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The basic problem in a simplified setting
O = 02 + b — ¥ + MWW

> Let T=[-1,1] ~R/Z
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The basic problem in a simplified setting
Aeh = 02 +1p — Y° + W
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Let T=[-1,1] ~R/Z
W = {W(t,x); t >0,x € T} = white noise on Ry x T
Cov[W(s,y), W(t,x)] = do(t — s)do(x — )
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The basic problem in a simplified setting
O = 02 + b — ¥ + MWW

v

Let T=[-1,1]~R/Z

W = {W(t,x); t >0,x € T} = white noise on Ry x T
Cov[W(s,y), W(t,x)] = do(t — s)do(x — y)

» A > 0 non random = noise level

To be concrete we will find ¢p = {¢(t,x); t > 0,x € T} such that

v

v

v

o) = P +1p — 3+ W on (0,00) x T,

and ¥(0) = o € C4(T) independent of W. More general SPDEs can
be studied as well.
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Spatio-temporal intermittency: Zimmerman et al (2000)
Aeh = 02 4+ 1p — Y° + W here, u <> 1

X
FIG. 1. Space-time evolution of u(x,f) in a persistent STI
regime. Black: u = 0, grey: u > 0. x and 7 ranges are (0,400)
and (0, 90) with periodic spatial boundary positions. The initial
condition is random in the interval uy(x) € (0,2.4). The other
parameter values are € = 0.95, a = 0.5, D = 2.0, h = 0.22,
Ax =1, Ar = 0.001.
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Onp = 030 + ¢ — P* + MW

Theorem (Kim, Mueller, Shiu, K, 2020+)

» This SPDE has a predictable random-field solution 1) that is unique
among all solution that are a.s. in C; (R4 x T).

> t— 9(t) is a Feller process with values on C,(T).

» If, in addition, 1o % 0 then ¥ (t,x) > 0 for all t >0 and x € T off a
single null set.

v

For earlier results see Cerrai (2003, 2008).
Is there an invariant measure? Is it unique? What does it look like?

Recall that ;o € M;(C(T)) is an invariant measure if

v

v

Yo~ p = P(t) ~uforall t >0.

Not hard to see that if )9 = 0 then ¢(t) = 0; i.e., g is invariant,
where 0(x) = 0 for all x € T. Is dp unique?

v
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On the invariant measure
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On the invariant measure
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Theorem (Kim, Mueller, Shiu, K, 2020+)

There exist non random numbers A\; > X\g > 0 such that:
1. If X\ > A1, then &g is the unique invariant measure of our SPDE.
Moreover, limsup,_, ., t~!log [|¢(t)|lcr) <0 a.s.
2. If A€ (0, Xo), then:
2.1 Mpy € Nae(o,1/2)Mi(CEo(T)) that is invariant;
2.2 The collection of all invariant probability measures is exactly
{ado + (1 —a)us; 0<a<1};

23 Yae(0,1/2) 3g>0: [exp (q||w\| T)) fi4 (dw) < 00;
2.4 pi(e)=limroe T lfo P{y(t) € o}dt in T.V.

» This proves predictions of Zimmerman et al (2000).
» One can replace ¢ — 1> by a more general reaction term V/(v). For
example, when V(1)) = 1 — 12, everything is the same except
1
Yo € (0,1/2) 3> 0: [exp (quwuc/jm) 114 (dw) < oo
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» One can say more about the extremal invariant measure ;4 when it is
known to exist [\ € (0, Ag)]. For example:
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On the invariant measure
O = 02 + 1 — ° + MW
» One can say more about the extremal invariant measure p4 when it is
known to exist [\ € (0, Ag)]. For example:

Theorem (Kim, Mueller, Shiu, K, 2020+)
1. For every 6 € (0,1) there exists A\g € (0, \g) such that
A€(0,)) = ,u+{weC+(T): ir;grw(x)gs}ﬁae Ve e (0,1
2. 4 (C¥T)) =1 forall « € (0,1/2). But i (CY?(T)) = 0;
3. For all non random Borel sets G C T,

dimgw(G) =1A2dimyg G for pi+-almost every w € C(T).

» Is there a sharp phase transition?
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Sketch of proof when noise is high
Oetp = Fp + 9 — ¥ + AW

» By a comparison argument, 0 < ¢) < v where
Dev = v+ v+ AW on (0,00) x T,

subject to v(0) = .
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limsup t~!log lu(t)llcry < —c\t as.
t—o00

> Therefore, limsup, ,, t~*log[[v(t)|lcry <1—cX* as.
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“Non rigorizable” sketch of proof when noise is low
Oetp = Fp + 9 — ¥ + AW

» Suppose Jg is the only invariant measure
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“Non rigorizable” sketch of proof when noise is low
Aeh = 02 4+ 1p — Y° + W

v

Suppose dg is the only invariant measure

v

Hopefully, 0 is an attractor
If so, then w.h.p., ¥(t,x) = 0 uniformly for all x € T when t > 1

In that case, 1) — ¢3 ~ 1) when t > 1, whence 1) ~ v, where as
before,

v

v

v = Pv+ v+ AW
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v

If so, then w.h.p., ¥(t,x) = 0 uniformly for all x € T when t > 1
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v
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Comments on dissipation

» As was mentioned, some of the above rests on our earlier work on the
dissipation of the parabolic Anderson model [KKMS 2020]
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dissipation of the parabolic Anderson model [KKMS 2020]
» Let u solve

deu = 02u + AuW on (0,00) x T,

with initial data u(0) =1

» We proved in (KKMS 2020) that the above dissipates [uniformly in x]
roughly as exp(—const - A\*t) as t — co. The proof of this fact hinges
on the following “counterpart to intermittency”:

Theorem (KKMS 2020)

There exist ty > 1, and event B(t) for all t > ty, and constant ¢ > 0
which is independent of t such that for all k > 2 there exist ¢y y, co x> 0
[independent of \] s.t.:

1. P(B:) > 1— cexp(—ct) for all t > ty; and for all t > ty,

Y
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dissipation of the parabolic Anderson model [KKMS 2020]
» Let u solve

deu = 02u + AuW on (0,00) x T,

with initial data u(0) =1

» We proved in (KKMS 2020) that the above dissipates [uniformly in x]
roughly as exp(—const - A\*t) as t — co. The proof of this fact hinges
on the following “counterpart to intermittency”:

Theorem (KKMS 2020)

There exist ty > 1, and event B(t) for all t > ty, and constant ¢ > 0
which is independent of t such that for all k > 2 there exist ¢y y, co x> 0
[independent of \] s.t.:

1. P(B:) > 1 — cexp(—ct) for all t > to; and for all t > ty,

2. e=aN't SE (infr |u(t)[5; B(t)) < E (supy [u(t)[%; B(t)) Se~et.
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Comments on the low-noise regime
Oetp = Fp + 9 — ¥ + AW

» Want to prove that if A < \g then there exists a unique non

degenerate invariant measure, provided that infr 1o > 0, say [we
actually need a little more]
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actually need a little more]

» We can do this in two steps:

1. There exists an invariant measure on Cs¢(T) [requires the
Krylov—Bogoliubov theorem]
2. The above is unique [requires 4 types of coupling]
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Comments on the low-noise regime
Onp = Fap + v —* + AW

» Want to prove that if A < \g then there exists a unique non
degenerate invariant measure, provided that infr 1o > 0, say [we
actually need a little more]

» We can do this in two steps:

1. There exists an invariant measure on Cs¢(T) [requires the
Krylov—Bogoliubov theorem]
2. The above is unique [requires 4 types of coupling]

Theorem (Krylov—Bogoliuobov, 1937)

If T s T [T P1{y(t) € o} dt is tight in Cso(T), then ¢ has an
invariant probab measure on Cs(T).

Davar Khoshnevisan (Salt Lake City, Utah) Stochastic Reaction Diffusion 10 / 14



Comments on the low-noise regime
Onp = 030 + ¢ — P* + MW

» Want to prove that if A < \g then there exists a unique non
degenerate invariant measure, provided that infr 1o > 0, say [we
actually need a little more]

» We can do this in two steps:

1. There exists an invariant measure on Cs¢(T) [requires the
Krylov—Bogoliubov theorem]
2. The above is unique [requires 4 types of coupling]

Theorem (Krylov—Bogoliuobov, 1937)

If T s T [T P1{y(t) € o} dt is tight in Cso(T), then ¢ has an
invariant probab measure on Cso(T).

» So we can prove tightness and deduce existence of invariant measure
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Comments on the low-noise regime: Tightness
Oetp = Fp + 9 — ¥ + AW

> Want: T T-1 [T Py{y(t) € o} dt is tight in Coo(T) when A < 1
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Comments on the low-noise regime: Tightness
Oetp = Fp + 9 — ¥ + AW

> Want: T T-1 [T P1{y(t) € o} dt is tight in Co(T) when A < 1
» Forall « € (0,1/2) and €,9 € (0,1), define

A = {f e CH(T): irqlrff > 5}, Bs = {f € CHT) : [[fllcery < (15}

xxxxxxxxxx
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Comments on the Iow—noise regime: Tightness
Oetp = 024 + b — P* + MW

> Want: T T-1 [T P1{y(t) € o} dt is tight in Co(T) when A < 1
» Forall « € (0,1/2) and €, € (0,1), define

1
AE = {f € CQ(T) . ”’J]Tff Z 5}, B(; = {f S CQ(T) . HfHCa(']I‘) < 5} .
» Bjs is compact [Arzéla—Ascoli], A is closed, .. it suffices to prove that

| li E 1 dt| =
time 28 [ tucopnca ] <o

xxxxxxxxxx
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Comments on the low-noise regime: Tightness
Ocp = 8%p + 9 — * + MW

> Want: T T-1 [T Py{y(t) € o} dt is tight in Coo(T) when A < 1
» Forall « € (0,1/2) and €, € (0,1), define

Aa = {f € CQ(T) . I%ff 2 6}7 35 = {f S CQ(T) . HfHCO‘(']I‘) < (]5-} .

» Bjs is compact [Arzéla—Ascoli], A is closed, .. it suffices to prove that

lim li E 1 dt| =
50 T T 1 [/ {9(1)gAN s} ] 0

Proposition (KKMS 2020+)
sup;>, E1 <|]¢(t)|]ka(T)> <oo Vn>0,a€(0,1/2),k>2. .
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Comments on the low-noise regime: Tightness
Oetp = Fp + 9 — ¥ + AW

» Want: T+ T71 fOT P1{y(t) € o} dt is tight in C5(T) when A < 1
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Comments on the low-noise regime: Tightness
Oetp = Fp + 9 — ¥ + AW

> Want: T T-1 [T P1{y(t) € o} dt is tight in Co(T) when A < 1

» Because of the preceding slide, it suffices to prove that, when A < 1,

. IR
I|mI|msup7_/O Pl{l%fw(t)<s}dt—0.

el Tooo
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Comments on the low-noise regime: Tightness
Aeh = 02 4+ 1p — Y° + W

> Want: T T-1 [T P1{y(t) € o} dt is tight in Co(T) when A < 1
» Because of the preceding slide, it suffices to prove that, when A < 1,

1 T
limlimsu / P {inf t <z—:}dt:0.
el0 T—>oopT o T vit)

» Once proved, this will allow us to invoke Krylov—Bogoliuobov's
theorem to deduce the existence of an non-degenerate invariant
measure
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Comments on the low-noise regime: Tightness
O = 02 + 1 — ° + MW

> Want: T T-1 [T P1{y(t) € o} dt is tight in Cso(T) when A < 1
» Because of the preceding slide, it suffices to prove that, when A < 1,

. IR
lim lim supT/O Py {Ifq}f@[)(t) < 5} dt = 0.

el Tooo

» Once proved, this will allow us to invoke Krylov—Bogoliuobov's
theorem to deduce the existence of an non-degenerate invariant
measure

» This will use a “random walk argument” (a la Mueller, 1991 + a
large deviations lemma)
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Comments on the low-noise regime: Tightness
O = 02 + 1 — ° + MW

>

>

Want: T — T-1 [T P1{i(t) € o} dt is tight in Cso(T) when A < 1
Because of the preceding slide, it suffices to prove that, when A <« 1,

. IR
lim lim supT/0 Py {Ifq}f@[)(t) < 5} dt = 0.

el Tooo

Once proved, this will allow us to invoke Krylov—Bogoliuobov's
theorem to deduce the existence of an non-degenerate invariant
measure

This will use a “random walk argument” (a la Mueller, 1991 + a
large deviations lemma)

Uniqueness will use a “coupling argument” (a la Mueller, 1993 + a
lemma from stoch analysis)
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A large deviations lemma

The following is used in order to make the “random walk argument” work:

Lemma (KKMS 2020+)
Let {Z,}°° beiid. withp=P{Z; =1} >1/2 and
q=P{Z; =—-1} =1—p. Then,

00 k/2

VApq <q>
§ P{Zi+ - +Z, < —ki<—YT"L (2 Vk > 0.
pr { ) 1—-+4pg \p

Proof is a nice exercise.

vvvvvvvvvv
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A stochastic analysis lemma

The following fact about “stochastic differential inequalities” is used in
order to make the “coupling argument” work. Suppose:

1. X = non-negative, continuous L?-martingale with Xg = a®> > 0
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A stochastic analysis lemma

The following fact about “stochastic differential inequalities” is used in
order to make the “coupling argument” work. Suppose:

1. X = non-negative, continuous L?-martingale with Xg = a®> > 0

2. X solves dX; = Cydt + dM; where C; < X; and C is of bounded
variation.
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A stochastic analysis lemma

The following fact about “stochastic differential inequalities” is used in
order to make the “coupling argument” work. Suppose:

1. X = non-negative, continuous L?-martingale with Xg = a®> > 0

2. X solves dX; = Cydt + dM; where C; < X; and C is of bounded
variation.

Lemma (KKMS 2020+)
Uniformly for all b, t > 0,

f s d(X)s
H —S > 2 <
P{Su%fthyéO,/Oe X. _b}N

oo

Proof is a nice exercise.
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