thanks to the NSF, NRF, Simons Foundation, MOST, MSRI-Berkeley, and Banff-BIRS

Davar Khoshnevisan (Salt Lake City, Utah)

イロト イポト イヨト イヨト

1 / 14

▶ Let $\mathbb{T} = [-1, 1] \simeq \mathbb{R}/\mathbb{Z}$

Davar Khoshnevisan (Salt Lake City, Utah)

- Let $\mathbb{T} = [-1, 1] \simeq \mathbb{R}/\mathbb{Z}$
- $\dot{W} = \{\dot{W}(t, x); t \ge 0, x \in \mathbb{T}\} = \text{white noise on } \mathbb{R}_+ \times \mathbb{T}$

- Let $\mathbb{T} = [-1, 1] \simeq \mathbb{R}/\mathbb{Z}$
- $\dot{W} = \{\dot{W}(t, x); t \ge 0, x \in \mathbb{T}\} = \text{white noise on } \mathbb{R}_+ \times \mathbb{T}$
- Cov $[\dot{W}(s, y), \dot{W}(t, x)] = \delta_0(t-s)\delta_0(x-y)$

- Let $\mathbb{T} = [-1, 1] \simeq \mathbb{R}/\mathbb{Z}$
- $\dot{W} = \{\dot{W}(t,x); t \ge 0, x \in \mathbb{T}\} =$ white noise on $\mathbb{R}_+ \times \mathbb{T}$
- $\operatorname{Cov}[\dot{W}(s, y), \dot{W}(t, x)] = \delta_0(t-s)\delta_0(x-y)$
- $\lambda > 0$ non random = noise level

3

イロト イポト イヨト イヨト

- Let $\mathbb{T} = [-1, 1] \simeq \mathbb{R}/\mathbb{Z}$
- $\dot{W} = \{\dot{W}(t,x); t \ge 0, x \in \mathbb{T}\} =$ white noise on $\mathbb{R}_+ \times \mathbb{T}$
- $\operatorname{Cov}[\dot{W}(s,y), \dot{W}(t,x)] = \delta_0(t-s)\delta_0(x-y)$
- $\lambda > 0$ non random = noise level
- ▶ To be concrete we will find $\psi = \{\psi(t, x); t \ge 0, x \in \mathbb{T}\}$ such that

$$\partial_t \psi = \partial_x^2 \psi + \psi - \psi^3 + \lambda \psi \dot{W}$$
 on $(0, \infty) \times \mathbb{T}$

and $\psi(0) = \psi_0 \in C_+(\mathbb{T})$ independent of W. More general SPDEs can be studied as well.

Davar Khoshnevisan (Salt Lake City, Utah)

イロト 不得 トイヨト イヨト 二日

Spatio-temporal intermittency: Zimmerman et al (2000) $\partial_t \psi = \partial_x^2 \psi + \psi - \psi^3 + \lambda \psi \dot{W}$ here, $u \leftrightarrow \psi$

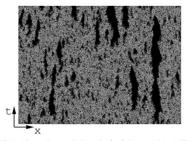


FIG. 1. Space-time evolution of u(x, t) in a persistent STI regime. Black: u = 0, grey: u > 0. x and t ranges are (0, 400) and (0, 90) with periodic spatial boundary positions. The initial condition is random in the interval $u_0(x) \in (0, 2.4)$. The other parameter values are $\epsilon = 0.95$, a = 0.5, D = 2.0, h = 0.22, $\Delta x = 1$, $\Delta t = 0.001$.

イロト イポト イヨト イヨト

Theorem (Kim, Mueller, Shiu, K, 2020+)

Davar Khoshnevisan (Salt Lake City, Utah)

Theorem (Kim, Mueller, Shiu, K, 2020+)

This SPDE has a predictable random-field solution ψ that is unique among all solution that are a.s. in C₊(ℝ₊ × T).

Theorem (Kim, Mueller, Shiu, K, 2020+)

- ► This SPDE has a predictable random-field solution ψ that is unique among all solution that are a.s. in C₊(ℝ₊ × T).
- $t \mapsto \psi(t)$ is a Feller process with values on $C_+(\mathbb{T})$.

Theorem (Kim, Mueller, Shiu, K, 2020+)

- ► This SPDE has a predictable random-field solution ψ that is unique among all solution that are a.s. in C₊(ℝ₊ × T).
- $t \mapsto \psi(t)$ is a Feller process with values on $C_+(\mathbb{T})$.
- ▶ If, in addition, $\psi_0 \not\equiv 0$ then $\psi(t, x) > 0$ for all t > 0 and $x \in \mathbb{T}$ off a single null set.

イロト 不得下 イヨト イヨト 二日

Theorem (Kim, Mueller, Shiu, K, 2020+)

- ► This SPDE has a predictable random-field solution ψ that is unique among all solution that are a.s. in C₊(ℝ₊ × T).
- $t \mapsto \psi(t)$ is a Feller process with values on $C_+(\mathbb{T})$.
- If, in addition, ψ₀ ≠ 0 then ψ(t, x) > 0 for all t > 0 and x ∈ T off a single null set.
- ► For earlier results see Cerrai (2003, 2008).

イロト 不得下 イヨト イヨト 二日

Theorem (Kim, Mueller, Shiu, K, 2020+)

- ► This SPDE has a predictable random-field solution ψ that is unique among all solution that are a.s. in C₊(ℝ₊ × T).
- $t \mapsto \psi(t)$ is a Feller process with values on $C_+(\mathbb{T})$.
- If, in addition, ψ₀ ≠ 0 then ψ(t, x) > 0 for all t > 0 and x ∈ T off a single null set.
- ► For earlier results see Cerrai (2003, 2008).
- Is there an invariant measure? Is it unique? What does it look like?

Theorem (Kim, Mueller, Shiu, K, 2020+)

- ► This SPDE has a predictable random-field solution ψ that is unique among all solution that are a.s. in C₊(ℝ₊ × T).
- $t \mapsto \psi(t)$ is a Feller process with values on $C_+(\mathbb{T})$.
- If, in addition, ψ₀ ≠ 0 then ψ(t, x) > 0 for all t > 0 and x ∈ T off a single null set.
- ► For earlier results see Cerrai (2003, 2008).
- Is there an invariant measure? Is it unique? What does it look like?
- Recall that $\mu \in M_1(C(\mathbb{T}))$ is an invariant measure if

 $\psi_0 \sim \mu \quad \Rightarrow \quad \psi(t) \sim \mu \text{ for all } t > 0.$

イロト 不得下 イヨト イヨト 二日

4 / 14

Davar Khoshnevisan (Salt Lake City, Utah)

Theorem (Kim, Mueller, Shiu, K, 2020+)

- ► This SPDE has a predictable random-field solution ψ that is unique among all solution that are a.s. in C₊(ℝ₊ × T).
- $t \mapsto \psi(t)$ is a Feller process with values on $C_+(\mathbb{T})$.
- If, in addition, ψ₀ ≠ 0 then ψ(t, x) > 0 for all t > 0 and x ∈ T off a single null set.
- ► For earlier results see Cerrai (2003, 2008).
- Is there an invariant measure? Is it unique? What does it look like?
- Recall that $\mu \in M_1(C(\mathbb{T}))$ is an invariant measure if

$$\psi_0 \sim \mu \quad \Rightarrow \quad \psi(t) \sim \mu \text{ for all } t > 0.$$

▶ Not hard to see that if $\psi_0 \equiv 0$ then $\psi(t) \equiv 0$; i.e., δ_0 is invariant, where $\mathbf{0}(x) = 0$ for all $x \in \mathbb{T}$. Is δ_0 unique?

On the invariant measure $\partial_t \psi = \partial_x^2 \psi + \psi - \psi^3 + \lambda \psi \dot{W}$

Davar Khoshnevisan (Salt Lake City, Utah)

 $\partial_t \psi = \partial_x^2 \psi + \psi - \psi^3 + \lambda \psi \dot{W}$

Theorem (Kim, Mueller, Shiu, K, 2020+)

There exist non random numbers $\lambda_1 > \lambda_0 > 0$ such that:

Davar Khoshnevisan (Salt Lake City, Utah)

 $\partial_t \psi = \partial_x^2 \psi + \psi - \psi^3 + \lambda \psi \dot{W}$

Theorem (Kim, Mueller, Shiu, K, 2020+)

There exist non random numbers $\lambda_1 > \lambda_0 > 0$ such that:

1. If $\lambda > \lambda_1$, then δ_0 is the unique invariant measure of our SPDE.

Davar Khoshnevisan (Salt Lake City, Utah)

 $\partial_t \psi = \partial_x^2 \psi + \psi - \psi^3 + \lambda \psi \dot{W}$

Theorem (Kim, Mueller, Shiu, K, 2020+)

There exist non random numbers $\lambda_1 > \lambda_0 > 0$ such that:

1. If $\lambda > \lambda_1$, then δ_0 is the unique invariant measure of our SPDE. Moreover, $\limsup_{t\to\infty} t^{-1} \log \|\psi(t)\|_{C(\mathbb{T})} < 0$ a.s.

 $\partial_t \psi = \partial_x^2 \psi + \psi - \psi^3 + \lambda \psi \dot{W}$

Theorem (Kim, Mueller, Shiu, K, 2020+)

There exist non random numbers $\lambda_1 > \lambda_0 > 0$ such that:

 If λ > λ₁, then δ₀ is the unique invariant measure of our SPDE. Moreover, lim sup_{t→∞} t⁻¹ log ||ψ(t)||_{C(T)} < 0 a.s.
 If λ ∈ (0, λ₀), then:

 $\partial_t \psi = \partial_x^2 \psi + \psi - \psi^3 + \lambda \psi \dot{W}$

Theorem (Kim, Mueller, Shiu, K, 2020+)

There exist non random numbers $\lambda_1 > \lambda_0 > 0$ such that:

- 1. If $\lambda > \lambda_1$, then δ_0 is the unique invariant measure of our SPDE. Moreover, $\limsup_{t\to\infty} t^{-1} \log \|\psi(t)\|_{C(\mathbb{T})} < 0$ a.s.
- 2. If $\lambda \in (0, \lambda_0)$, then:

2.1 $\exists ! \mu_+ \in \bigcap_{\alpha \in (0,1/2)} M_1(C^{\alpha}_{>0}(\mathbb{T}))$ that is invariant;

 $\partial_t \psi = \partial_x^2 \psi + \psi - \psi^3 + \lambda \psi \dot{W}$

Theorem (Kim, Mueller, Shiu, K, 2020+)

There exist non random numbers $\lambda_1 > \lambda_0 > 0$ such that:

- 1. If $\lambda > \lambda_1$, then δ_0 is the unique invariant measure of our SPDE. Moreover, $\limsup_{t\to\infty} t^{-1} \log \|\psi(t)\|_{C(\mathbb{T})} < 0$ a.s.
- 2. If $\lambda \in (0, \lambda_0)$, then:
 - 2.1 $\exists ! \mu_+ \in \bigcap_{\alpha \in (0,1/2)} M_1(C^{\alpha}_{>0}(\mathbb{T}))$ that is invariant;
 - 2.2 The collection of all invariant probability measures is exactly $\{a\delta_0 + (1-a)\mu_+; 0 \le a \le 1\};$

イロト 不得下 イヨト イヨト 二日

 $\partial_t \psi = \partial_x^2 \psi + \psi - \psi^3 + \lambda \psi \dot{W}$

Theorem (Kim, Mueller, Shiu, K, 2020+)

There exist non random numbers $\lambda_1 > \lambda_0 > 0$ such that:

- 1. If $\lambda > \lambda_1$, then δ_0 is the unique invariant measure of our SPDE. Moreover, $\limsup_{t\to\infty} t^{-1} \log \|\psi(t)\|_{C(\mathbb{T})} < 0$ a.s.
- 2. If $\lambda \in (0, \lambda_0)$, then:
 - 2.1 $\exists ! \mu_+ \in \bigcap_{\alpha \in (0,1/2)} M_1(C^{\alpha}_{>0}(\mathbb{T}))$ that is invariant;
 - 2.2 The collection of all invariant probability measures is exactly $\{a\delta_0 + (1-a)\mu_+; 0 \le a \le 1\};$

2.3 $\forall \alpha \in (0, 1/2) \exists q > 0: \int \exp\left(q \|\omega\|_{C^{\alpha}(\mathbb{T})}^{1/3}\right) \mu_{+}(\mathrm{d}\omega) < \infty;$

 $\partial_t \psi = \partial_x^2 \psi + \psi - \psi^3 + \lambda \psi \dot{W}$

Theorem (Kim, Mueller, Shiu, K, 2020+)

There exist non random numbers $\lambda_1 > \lambda_0 > 0$ such that:

1. If $\lambda > \lambda_1$, then δ_0 is the unique invariant measure of our SPDE. Moreover, $\limsup_{t\to\infty} t^{-1} \log \|\psi(t)\|_{C(\mathbb{T})} < 0$ a.s.

2. If
$$\lambda \in (0, \lambda_0)$$
, then:

- 2.1 $\exists ! \mu_+ \in \bigcap_{\alpha \in (0,1/2)} M_1(C^{\alpha}_{>0}(\mathbb{T}))$ that is invariant;
- 2.2 The collection of all invariant probability measures is exactly $\{a\delta_0 + (1-a)\mu_+; 0 \le a \le 1\};$

2.3
$$\forall \alpha \in (0, 1/2) \exists q > 0: \int \exp\left(q \|\omega\|_{C^{\alpha}(\mathbb{T})}^{1/3}\right) \mu_{+}(\mathrm{d}\omega) < \infty;$$

2.4 $\mu_+(\bullet) = \lim_{T\to\infty} T^{-1} \int_0^T \mathrm{P}\{\psi(t) \in \bullet\} \mathrm{d}t \text{ in } T.V.$

Davar Khoshnevisan (Salt Lake City, Utah)

イロト 不得下 イヨト イヨト 二日

5 / 14

 $\partial_t \psi = \partial_x^2 \psi + \psi - \psi^3 + \lambda \psi \dot{W}$

Theorem (Kim, Mueller, Shiu, K, 2020+)

There exist non random numbers $\lambda_1 > \lambda_0 > 0$ such that:

1. If $\lambda > \lambda_1$, then δ_0 is the unique invariant measure of our SPDE. Moreover, $\limsup_{t\to\infty} t^{-1} \log \|\psi(t)\|_{C(\mathbb{T})} < 0$ a.s.

2. If
$$\lambda \in (0, \lambda_0)$$
, then:

- 2.1 $\exists ! \mu_+ \in \bigcap_{\alpha \in (0,1/2)} M_1(C^{\alpha}_{>0}(\mathbb{T}))$ that is invariant;
- 2.2 The collection of all invariant probability measures is exactly $\{a\delta_0 + (1-a)\mu_+; 0 \le a \le 1\};$

2.3
$$\forall \alpha \in (0, 1/2) \exists q > 0$$
: $\int \exp\left(q \|\omega\|_{C^{\alpha}(\mathbb{T})}^{1/3}\right) \mu_{+}(\mathrm{d}\omega) < \infty;$
2.4 $\mu_{+}(\bullet) = \lim_{T \to \infty} T^{-1} \int_{0}^{T} P\{\psi(t) \in \bullet\} \mathrm{d}t \text{ in } T.V.$

► This proves predictions of Zimmerman et al (2000).

Davar Khoshnevisan (Salt Lake City, Utah)

イロト 不得 トイヨト イヨト 二日

 $\partial_t \psi = \partial_x^2 \psi + \psi - \psi^3 + \lambda \psi \dot{W}$

Theorem (Kim, Mueller, Shiu, K, 2020+)

There exist non random numbers $\lambda_1 > \lambda_0 > 0$ such that:

1. If $\lambda > \lambda_1$, then δ_0 is the unique invariant measure of our SPDE. Moreover, $\limsup_{t\to\infty} t^{-1} \log \|\psi(t)\|_{\mathcal{C}(\mathbb{T})} < 0$ a.s.

2. If
$$\lambda \in (0, \lambda_0)$$
, then:

2.1
$$\exists ! \mu_+ \in \bigcap_{\alpha \in (0,1/2)} M_1(C_{>0}^{\alpha}(\mathbb{T}))$$
 that is invariant;

The collection of all invariant probability measures is exactly 2.2 $\{a\delta_0 + (1-a)\mu_+; 0 \le a \le 1\};$

2.3
$$\forall \alpha \in (0, 1/2) \exists q > 0$$
: $\int \exp\left(q \|\omega\|_{C^{\alpha}(\mathbb{T})}^{1/3}\right) \mu_{+}(\mathrm{d}\omega) < \infty;$
2.4 $\mu_{+}(\bullet) = \lim_{T \to \infty} T^{-1} \int_{0}^{T} P\{\psi(t) \in \bullet\} \mathrm{d}t \text{ in } T.V.$

This proves predictions of Zimmerman et al (2000).

• One can replace $\psi - \psi^3$ by a more general reaction term $V(\psi)$. For example, when $V(\psi) = \psi - \psi^2$, everything is the same except $orall lpha \in (0, 1/2) \; \exists q > 0: \; \int \exp\left(q \|\omega\|_{C^{lpha}(\mathbb{T})}^{1/4}\right) \mu_+(\mathrm{d}\omega) < \infty$ 5 / 14

Davar Khoshnevisan (Salt Lake City, Utah)

 $\partial_t \psi = \partial_x^2 \psi + \psi - \psi^3 + \lambda \psi \dot{W}$

One can say more about the extremal invariant measure μ₊ when it is known to exist [λ ∈ (0, λ₀)]. For example:

Davar Khoshnevisan (Salt Lake City, Utah)

 $\partial_t \psi = \partial_x^2 \psi + \psi - \psi^3 + \lambda \psi \dot{W}$

One can say more about the extremal invariant measure μ₊ when it is known to exist [λ ∈ (0, λ₀)]. For example:

Davar Khoshnevisan (Salt Lake City, Utah)

 $\partial_t \psi = \partial_x^2 \psi + \psi - \psi^3 + \lambda \psi \dot{W}$

One can say more about the extremal invariant measure μ₊ when it is known to exist [λ ∈ (0, λ₀)]. For example:

Theorem (Kim, Mueller, Shiu, K, 2020+)

6 / 14

Davar Khoshnevisan (Salt Lake City, Utah)

 $\partial_t \psi = \partial_x^2 \psi + \psi - \psi^3 + \lambda \psi \dot{W}$

One can say more about the extremal invariant measure μ₊ when it is known to exist [λ ∈ (0, λ₀)]. For example:

Theorem (Kim, Mueller, Shiu, K, 2020+)

1. For every $\theta \in (0, 1)$ there exists $\lambda_{\theta} \in (0, \lambda_0)$ such that

$$\lambda \in (0\,,\lambda_ heta) \quad \Rightarrow \quad \mu_+ \left\{ \omega \in \mathcal{C}_+(\mathbb{T}): \, \inf_{x \in \mathbb{T}} \omega(x) \leq arepsilon
ight\} \lesssim arepsilon^ heta \, \in (0\,,1)$$

イロト 不得 トイヨト イヨト 二日

 $\partial_t \psi = \partial_x^2 \psi + \psi - \psi^3 + \lambda \psi \dot{W}$

One can say more about the extremal invariant measure μ₊ when it is known to exist [λ ∈ (0, λ₀)]. For example:

Theorem (Kim, Mueller, Shiu, K, 2020+)

1. For every $\theta \in (0, 1)$ there exists $\lambda_{\theta} \in (0, \lambda_0)$ such that

$$\lambda \in (0, \lambda_{ heta}) \quad \Rightarrow \quad \mu_+ \left\{ \omega \in \mathcal{C}_+(\mathbb{T}) : \ \inf_{x \in \mathbb{T}} \omega(x) \leq arepsilon
ight\} \lesssim arepsilon^ heta \in (0, 1)$$

2. $\mu_+(C^{\alpha}(\mathbb{T})) = 1$ for all $\alpha \in (0, 1/2)$. But $\mu_+(C^{1/2}(\mathbb{T})) = 0$;

イロト 不得下 イヨト イヨト 二日

 $\partial_t \psi = \partial_x^2 \psi + \psi - \psi^3 + \lambda \psi \dot{W}$

One can say more about the extremal invariant measure μ₊ when it is known to exist [λ ∈ (0, λ₀)]. For example:

Theorem (Kim, Mueller, Shiu, K, 2020+)

1. For every $\theta \in (0, 1)$ there exists $\lambda_{\theta} \in (0, \lambda_0)$ such that

$$\lambda \in (0, \lambda_{ heta}) \quad \Rightarrow \quad \mu_+ \left\{ \omega \in \mathcal{C}_+(\mathbb{T}) : \inf_{x \in \mathbb{T}} \omega(x) \le \varepsilon
ight\} \lesssim \varepsilon^{ heta} \qquad orall \varepsilon \in (0, 1)$$

2. $\mu_+(C^{\alpha}(\mathbb{T})) = 1$ for all $\alpha \in (0, 1/2)$. But $\mu_+(C^{1/2}(\mathbb{T})) = 0$; 3. For all non random Borel sets $G \subset \mathbb{T}$,

 $\dim_{\mathrm{H}} \omega(G) = 1 \wedge 2 \dim_{\mathrm{H}} G$ for μ_+ -almost every $\omega \in C(\mathbb{T})$.

Davar Khoshnevisan (Salt Lake City, Utah)

Stochastic Reaction Diffusion

イロト 不得下 イヨト イヨト 二日

 $\partial_t \psi = \partial_x^2 \psi + \psi - \psi^3 + \lambda \psi \dot{W}$

One can say more about the extremal invariant measure μ₊ when it is known to exist [λ ∈ (0, λ₀)]. For example:

Theorem (Kim, Mueller, Shiu, K, 2020+)

1. For every $\theta \in (0, 1)$ there exists $\lambda_{\theta} \in (0, \lambda_0)$ such that

$$\lambda \in (0, \lambda_{ heta}) \quad \Rightarrow \quad \mu_+ \left\{ \omega \in \mathcal{C}_+(\mathbb{T}) : \ \inf_{x \in \mathbb{T}} \omega(x) \leq \varepsilon
ight\} \lesssim \varepsilon^{ heta} \qquad orall \varepsilon \in (0, 1)$$

μ₊(C^α(T)) = 1 for all α ∈ (0, 1/2). But μ₊(C^{1/2}(T)) = 0;
 For all non random Borel sets G ⊂ T,

 $\dim_{\mathrm{H}} \omega(G) = 1 \wedge 2 \dim_{\mathrm{H}} G$ for μ_+ -almost every $\omega \in C(\mathbb{T})$.

6 / 14

Is there a sharp phase transition?

Davar Khoshnevisan (Salt Lake City, Utah)

Sketch of proof when noise is high $\partial_t \psi = \partial_x^2 \psi + \psi - \psi^3 + \lambda \psi \dot{W}$

• By a comparison argument, $0 \le \psi \le v$ where

$$\partial_t v = \partial_x^2 v + v + \lambda v \dot{W}$$
 on $(0, \infty) \times \mathbb{T}$,

Stochastic Reaction Diffusion

subject to $v(0) = \psi_0$.

Sketch of proof when noise is high $\partial_t \psi = \partial_x^2 \psi + \psi - \psi^3 + \lambda \psi \dot{W}$

▶ By a comparison argument, $0 \le \psi \le v$ where

$$\partial_t v = \partial_x^2 v + v + \lambda v \dot{W}$$
 on $(0, \infty) \times \mathbb{T}$,

subject to $v(0) = \psi_0$. • $v(t, x) = \exp(t)u(t, x)$ where

$$\partial_t u = \partial_x^2 u + \lambda u \dot{W}$$
 on $(0, \infty) \times \mathbb{T}$,

subject to $u(0) = \psi_0$.

イロト 不得下 イヨト イヨト 二日

Sketch of proof when noise is high $\partial_t \psi = \partial_x^2 \psi + \psi - \psi^3 + \lambda \psi \dot{W}$

▶ By a comparison argument, $0 \le \psi \le v$ where

$$\partial_t v = \partial_x^2 v + v + \lambda v \dot{W}$$
 on $(0, \infty) \times \mathbb{T}$,

subject to $v(0) = \psi_0$. • $v(t, x) = \exp(t)u(t, x)$ where $\partial_t u = \partial_x^2 u + \lambda u \dot{W}$ on $(0, \infty) \times \mathbb{T}$,

subject to $u(0) = \psi_0$.

• Kim-Mueller-Shiu-K (2020): $\exists c > 0$ [independently of λ] s.t.

$$\limsup_{t\to\infty} t^{-1} \log \|u(t)\|_{\mathcal{C}(\mathbb{T})} \leq -c\lambda^4 \quad \text{a.s.}$$

Davar Khoshnevisan (Salt Lake City, Utah)

イロト 不得下 イヨト イヨト 二日

Sketch of proof when noise is high $\partial_t \psi = \partial_x^2 \psi + \psi - \psi^3 + \lambda \psi \dot{W}$

- By a comparison argument, 0 $\leq \psi \leq v$ where

$$\partial_t v = \partial_x^2 v + v + \lambda v \dot{W}$$
 on $(0, \infty) \times \mathbb{T}$,

subject to
$$v(0) = \psi_0$$
.
• $v(t, x) = \exp(t)u(t, x)$ where
 $\partial_t u = \partial_x^2 u + \lambda u \dot{W}$ on $(0, \infty) \times \mathbb{T}$,

subject to $u(0) = \psi_0$.

Kim-Mueller-Shiu-K (2020):∃c > 0 [independently of λ] s.t.

$$\limsup_{t\to\infty} t^{-1} \log \|u(t)\|_{\mathcal{C}(\mathbb{T})} \leq -c\lambda^4 \quad \text{a.s.}$$

• Therefore, $\limsup_{t\to\infty} t^{-1} \log \|v(t)\|_{C(\mathbb{T})} \leq 1 - c\lambda^4$ a.s.

イロン イロン イヨン イヨン 三日

Sketch of proof when noise is high $\partial_t \psi = \partial_x^2 \psi + \psi - \psi^3 + \lambda \psi \dot{W}$

▶ By a comparison argument, $0 \le \psi \le v$ where

$$\partial_t v = \partial_x^2 v + v + \lambda v \dot{W}$$
 on $(0, \infty) \times \mathbb{T}$,

subject to
$$v(0) = \psi_0$$
.
• $v(t, x) = \exp(t)u(t, x)$ where
 $\partial_t u = \partial_x^2 u + \lambda u \dot{W}$ on $(0, \infty) \times \mathbb{T}$,

subject to $u(0) = \psi_0$.

▶ Kim-Mueller-Shiu-K (2020): $\exists c > 0$ [independently of λ] s.t.

$$\limsup_{t\to\infty} t^{-1} \log \|u(t)\|_{\mathcal{C}(\mathbb{T})} \leq -c\lambda^4 \quad \text{a.s.}$$

- Therefore, $\limsup_{t \to \infty} t^{-1} \log \|v(t)\|_{C(\mathbb{T})} \leq 1 c\lambda^4$ a.s.
- \Rightarrow if $\lambda > c^{-1/4}$ then $\limsup_{t \to \infty} t^{-1} \log \|\psi(t)\|_{C(\mathbb{T})} < 0$ a.s.

• Suppose δ_0 is the only invariant measure

- Suppose δ_0 is the only invariant measure
- ► Hopefully, **0** is an attractor

- Suppose δ_0 is the only invariant measure
- Hopefully, 0 is an attractor
- ▶ If so, then w.h.p., $\psi(t,x) \approx 0$ uniformly for all $x \in \mathbb{T}$ when $t \gg 1$

- Suppose δ_0 is the only invariant measure
- Hopefully, 0 is an attractor
- ▶ If so, then w.h.p., $\psi(t,x) \approx 0$ uniformly for all $x \in \mathbb{T}$ when $t \gg 1$
- ▶ In that case, $\psi \psi^3 \approx \psi$ when $t \gg 1$, whence $\psi \approx v$, where as before,

$$\partial_t v = \partial_x^2 v + v + \lambda v \dot{W}$$

- 3

- Suppose δ_0 is the only invariant measure
- Hopefully, 0 is an attractor
- ▶ If so, then w.h.p., $\psi(t, x) \approx 0$ uniformly for all $x \in \mathbb{T}$ when $t \gg 1$
- ▶ In that case, $\psi \psi^3 \approx \psi$ when $t \gg 1$, whence $\psi \approx v$, where as before,

$$\partial_t v = \partial_x^2 v + v + \lambda v \dot{W}$$

► Kim-Mueller-Shiu-K (2020): $\exists C > 0$ [independently of λ] s.t.

$$\liminf_{t\to\infty} t^{-1} \inf_{x\in\mathbb{T}} \log v(t,x) \ge 1 - C\lambda^4 \quad \text{a.s.}$$

Davar Khoshnevisan (Salt Lake City, Utah)

- Suppose δ_0 is the only invariant measure
- Hopefully, 0 is an attractor
- ▶ If so, then w.h.p., $\psi(t,x) \approx 0$ uniformly for all $x \in \mathbb{T}$ when $t \gg 1$
- ▶ In that case, $\psi \psi^3 \approx \psi$ when $t \gg 1$, whence $\psi \approx v$, where as before,

$$\partial_t v = \partial_x^2 v + v + \lambda v \dot{W}$$

► Kim-Mueller-Shiu-K (2020): $\exists C > 0$ [independently of λ] s.t.

$$\liminf_{t\to\infty} t^{-1} \inf_{x\in\mathbb{T}} \log v(t,x) \geq 1 - C\lambda^4 \quad \text{a.s.}$$

► This would suggest that $\liminf_{t\to\infty} t^{-1} \log \psi(t, x) \ge 1 - C\lambda^4 > 0$ when $\lambda \in (0, C^{-1/4})$

Davar Khoshnevisan (Salt Lake City, Utah)

イロン イロン イヨン イヨン 三日

- Suppose δ_0 is the only invariant measure
- Hopefully, 0 is an attractor
- ▶ If so, then w.h.p., $\psi(t,x) \approx 0$ uniformly for all $x \in \mathbb{T}$ when $t \gg 1$
- ▶ In that case, $\psi \psi^3 \approx \psi$ when $t \gg 1$, whence $\psi \approx v$, where as before,

$$\partial_t v = \partial_x^2 v + v + \lambda v \dot{W}$$

► Kim-Mueller-Shiu-K (2020): $\exists C > 0$ [independently of λ] s.t.

$$\liminf_{t\to\infty} t^{-1} \inf_{x\in\mathbb{T}} \log v(t,x) \geq 1 - C\lambda^4 \quad \text{a.s.}$$

▶ This would suggest that $\liminf_{t\to\infty} t^{-1} \log \psi(t, x) \ge 1 - C\lambda^4 > 0$ when $\lambda \in (0, C^{-1/4})$

This would yield a contradiction, though we can't rigorize this method.

 As was mentioned, some of the above rests on our earlier work on the dissipation of the parabolic Anderson model [KKMS 2020]

- As was mentioned, some of the above rests on our earlier work on the dissipation of the parabolic Anderson model [KKMS 2020]
- ► Let *u* solve

 $\partial_t u = \partial_x^2 u + \lambda u \dot{W}$ on $(0, \infty) \times \mathbb{T}$,

with initial data $u(0) \equiv 1$

- As was mentioned, some of the above rests on our earlier work on the dissipation of the parabolic Anderson model [KKMS 2020]
- Let u solve

$$\partial_t u = \partial_x^2 u + \lambda u \dot{W}$$
 on $(0, \infty) \times \mathbb{T}$,

with initial data $u(0) \equiv 1$

We proved in (KKMS 2020) that the above dissipates [uniformly in x] roughly as exp(−const · λ⁴t) as t → ∞. The proof of this fact hinges on the following "counterpart to intermittency":

イロト イポト イヨト イヨト

- As was mentioned, some of the above rests on our earlier work on the dissipation of the parabolic Anderson model [KKMS 2020]
- Let u solve

$$\partial_t u = \partial_x^2 u + \lambda u \dot{W}$$
 on $(0, \infty) \times \mathbb{T}$,

with initial data $u(0) \equiv 1$

We proved in (KKMS 2020) that the above dissipates [uniformly in x] roughly as exp(−const · λ⁴t) as t → ∞. The proof of this fact hinges on the following "counterpart to intermittency":

Theorem (KKMS 2020)

There exist $t_0 \ge 1$, and event B(t) for all $t \ge t_0$, and constant c > 0which is independent of t such that for all $k \ge 2$ there exist $c_{1,k}, c_{2,k} > 0$ [independent of λ] s.t.:

Davar Khoshnevisan (Salt Lake City, Utah)

- As was mentioned, some of the above rests on our earlier work on the dissipation of the parabolic Anderson model [KKMS 2020]
- Let u solve

$$\partial_t u = \partial_x^2 u + \lambda u \dot{W}$$
 on $(0, \infty) \times \mathbb{T}$,

with initial data $u(0) \equiv 1$

We proved in (KKMS 2020) that the above dissipates [uniformly in x] roughly as exp(−const · λ⁴t) as t → ∞. The proof of this fact hinges on the following "counterpart to intermittency":

Theorem (KKMS 2020)

There exist $t_0 \ge 1$, and event B(t) for all $t \ge t_0$, and constant c > 0which is independent of t such that for all $k \ge 2$ there exist $c_{1,k}, c_{2,k} > 0$ [independent of λ] s.t.:

1. $P(B_t) \ge 1 - c \exp(-ct)$ for all $t \ge t_0$; and for all $t \ge t_0$,

- As was mentioned, some of the above rests on our earlier work on the dissipation of the parabolic Anderson model [KKMS 2020]
- Let u solve

$$\partial_t u = \partial_x^2 u + \lambda u \dot{W}$$
 on $(0, \infty) \times \mathbb{T}$,

with initial data $u(0) \equiv 1$

We proved in (KKMS 2020) that the above dissipates [uniformly in x] roughly as exp(−const · λ⁴t) as t → ∞. The proof of this fact hinges on the following "counterpart to intermittency":

Theorem (KKMS 2020)

There exist $t_0 \ge 1$, and event B(t) for all $t \ge t_0$, and constant c > 0which is independent of t such that for all $k \ge 2$ there exist $c_{1,k}, c_{2,k} > 0$ [independent of λ] s.t.:

- 1. $P(B_t) \ge 1 c \exp(-ct)$ for all $t \ge t_0$; and for all $t \ge t_0$,
- 2. $e^{-c_1\lambda^4 t} \lesssim \operatorname{E}\left(\inf_{\mathbb{T}} |u(t)|^k; B(t)\right) \leq \operatorname{E}\left(\sup_{\mathbb{T}} |u(t)|^k; B(t)\right) \lesssim e^{-c_2\lambda^4 t}.$

Want to prove that if λ < λ₀ then there exists a unique non degenerate invariant measure, provided that inf_T ψ₀ > 0, say [we actually need a little more]

Stochastic Reaction Diffusion

- Want to prove that if λ < λ₀ then there exists a unique non degenerate invariant measure, provided that inf_T ψ₀ > 0, say [we actually need a little more]
- We can do this in two steps:

- Want to prove that if λ < λ₀ then there exists a unique non degenerate invariant measure, provided that inf_T ψ₀ > 0, say [we actually need a little more]
- We can do this in two steps:
 - 1. There exists an invariant measure on $C_{>0}(\mathbb{T})$ [requires the Krylov–Bogoliubov theorem]

- 3

- Want to prove that if λ < λ₀ then there exists a unique non degenerate invariant measure, provided that inf_T ψ₀ > 0, say [we actually need a little more]
- We can do this in two steps:
 - 1. There exists an invariant measure on $C_{>0}(\mathbb{T})$ [requires the Krylov–Bogoliubov theorem]
 - 2. The above is unique [requires 4 types of coupling]

- Want to prove that if λ < λ₀ then there exists a unique non degenerate invariant measure, provided that inf_T ψ₀ > 0, say [we actually need a little more]
- We can do this in two steps:
 - 1. There exists an invariant measure on $C_{>0}(\mathbb{T})$ [requires the Krylov–Bogoliubov theorem]
 - 2. The above is unique [requires 4 types of coupling]

Theorem (Krylov-Bogoliuobov, 1937)

If $T \mapsto T^{-1} \int_0^T P_1\{\psi(t) \in \bullet\} dt$ is tight in $C_{>0}(\mathbb{T})$, then ψ has an invariant probab measure on $C_{>0}(\mathbb{T})$.

Davar Khoshnevisan (Salt Lake City, Utah)

イロト 不得下 イヨト イヨト 二日

- Want to prove that if λ < λ₀ then there exists a unique non degenerate invariant measure, provided that inf_T ψ₀ > 0, say [we actually need a little more]
- We can do this in two steps:
 - 1. There exists an invariant measure on $C_{>0}(\mathbb{T})$ [requires the Krylov–Bogoliubov theorem]
 - 2. The above is unique [requires 4 types of coupling]

Theorem (Krylov-Bogoliuobov, 1937)

If $T \mapsto T^{-1} \int_0^T P_1\{\psi(t) \in \bullet\} dt$ is tight in $C_{>0}(\mathbb{T})$, then ψ has an invariant probab measure on $C_{>0}(\mathbb{T})$.

So we can prove tightness and deduce existence of invariant measures

イロト 不得下 イヨト イヨト 二日

10 / 14

Davar Khoshnevisan (Salt Lake City, Utah)

▶ Want: $T \mapsto T^{-1} \int_0^T P_1\{\psi(t) \in \bullet\} dt$ is tight in $C_{>0}(\mathbb{T})$ when $\lambda \ll 1$

Davar Khoshnevisan (Salt Lake City, Utah)

Stochastic Reaction Diffusion

- ▶ Want: $T \mapsto T^{-1} \int_0^T P_1\{\psi(t) \in \bullet\} dt$ is tight in $C_{>0}(\mathbb{T})$ when $\lambda \ll 1$
- For all $\alpha \in (0, 1/2)$ and $\varepsilon, \delta \in (0, 1)$, define

$$A_arepsilon = \left\{ f \in \mathcal{C}^lpha(\mathbb{T}): \inf_{\mathbb{T}} f \geq arepsilon
ight\}, \ B_\delta = \left\{ f \in \mathcal{C}^lpha(\mathbb{T}): \, \|f\|_{\mathcal{C}^lpha(\mathbb{T})} \leq rac{1}{\delta}
ight\}.$$

▶ Want: $T \mapsto T^{-1} \int_0^T P_1\{\psi(t) \in \bullet\} dt$ is tight in $C_{>0}(\mathbb{T})$ when $\lambda \ll 1$

▶ For all $\alpha \in (0, 1/2)$ and $\varepsilon, \delta \in (0, 1)$, define

$$egin{aligned} \mathcal{A}_arepsilon &= \left\{ f \in \mathcal{C}^lpha(\mathbb{T}): \inf_{\mathbb{T}} f \geq arepsilon
ight\}, \ \mathcal{B}_\delta &= \left\{ f \in \mathcal{C}^lpha(\mathbb{T}): \ \|f\|_{\mathcal{C}^lpha(\mathbb{T})} \leq rac{1}{\delta}
ight\} \end{aligned}$$

► B_{δ} is compact [Arzéla–Ascoli], A_{ε} is closed, \therefore it suffices to prove that

$$\lim_{\varepsilon,\delta\downarrow 0}\limsup_{T\to\infty}\frac{1}{T}\mathrm{E}_{\mathbf{1}}\left[\int_{0}^{T}\mathbf{1}_{\{\psi(t)\notin A_{\varepsilon}\cap B_{\delta}\}}\,\mathrm{d}t\right]=0.$$

Davar Khoshnevisan (Salt Lake City, Utah)

Stochastic Reaction Diffusion

< □ > < //>

• Want: $T \mapsto T^{-1} \int_0^T \Pr_1\{\psi(t) \in \bullet\} dt$ is tight in $C_{>0}(\mathbb{T})$ when $\lambda \ll 1$

▶ For all $\alpha \in (0, 1/2)$ and $\varepsilon, \delta \in (0, 1)$, define

$$\mathcal{A}_arepsilon = \left\{ f \in \mathcal{C}^lpha(\mathbb{T}): \inf_{\mathbb{T}} f \geq arepsilon
ight\}, \ \mathcal{B}_\delta = \left\{ f \in \mathcal{C}^lpha(\mathbb{T}): \ \|f\|_{\mathcal{C}^lpha(\mathbb{T})} \leq rac{1}{\delta}
ight\}$$

▶ B_{δ} is compact [Arzéla–Ascoli], A_{ε} is closed, \therefore it suffices to prove that

$$\lim_{\varepsilon,\delta\downarrow 0}\limsup_{T\to\infty}\frac{1}{T}\mathrm{E}_{\mathbf{1}}\left[\int_{0}^{T}\mathbf{1}_{\{\psi(t)\notin A_{\varepsilon}\cap B_{\delta}\}}\,\mathrm{d}t\right]=0.$$

$$\begin{array}{c} \text{Proposition (KKMS 2020+)} \\ \text{sup}_{t \geq \eta} \operatorname{E}_{1}\left(\|\psi(t)\|_{C^{\alpha}(\mathbb{T})}^{k}\right) < \infty \quad \forall \eta > 0, \alpha \in (0, 1/2), k \geq 2. \end{array}$$

• Want: $T \mapsto T^{-1} \int_0^T P_1\{\psi(t) \in \bullet\} dt$ is tight in $C_{>0}(\mathbb{T})$ when $\lambda \ll 1$

- ▶ Want: $T \mapsto T^{-1} \int_0^T P_1\{\psi(t) \in \bullet\} dt$ is tight in $C_{>0}(\mathbb{T})$ when $\lambda \ll 1$
- ▶ Because of the preceding slide, it suffices to prove that, when $\lambda \ll 1$,

$$\lim_{\varepsilon \downarrow 0} \limsup_{T \to \infty} \frac{1}{T} \int_0^T \mathbf{P_1} \left\{ \inf_{\mathbb{T}} \psi(t) < \varepsilon \right\} \mathrm{d}t = 0$$

Stochastic Reaction Diffusion

Davar Khoshnevisan (Salt Lake City, Utah)

- ▶ Want: $T \mapsto T^{-1} \int_0^T P_1\{\psi(t) \in \bullet\} dt$ is tight in $C_{>0}(\mathbb{T})$ when $\lambda \ll 1$
- Because of the preceding slide, it suffices to prove that, when $\lambda \ll 1$,

$$\limsup_{\varepsilon \downarrow 0} \limsup_{T \to \infty} \frac{1}{T} \int_0^T \mathrm{P}_{\mathbf{1}} \left\{ \inf_{\mathbb{T}} \psi(t) < \varepsilon \right\} \mathrm{d}t = 0.$$

 Once proved, this will allow us to invoke Krylov–Bogoliuobov's theorem to deduce the existence of an non-degenerate invariant measure

(□) (@) (E) (E) (E)

- ▶ Want: $T \mapsto T^{-1} \int_0^T P_1\{\psi(t) \in \bullet\} dt$ is tight in $C_{>0}(\mathbb{T})$ when $\lambda \ll 1$
- Because of the preceding slide, it suffices to prove that, when $\lambda \ll 1$,

$$\limsup_{\varepsilon \downarrow 0} \limsup_{T \to \infty} \frac{1}{T} \int_0^T \mathrm{P}_{\mathbf{1}} \left\{ \inf_{\mathbb{T}} \psi(t) < \varepsilon \right\} \mathrm{d}t = 0.$$

- Once proved, this will allow us to invoke Krylov–Bogoliuobov's theorem to deduce the existence of an non-degenerate invariant measure
- This will use a "random walk argument" (à la Mueller, 1991 + a large deviations lemma)

Davar Khoshnevisan (Salt Lake City, Utah)

- ▶ Want: $T \mapsto T^{-1} \int_0^T P_1\{\psi(t) \in \bullet\} dt$ is tight in $C_{>0}(\mathbb{T})$ when $\lambda \ll 1$
- Because of the preceding slide, it suffices to prove that, when $\lambda \ll 1$,

$$\limsup_{\varepsilon \downarrow 0} \limsup_{T \to \infty} \frac{1}{T} \int_0^T \mathrm{P}_{\mathbf{1}} \left\{ \inf_{\mathbb{T}} \psi(t) < \varepsilon \right\} \mathrm{d}t = 0.$$

- Once proved, this will allow us to invoke Krylov–Bogoliuobov's theorem to deduce the existence of an non-degenerate invariant measure
- This will use a "random walk argument" (à la Mueller, 1991 + a large deviations lemma)
- Uniqueness will use a "coupling argument" (à la Mueller, 1993 + a lemma from stoch analysis)

A large deviations lemma

The following is used in order to make the "random walk argument" work:

Lemma (KKMS 2020+)

Let
$$\{Z_n\}_{n=1}^{\infty}$$
 be i.i.d. with $p = P\{Z_1 = 1\} > 1/2$ and $q = P\{Z_1 = -1\} = 1 - p$. Then,

$$\sum_{n=1}^{\infty} \operatorname{P}\left\{Z_1 + \dots + Z_n \leq -k\right\} \leq \frac{\sqrt{4pq}}{1 - \sqrt{4pq}} \left(\frac{q}{p}\right)^{k/2} \qquad \forall k \geq 0.$$

Proof is a nice exercise.

Davar Khoshnevisan (Salt Lake City, Utah)

Stochastic Reaction Diffusion

・ロト ・聞ト ・ヨト ・ヨト

3

The following fact about "stochastic differential inequalities" is used in order to make the "coupling argument" work. Suppose:

1. X = non-negative, continuous L^2 -martingale with $X_0 = a^2 > 0$

The following fact about "stochastic differential inequalities" is used in order to make the "coupling argument" work. Suppose:

- 1. X = non-negative, continuous L^2 -martingale with $X_0 = a^2 > 0$
- 2. X solves $dX_t = C_t dt + dM_t$ where $C_t \le X_t$ and C is of bounded variation.

The following fact about "stochastic differential inequalities" is used in order to make the "coupling argument" work. Suppose:

- 1. X = non-negative, continuous L^2 -martingale with $X_0 = a^2 > 0$
- 2. X solves $dX_t = C_t dt + dM_t$ where $C_t \le X_t$ and C is of bounded variation.

Proof is a nice exercise.

Davar Khoshnevisan (Salt Lake City, Utah)

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

The following fact about "stochastic differential inequalities" is used in order to make the "coupling argument" work. Suppose:

- 1. X = non-negative, continuous L^2 -martingale with $X_0 = a^2 > 0$
- 2. X solves $dX_t = C_t dt + dM_t$ where $C_t \leq X_t$ and C is of bounded variation.

Lemma (KKMS 2020+)

Uniformly for all b, t > 0,

$$\operatorname{P}\left\{\inf_{s\leq t}X_s\neq 0\;,\;\int_0^t e^{-s}\,\frac{\mathrm{d}\langle X\rangle_s}{X_s}\geq b^2\right\}\lesssim \frac{a}{b}$$

Proof is a nice exercise.

Davar Khoshnevisan (Salt Lake City, Utah)

Stochastic Reaction Diffusion

14 / 14

イロト 不得 トイヨト イヨト 二日