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The basic problem in a simplified setting
∂tψ = ∂2

xψ + ψ − ψ3 + λψẆ

I Let T = [−1 , 1] ' R/Z

I Ẇ = {Ẇ (t , x); t ≥ 0, x ∈ T} = white noise on R+ × T
I Cov[Ẇ (s , y) , Ẇ (t , x)] = δ0(t − s)δ0(x − y)

I λ > 0 non random = noise level

I To be concrete we will find ψ = {ψ(t , x); t ≥ 0, x ∈ T} such that

∂tψ = ∂2
xψ + ψ − ψ3 + λψẆ on (0 ,∞)× T,

and ψ(0) = ψ0 ∈ C+(T) independent of Ẇ . More general SPDEs can
be studied as well.
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I Let T = [−1 , 1] ' R/Z
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Spatio-temporal intermittency: Zimmerman et al (2000)
∂tψ = ∂2

xψ + ψ − ψ3 + λψẆ here, u ↔ ψ

Davar Khoshnevisan (Salt Lake City, Utah) Stochastic Reaction Diffusion 3 / 14



Well posedness and Markov property
∂tψ = ∂2

xψ + ψ − ψ3 + λψẆ

Theorem (Kim, Mueller, Shiu, K, 2020+)

I This SPDE has a predictable random-field solution ψ that is unique
among all solution that are a.s. in C+(R+ × T).

I t 7→ ψ(t) is a Feller process with values on C+(T).
I If, in addition, ψ0 6≡ 0 then ψ(t , x) > 0 for all t > 0 and x ∈ T off a

single null set.

I For earlier results see Cerrai (2003, 2008).
I Is there an invariant measure? Is it unique? What does it look like?
I Recall that µ ∈ M1(C (T)) is an invariant measure if

ψ0 ∼ µ ⇒ ψ(t) ∼ µ for all t > 0.

I Not hard to see that if ψ0 ≡ 0 then ψ(t) ≡ 0; i.e., δ0 is invariant,
where 0(x) = 0 for all x ∈ T. Is δ0 unique?
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Theorem (Kim, Mueller, Shiu, K, 2020+)

I This SPDE has a predictable random-field solution ψ that is unique
among all solution that are a.s. in C+(R+ × T).

I t 7→ ψ(t) is a Feller process with values on C+(T).
I If, in addition, ψ0 6≡ 0 then ψ(t , x) > 0 for all t > 0 and x ∈ T off a

single null set.

I For earlier results see Cerrai (2003, 2008).
I Is there an invariant measure? Is it unique? What does it look like?
I Recall that µ ∈ M1(C (T)) is an invariant measure if

ψ0 ∼ µ ⇒ ψ(t) ∼ µ for all t > 0.

I Not hard to see that if ψ0 ≡ 0 then ψ(t) ≡ 0; i.e., δ0 is invariant,
where 0(x) = 0 for all x ∈ T. Is δ0 unique?

Davar Khoshnevisan (Salt Lake City, Utah) Stochastic Reaction Diffusion 4 / 14



Well posedness and Markov property
∂tψ = ∂2

xψ + ψ − ψ3 + λψẆ
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On the invariant measure
∂tψ = ∂2

xψ + ψ − ψ3 + λψẆ

Theorem (Kim, Mueller, Shiu, K, 2020+)

There exist non random numbers λ1 > λ0 > 0 such that:

1. If λ > λ1, then δ0 is the unique invariant measure of our SPDE.
Moreover, lim supt→∞ t−1 log ‖ψ(t)‖C(T) < 0 a.s.

2. If λ ∈ (0 , λ0), then:

2.1 ∃!µ+ ∈ ∩α∈(0,1/2)M1(C
α
>0(T)) that is invariant;

2.2 The collection of all invariant probability measures is exactly
{aδ0 + (1− a)µ+; 0 ≤ a ≤ 1};

2.3 ∀α ∈ (0 , 1/2) ∃q > 0 :
∫
exp

(
q‖ω‖1/3

Cα(T)

)
µ+(dω) <∞;

2.4 µ+(•) = limT→∞ T−1
∫ T

0
P{ψ(t) ∈ •} dt in T.V.

I This proves predictions of Zimmerman et al (2000).
I One can replace ψ − ψ3 by a more general reaction term V (ψ). For

example, when V (ψ) = ψ − ψ2, everything is the same except

∀α ∈ (0 , 1/2) ∃q > 0 :
∫

exp
(
q‖ω‖1/4

Cα(T)

)
µ+(dω) <∞
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Theorem (Kim, Mueller, Shiu, K, 2020+)

There exist non random numbers λ1 > λ0 > 0 such that:

1. If λ > λ1, then δ0 is the unique invariant measure of our SPDE.

Moreover, lim supt→∞ t−1 log ‖ψ(t)‖C(T) < 0 a.s.
2. If λ ∈ (0 , λ0), then:

2.1 ∃!µ+ ∈ ∩α∈(0,1/2)M1(C
α
>0(T)) that is invariant;

2.2 The collection of all invariant probability measures is exactly
{aδ0 + (1− a)µ+; 0 ≤ a ≤ 1};

2.3 ∀α ∈ (0 , 1/2) ∃q > 0 :
∫
exp

(
q‖ω‖1/3

Cα(T)

)
µ+(dω) <∞;

2.4 µ+(•) = limT→∞ T−1
∫ T

0
P{ψ(t) ∈ •} dt in T.V.

I This proves predictions of Zimmerman et al (2000).
I One can replace ψ − ψ3 by a more general reaction term V (ψ). For

example, when V (ψ) = ψ − ψ2, everything is the same except

∀α ∈ (0 , 1/2) ∃q > 0 :
∫

exp
(
q‖ω‖1/4

Cα(T)

)
µ+(dω) <∞

Davar Khoshnevisan (Salt Lake City, Utah) Stochastic Reaction Diffusion 5 / 14



On the invariant measure
∂tψ = ∂2

xψ + ψ − ψ3 + λψẆ
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Theorem (Kim, Mueller, Shiu, K, 2020+)

There exist non random numbers λ1 > λ0 > 0 such that:

1. If λ > λ1, then δ0 is the unique invariant measure of our SPDE.
Moreover, lim supt→∞ t−1 log ‖ψ(t)‖C(T) < 0 a.s.

2. If λ ∈ (0 , λ0), then:

2.1 ∃!µ+ ∈ ∩α∈(0,1/2)M1(C
α
>0(T)) that is invariant;

2.2 The collection of all invariant probability measures is exactly
{aδ0 + (1− a)µ+; 0 ≤ a ≤ 1};

2.3 ∀α ∈ (0 , 1/2) ∃q > 0 :
∫
exp

(
q‖ω‖1/3

Cα(T)

)
µ+(dω) <∞;

2.4 µ+(•) = limT→∞ T−1
∫ T

0
P{ψ(t) ∈ •} dt in T.V.

I This proves predictions of Zimmerman et al (2000).
I One can replace ψ − ψ3 by a more general reaction term V (ψ). For

example, when V (ψ) = ψ − ψ2, everything is the same except

∀α ∈ (0 , 1/2) ∃q > 0 :
∫

exp
(
q‖ω‖1/4

Cα(T)

)
µ+(dω) <∞

Davar Khoshnevisan (Salt Lake City, Utah) Stochastic Reaction Diffusion 5 / 14



On the invariant measure
∂tψ = ∂2

xψ + ψ − ψ3 + λψẆ
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On the invariant measure
∂tψ = ∂2

xψ + ψ − ψ3 + λψẆ

I One can say more about the extremal invariant measure µ+ when it is
known to exist [λ ∈ (0 , λ0)]. For example:

Theorem (Kim, Mueller, Shiu, K, 2020+)

1. For every θ ∈ (0 , 1) there exists λθ ∈ (0 , λ0) such that

λ ∈ (0 , λθ) ⇒ µ+

{
ω ∈ C+(T) : inf

x∈T
ω(x) ≤ ε

}
. εθ ∀ε ∈ (0 , 1);

2. µ+(Cα(T)) = 1 for all α ∈ (0 , 1/2). But µ+(C 1/2(T)) = 0;
3. For all non random Borel sets G ⊂ T,

dimH ω(G ) = 1 ∧ 2 dimH G for µ+-almost every ω ∈ C (T).

I Is there a sharp phase transition?
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Sketch of proof when noise is high
∂tψ = ∂2

xψ + ψ − ψ3 + λψẆ

I By a comparison argument, 0 ≤ ψ ≤ v where

∂tv = ∂2
xv + v + λvẆ on (0 ,∞)× T,

subject to v(0) = ψ0.

I v(t , x) = exp(t)u(t , x) where

∂tu = ∂2
xu + λuẆ on (0 ,∞)× T,

subject to u(0) = ψ0.

I Kim-Mueller-Shiu-K (2020):∃c > 0 [independently of λ] s.t.

lim sup
t→∞

t−1 log ‖u(t)‖C(T) ≤ −cλ4 a.s.

I Therefore, lim supt→∞ t−1 log ‖v(t)‖C(T) ≤ 1− cλ4 a.s.

I ⇒ if λ > c−1/4 then lim supt→∞ t−1 log ‖ψ(t)‖C(T) < 0 a.s.
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xu + λuẆ on (0 ,∞)× T,

subject to u(0) = ψ0.

I Kim-Mueller-Shiu-K (2020):∃c > 0 [independently of λ] s.t.

lim sup
t→∞

t−1 log ‖u(t)‖C(T) ≤ −cλ4 a.s.

I Therefore, lim supt→∞ t−1 log ‖v(t)‖C(T) ≤ 1− cλ4 a.s.

I ⇒ if λ > c−1/4 then lim supt→∞ t−1 log ‖ψ(t)‖C(T) < 0 a.s.

Davar Khoshnevisan (Salt Lake City, Utah) Stochastic Reaction Diffusion 7 / 14



Sketch of proof when noise is high
∂tψ = ∂2

xψ + ψ − ψ3 + λψẆ
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“Non rigorizable” sketch of proof when noise is low
∂tψ = ∂2

xψ + ψ − ψ3 + λψẆ

I Suppose δ0 is the only invariant measure

I Hopefully, 0 is an attractor

I If so, then w.h.p., ψ(t , x) ≈ 0 uniformly for all x ∈ T when t � 1

I In that case, ψ − ψ3 ≈ ψ when t � 1, whence ψ ≈ v , where as
before,

∂tv = ∂2
xv + v + λvẆ

I Kim-Mueller-Shiu-K (2020):∃C > 0 [independently of λ] s.t.

lim inf
t→∞

t−1 inf
x∈T

log v(t , x) ≥ 1− Cλ4 a.s.

I This would suggest that lim inft→∞ t−1 logψ(t , x) ≥ 1− Cλ4 > 0
when λ ∈ (0 ,C−1/4)

I This would yield a contradiction, though we can’t rigorize this method
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I Kim-Mueller-Shiu-K (2020):∃C > 0 [independently of λ] s.t.

lim inf
t→∞

t−1 inf
x∈T

log v(t , x) ≥ 1− Cλ4 a.s.

I This would suggest that lim inft→∞ t−1 logψ(t , x) ≥ 1− Cλ4 > 0
when λ ∈ (0 ,C−1/4)

I This would yield a contradiction, though we can’t rigorize this method

Davar Khoshnevisan (Salt Lake City, Utah) Stochastic Reaction Diffusion 8 / 14



“Non rigorizable” sketch of proof when noise is low
∂tψ = ∂2

xψ + ψ − ψ3 + λψẆ
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Comments on dissipation
I As was mentioned, some of the above rests on our earlier work on the

dissipation of the parabolic Anderson model [KKMS 2020]

I Let u solve

∂tu = ∂2
xu + λuẆ on (0 ,∞)× T,

with initial data u(0) ≡ 1
I We proved in (KKMS 2020) that the above dissipates [uniformly in x ]

roughly as exp(−const · λ4t) as t →∞. The proof of this fact hinges
on the following “counterpart to intermittency”:

Theorem (KKMS 2020)

There exist t0 ≥ 1, and event B(t) for all t ≥ t0, and constant c > 0
which is independent of t such that for all k ≥ 2 there exist c1,k , c2,k > 0
[independent of λ] s.t.:

1. P(Bt) ≥ 1− c exp(−ct) for all t ≥ t0; and for all t ≥ t0,

2. e−c1λ
4t . E

(
infT |u(t)|k ;B(t)

)
≤ E

(
supT |u(t)|k ;B(t)

)
. e−c2λ

4t .
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roughly as exp(−const · λ4t) as t →∞. The proof of this fact hinges
on the following “counterpart to intermittency”:

Theorem (KKMS 2020)

There exist t0 ≥ 1, and event B(t) for all t ≥ t0, and constant c > 0
which is independent of t such that for all k ≥ 2 there exist c1,k , c2,k > 0
[independent of λ] s.t.:

1. P(Bt) ≥ 1− c exp(−ct) for all t ≥ t0; and for all t ≥ t0,

2. e−c1λ
4t . E

(
infT |u(t)|k ;B(t)

)
≤ E

(
supT |u(t)|k ;B(t)

)
. e−c2λ

4t .
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Comments on the low-noise regime
∂tψ = ∂2

xψ + ψ − ψ3 + λψẆ

I Want to prove that if λ < λ0 then there exists a unique non
degenerate invariant measure, provided that infT ψ0 > 0, say [we
actually need a little more]

I We can do this in two steps:

1. There exists an invariant measure on C>0(T) [requires the
Krylov–Bogoliubov theorem]

2. The above is unique [requires 4 types of coupling]

Theorem (Krylov–Bogoliuobov, 1937)

If T 7→ T−1
∫ T

0 P1{ψ(t) ∈ •}dt is tight in C>0(T), then ψ has an
invariant probab measure on C>0(T).

I So we can prove tightness and deduce existence of invariant measures
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Comments on the low-noise regime: Tightness
∂tψ = ∂2

xψ + ψ − ψ3 + λψẆ

I Want: T 7→ T−1
∫ T

0 P1{ψ(t) ∈ •}dt is tight in C>0(T) when λ� 1

I For all α ∈ (0 , 1/2) and ε, δ ∈ (0 , 1), define

Aε =

{
f ∈ Cα(T) : inf

T
f ≥ ε

}
, Bδ =

{
f ∈ Cα(T) : ‖f ‖Cα(T) ≤

1

δ

}
.

I Bδ is compact [Arzéla–Ascoli], Aε is closed, ∴ it suffices to prove that

lim
ε,δ↓0

lim sup
T→∞

1

T
E1

[∫ T

0
1{ψ(t)6∈Aε∩Bδ} dt

]
= 0.

Proposition (KKMS 2020+)

supt≥η E1

(
‖ψ(t)‖kCα(T)

)
<∞ ∀η > 0, α ∈ (0 , 1/2), k ≥ 2.
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Comments on the low-noise regime: Tightness
∂tψ = ∂2

xψ + ψ − ψ3 + λψẆ

I Want: T 7→ T−1
∫ T

0 P1{ψ(t) ∈ •}dt is tight in C>0(T) when λ� 1

I Because of the preceding slide, it suffices to prove that, when λ� 1,

lim
ε↓0

lim sup
T→∞

1

T

∫ T

0
P1

{
inf
T
ψ(t) < ε

}
dt = 0.

I Once proved, this will allow us to invoke Krylov–Bogoliuobov’s
theorem to deduce the existence of an non-degenerate invariant
measure

I This will use a “random walk argument” (à la Mueller, 1991 + a
large deviations lemma)

I Uniqueness will use a “coupling argument” (à la Mueller, 1993 + a
lemma from stoch analysis)
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large deviations lemma)

I Uniqueness will use a “coupling argument” (à la Mueller, 1993 + a
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A large deviations lemma

The following is used in order to make the “random walk argument” work:

Lemma (KKMS 2020+)

Let {Zn}∞n=1 be i.i.d. with p = P{Z1 = 1} > 1/2 and
q = P{Z1 = −1} = 1− p. Then,

∞∑
n=1

P {Z1 + · · ·+ Zn ≤ −k} ≤
√

4pq

1−
√

4pq

(
q

p

)k/2

∀k ≥ 0.

Proof is a nice exercise.
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A stochastic analysis lemma

The following fact about “stochastic differential inequalities” is used in
order to make the “coupling argument” work. Suppose:

1. X = non-negative, continuous L2-martingale with X0 = a2 > 0

2. X solves dXt = Ct dt + dMt where Ct ≤ Xt and C is of bounded
variation.

Lemma (KKMS 2020+)

Uniformly for all b, t > 0,

P

{
inf
s≤t

Xs 6= 0 ,

∫ t

0
e−s

d〈X 〉s
Xs

≥ b2

}
.

a

b
.

Proof is a nice exercise.
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