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Introduction 2/18

We consider

the characteristics of solvability and continuity in a parameter of solutions
of the most general (generic) classes of one-dimensional inhomogeneous
boundary-value problems for systems of linear ordinary di�erential
equations of an arbitrary order in Sobolev spaces on a �nite interval.

The mathematician Samoilenko A. dealt with this topic. And now it is
actively engaged in such mathematicians as:

Boichuk O.,
Kiguradze I., Ashordia M.
Mikhailets V., Murach O.
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Let a �nite interval (a,b)⊂ R and parameters {m, n, r, l} ⊂ N, 1≤ p≤ ∞,
be given.

Linear boundary-value problem

(Ly)(t) := y(r)(t)+
r

∑
j=1

Ar−j(t)y(r−j)(t) = f (t), t ∈ (a,b), (1)

By = c. (2)

Here matrix-valued functions Ar−j(·) ∈ (Wn
p )

m×m, vector-valued function

f (·) ∈ (Wn
p )

m, vector c ∈ Cl, linear continuous operator

B : (Wn+r
p )m→ Cl (3)

are arbitrarily chosen; vector-valued function y(·) ∈ (Wn+r
p )m is unknown.

The solutions of equation (1) �ll the space (Wn+r
p )m if its right-hand side

f (·) runs through the space (Wn
p )

m. Hence, the condition (2) with
operator (3) is generic condition for this equation.

It includes all known types of classical boundary conditions and numerous
nonclassical conditions containing the derivatives (in general fractional)
y(k)(·) with 0 < k ≤ n+ r.
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Complex Sobolev space Wn+r
p := Wn+r

p
(
[a,b];C

)
Wn+r

p
(
[a,b];C

)
:=
{

y ∈ Cn+r−1[a,b] : y(n+r−1) ∈ AC[a,b], y(n+r) ∈ Lp[a,b]
}

This space is Banach relative to the norm∥∥y
∥∥

n+r,p =
n+r−1

∑
k=0

∥∥y(k)
∥∥

p +
∥∥y(n+r)∥∥

p,

where ‖ · ‖p is the norm in Lp
(
[a,b];C

)
.

By ‖ · ‖n+r,p, we also denote the norms in Banach spaces

(
Wn+r

p
)m := Wn+r

p
(
[a,b];Cm) and

(
Wn+r

p
)m×m := Wn+r

p
(
[a,b];Cm×m).

They consist of the vector-valued functions and matrix-valued functions,
respectively, all components of which belong to Wn+r

p .
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Fredholm boundary-value problem and its index 5/18

With problem (1), (2), we associate the linear operator

(L,B) : (Wn+r
p )m→ (Wn

p )
m×Cl. (4)

A linear continuous operator T : X→ Y, where X and Y are Banach
spaces, is called a Fredholm operator if its kernel kerT and cokernel
Y/T(X) are �nite-dimensional. If this operator is Fredholm, then its range
T(X) is closed in Y and the index is �nite:

indT := dimkerT−dim(Y/T(X)) ∈ Z.

Theorem 1.

The linear operator (4) is a bounded Fredholm operator with index mr− l.

Family of matrix Cauchy problems with the initial conditions

Y(r)
k (t)+

r

∑
j=1

Ar−j(t)Y
(r−j)
k (t) = Om, t ∈ (a,b),

Y(j−1)
k (a) = δk,jIm, j ∈ {1, . . . ,r}.
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By [BYk], we denote the numerical m× l matrix, in which j-th column is
result of the action of B on j-th column of Yk(·).
De�nition 1.

A block numerical matrix

M(L,B) := ([BY0] , . . . , [BYr−1]) ∈ Cmr×l (5)

is characteristic matrix to problem (1), (2). It consists of r rectangular
block columns [BYk(·)] ∈ Cm×l.

Theorem 2.

The dimensions of kernel and cokernel of the operator (4) are equal to

the dimensions of kernel and cokernel of matrix (5), respectively:

dimker(L,B) = dimker
(
M(L,B)

)
,

dimcoker(L,B) = dimcoker
(
M(L,B)

)
.

Corollary 1.

The operator (4) is invertible if and only if l = mr and the matrix

M(L,B) is nondegenerate.
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Consider problem (1), (2) putting A(t)≡ 0 with the next boundary
conditions:

By =
n−1

∑
k=0

αky(k)(a)+
∫ b

a
Φ(t)y(n)(t)dt, y(·) ∈ (Wn

p )
m.

Then we have

BY =
n−1

∑
s=0

αsY(s)(a)+
∫ b

a
Φ(t)Y(n)(t)dt, Y(·) = Im,

M(L,B) = α0.

The numerical matrix α0 does not depend on p, α1, . . . ,αn−1, and Φ(·).
Thus, the statement of Theorem 2 holds:

dimker(M(L,B)) = dimker(α0),

dimcoker(M(L,B)) = dimcoker(α0).
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Boundary-value problems depending on the parameter k ∈ N

L(k)y(t,k) := y(r)(t,k)+
r

∑
j=1

Ar−j(t,k)y(r−j)(t,k) = f (t,k), t ∈ (a,b), (6)

B(k)y(·,k) = c(k), k ∈ N, (7)

where Ar−j(·,k), f (·,k), c(k), and linear continuous operator B(k) satisfy
the above conditions to problem (1), (2).

The sequence of linear continuous operators

(L(k),B(k)) : (Wn+r
p )m→ (Wn

p )
m×Cl,

and characteristic matrices

M
(
L(k),B(k)

)
:=
(
[B(k)Y0(·,k)] , . . . , [B(k)Yr−1(·,k)]

)
⊂ Cmr×l.

Theorem 3.

If the sequence of operators
(
L(k),B(k)

)
converges strongly to the

operator
(
L,B
)
then the sequence of characteristic matrices

M
(
L(k),B(k)

)
converges to the matrix M

(
L,B
)
for k→ ∞.
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Corollary 2.

Under assumptions in Theorem 3, the following inequalities hold starting

with su�ciently large k:

dimker(L(k),B(k))≤ dimker(L,B) ,
dimcoker(L(k),B(k))≤ dimcoker(L,B) .

In particular, for su�ciently large k, we have:

1) if l = mr and operator (L,B) is invertible, then the operators
(L(k),B(k)) are also invertible;

2) if problem (1), (2) has a solution, then problems (6), (7) also have a
solution;

3) if problem (1), (2) has a unique solution, then problems (6), (7) also
have a unique solution [1, 3, 4].
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Boundary-value problem depending on a parameter ε ∈ [0,ε0)

L(ε)y(t,ε) := y(r)(t,ε)+
r

∑
j=1

Ar−j(t,ε)y(r−j)(t,ε) = f (t,ε), t ∈ (a,b), (8)

B(ε)y(·;ε) = c(ε), (9)

where a linear continuous operator
B(ε) : (Wn+r

p )m→ Crm.

According to Theorem 1, problem (8), (9) is a Fredholm one with
zero index for every ε ∈ [0,ε0).

De�nition 2.

The solution to the problem (8), (9) depends continuously
on a parameter ε at ε = 0 if the conditions are satis�ed:

(∗) there exists a positive number ε1 < ε0 such that, for any ε ∈ [0,ε1)
and arbitrary chosen f (·;ε) ∈ (Wn

p )
m, c(ε) ∈ Crm, this problem has a

unique solution y(·;ε) ∈ (Wn+r
p )m;

(∗∗) the convergence of right-hand sides f (·;ε)→ f (·;0) and c(ε)→ c(0)
implies the convergence of solutions

y(·;ε)→ y(·;0) in (Wn+r
p )m as ε → 0+ .



Criterion of continuous dependence on a parameter 11/18

Consider the following conditions:

(0) the homogeneous boundary-value problem

L(0)y(t,0) = 0, t ∈ (a,b), B(0)y(·,0) = 0

has only the trivial solution;

(I) Ar−j(·;ε)→ Ar−j(·;0) in (Wn
p )

m×m for every j ∈ {1, . . . ,r};
(II) B(ε)y→ B(0)y in Crm for every y ∈ (Wn+r

p )m.

Theorem 4.

The solution to the problem (8), (9) depends continuously on the
parameter ε at ε = 0 if and only if this problem satis�es Conditions (0),
(I), and (II).
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We supplement our result with a two-sided estimate of the error∥∥y(·;0)− y(·;ε)
∥∥

n+r,p of solution y(·;ε) via its discrepancy

d̃n,p(ε) :=
∥∥L(ε)y(·;0)− f (·;ε)

∥∥
n,p +

∥∥B(ε)y(·;0)− c(ε)
∥∥
Crm .

Here, we interpret y(·;0) as an approximate solution to problem (8), (9).

Theorem 5.

Let the problem (8), (9) satis�es Conditions (0), (I), and (II). Then there
exist positive numbers ε2 < ε1, γ1, and γ2, such that

γ1 d̃n,p(ε)≤
∥∥y(·;0)− y(·;ε)

∥∥
n+r,p ≤ γ2 d̃n,p(ε)

for any ε ∈ (0,ε2). Here, the numbers ε2, γ1, and γ2 do not depend on
y(·;0), and y(·;ε).

Thus, the error and discrepancy of the solution to problem (8), (9) are of
the same degree of smallness [2, 6, 7].
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For any ε ∈ [0,ε0), ε0 > 0, we associate with the system (8)

multi-point Fredholm boundary condition

B(ε)y(·,ε) =
N

∑
j=0

ωj(ε)

∑
k=1

n+r−1

∑
l=0

β
(l)
j,k (ε)y

(l)(tj,k(ε),ε) = q(ε), (10)

where the numbers {N,ωj(ε)} ⊂ N, vectors q(ε) ∈ Crm, matrices

β
(l)
j,k (ε) ∈ Cm×m, and points {tj, tj,k(ε)} ⊂ [a,b] are arbitrarily given.

It is not assumed that the coe�cients Ar−j(·,ε), β
(l)
j,k (ε) or points tj,k(ε)

have a certain regularity on the parameter ε as ε > 0. It will be required
that for each �xed j ∈ {1, . . . ,N} all the points tj,k(ε) have a common
limit as ε → 0+, but for the zero-point series t0,k(ε) this requirement will
not be necessary.

The solution y = y(·,ε) of the multi-point boundary-value problem (8),
(10) is continuous on the parameter ε if it exists, is unique, and satis�es
the limit relation∥∥y(·,ε)− y(·,0)

∥∥
n+r,p→ 0 as ε → 0+ . (11)
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Assumptions as ε → 0+:

(α) tj,k(ε)→ tj for all j ∈ {1, . . . ,N}, and k ∈ {1, . . . ,ωj(ε)};

(β )
ωj(ε)

∑
k=1

β
(l)
j,k (ε)→ β

(l)
j for all j ∈ {1, . . . ,N}, and l ∈ {0, . . . ,n+ r−1};

(γ)
ωj(ε)

∑
k=1

∥∥β
(l)
j,k (ε)

∥∥∣∣tj,k(ε)− tj
∣∣→ 0 for all j ∈ {1, . . . ,N},

k ∈ {1, . . . ,ωj(ε)}, and l ∈ {0, . . . ,n+ r−1};

(δ )
ω0(ε)

∑
k=1

∥∥β
(l)
0,k(ε)

∥∥→ 0 for all k ∈ {1, . . . ,ω0(ε)}, and

l ∈ {0, . . . ,n+ r−1}.

Assumptions (β ) and (γ) imply that the norms of the coe�cients β
(l)
j,k (ε)

can increase as ε → 0+, but not too fast.

Theorem 6.

Let the boundary-value problem (8), (10) for p = ∞ satisfy the
assumptions (α), (β ), (γ), (δ ). Then it satis�es the limit condition (II).
If, moreover, the conditions (0) and (I) are ful�lled, then for a su�ciently
small ε its solution exists, is unique and satis�es the limit relation (11).
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Assumptions as ε → 0+:

(γp)
ωj(ε)

∑
k=1

∥∥β
(n+r−1)
j,k (ε)

∥∥∣∣tj,k(ε)− tj
∣∣1/p

′

= O(1) for all j ∈ {1, . . . ,N}, and

k ∈ {1, . . . ,ωj(ε)};

(γ ′)
ωj(ε)

∑
k=1

∥∥β
(l)
j,k (ε)

∥∥∣∣tj,k(ε)− tj
∣∣→ 0 for all j ∈ {1, . . . ,N},

k ∈ {1, . . . ,ωj(ε)}, and l ∈ {0, . . . ,n+ r−2}.

Theorem 7.

Let the boundary-value problem (8), (10) for 1≤ p < ∞ satisfy the
assumptions (α), (β ), (γp), (γ

′), (δ ). Then it satis�es the limit
condition (II). If, moreover, the conditions (0) and (I) are ful�lled, then
for a su�ciently small ε its solution exists, is unique and satis�es the
limit relation (11) [5, 8].
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The systems of conditions (α), (β ), (γ), (δ ) and (α), (β ), (γp), (γ
′), (δ )

do not guarantee uniform convergence of continuous operators B(ε) to
B(0) as ε→ 0+. Therefore, Theorems 6, 7 do not follow from the general
facts of the theory of linear operators.
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