PART I
 PART II
 PART IV
 PART V
 Part VI
 PART VI

 0
 00
 000
 0000000
 0000
 0000000
 00000000

A Stochastic Model of Avian Influenza H5N1 in Migratory Birds.

Ummugul Bulut & Tamer Oraby, Erwin Suazo, and Jose Palacio

Texas A&M University San Antonio University of Texas at Rio Grande Valley

Gaussian Random Fields, Fractals, SPDEs, and Extremes August 5, 2021

PART I	PART II	PART III	PART IV	PART V	Part VI	PART VII
○	00	000	00000000	0000	00000000	0000000
Ackno	wledgem	ent				

I would like to thank to Dr. Diagana, Dr. Nane, and Dr. Wu for organizing this conference.

PART I	PART II	PART III	PART IV	PART V	Part VI	PART VII

This presentation includes five parts

PART I	PART II	PART III	PART IV	PART V	Part VI	PART VII
○	00	000	00000000	0000	00000000	0000000
This p	presentati	ion incluc	les five pai	rts		

• Part I: Introduction to the dynamics of avian influenza

PART I	PART II	PART III	PART IV	PART V	Part VI	PART VII
o	00	000		0000	00000000	0000000
This p	oresentati	on includ	les five pa	rts		

- Part I: Introduction to the dynamics of avian influenza
- **Part II:** Aquatic bird migration facts and control strategies of the panzootic disease

PART I	PART II	PART III	PART IV	PART V	Part VI	PART VII
O	00	000		0000	00000000	0000000
This p	resentati	ion includ	les five pa	rts		

- Part I: Introduction to the dynamics of avian influenza
- **Part II:** Aquatic bird migration facts and control strategies of the panzootic disease
- Part III: Fisher Kolmogorov type equations

PART I	PART II	PART III	PART IV	PART V	Part VI	PART VII
O	00	000	00000000	0000	00000000	0000000
This n	resentati	on includ	les five pa	rts		

- Part I: Introduction to the dynamics of avian influenza
- **Part II:** Aquatic bird migration facts and control strategies of the panzootic disease
- Part III: Fisher Kolmogorov type equations
- Part IV: Stochastic SI model with space-uniform white noise

PART I O	PART II 00	PART III 000	PART IV	PART V 0000	Part VI 00000000	PART VII 0000000
This p	resentati	ion includ	les five pa	rts		

- Part I: Introduction to the dynamics of avian influenza
- **Part II:** Aquatic bird migration facts and control strategies of the panzootic disease
- Part III: Fisher Kolmogorov type equations
- Part IV: Stochastic SI model with space-uniform white noise
- Part V: Results:Exact solution of stochastic Fisher's equation. of Exact and numerical solutions (using a stochastic mesh) of stochastic SI model

PART I	PART II	PART III	PART IV	PART V	Part VI	PART VII
O	00	000	00000000	0000	00000000	0000000
This r	presentati	ion includ	les five pai	rts		

- Part I: Introduction to the dynamics of avian influenza
- **Part II:** Aquatic bird migration facts and control strategies of the panzootic disease
- Part III: Fisher Kolmogorov type equations
- Part IV: Stochastic SI model with space-uniform white noise
- Part V: Results:Exact solution of stochastic Fisher's equation. of Exact and numerical solutions (using a stochastic mesh) of stochastic SI model
- **Part VI:** A numerical method to simulate the solution of the stochastic fisher equation.

PART I	PART II	PART III	PART IV	PART V	Part VI	PART VII
O	00	000	00000000	0000	00000000	0000000
This r	presentati	ion includ	les five pai	rts		

- Part I: Introduction to the dynamics of avian influenza
- **Part II:** Aquatic bird migration facts and control strategies of the panzootic disease
- Part III: Fisher Kolmogorov type equations
- Part IV: Stochastic SI model with space-uniform white noise
- Part V: Results:Exact solution of stochastic Fisher's equation. of Exact and numerical solutions (using a stochastic mesh) of stochastic SI model
- **Part VI:** A numerical method to simulate the solution of the stochastic fisher equation.
- Part VII: Conclusion and future considerations

PART I	PART II	PART III	PART IV	PART V	Part VI	PART VII
●	00	000	00000000	0000	00000000	0000000
Avian	Influenza)				

PART I	PART II	PART III	PART IV	PART V	Part VI	PART VII
●	00	000	00000000	0000	00000000	0000000
Avian	Influenza	a				

• Avian Influenza (AI) is a global infectious disease (panzootic) with high fatality rate in wild aquatic birds such as mallards (*Anas platyrhynchos*), Canadia Geese (*Branta canadensis*).

PART I	PART II	PART III	PART IV	PART V	Part VI	PART VII
●	00	000	00000000	0000	00000000	
Avian	Influenza	à				

- Avian Influenza (AI) is a global infectious disease (panzootic) with high fatality rate in wild aquatic birds such as mallards (*Anas platyrhynchos*), Canadia Geese (*Branta canadensis*).
- The first AI H5N1 virus was detected in geese population in China in 1996.

PART I ●	PART II 00	PART III 000	PART IV 00000000	PART V 0000	Part VI 00000000	PART VII 0000000
Avian	Influenza	3				

- Avian Influenza (AI) is a global infectious disease (panzootic) with high fatality rate in wild aquatic birds such as mallards (*Anas platyrhynchos*), Canadia Geese (*Branta canadensis*).
- The first AI H5N1 virus was detected in geese population in China in 1996.
- A year later, during the major poultry outbreak, the virus was found in humans in Hong Kong (1997).

PART I	PART II	PART III	PART IV	PART V	Part VI	PART VII
	•0					

PART I o	PART II ●○	PART III 000	PART IV	PART V 0000	Part VI 00000000	PART VII
Facts	about a	quatic bi	ds migrat	ion move	ement	

• Birds fly in groups when changing their habitat

PART I	PART II	PART III	PART IV	PART V	Part VI	PART VII
○	●○	000	00000000	0000	00000000	
Facts	about a	quatic bir	ds migrat	ion move	ement	

- Birds fly in groups when changing their habitat
- Birds diffuse and move forcefully along migratory routes that can be simplified as a straight line.

PART I	PART II	PART III	PART IV	PART V	Part VI	PART VII
	•0					

- Birds fly in groups when changing their habitat
- Birds diffuse and move forcefully along migratory routes that can be simplified as a straight line.
- Momentary changes happen in the direction of advection due to their seasonal behavior changes; such as predating animals.

PART I	PART II	PART III	PART IV	PART V	Part VI	PART VII
	0					

- Birds fly in groups when changing their habitat
- Birds diffuse and move forcefully along migratory routes that can be simplified as a straight line.
- Momentary changes happen in the direction of advection due to their seasonal behavior changes; such as predating animals.
- Interaction frequency among wild birds changes seasonally due to different cycles on social behaviour

PART I	PART II	PART III	PART IV	PART V	Part VI	PART VII
	•0					

- Birds fly in groups when changing their habitat
- Birds diffuse and move forcefully along migratory routes that can be simplified as a straight line.
- Momentary changes happen in the direction of advection due to their seasonal behavior changes; such as predating animals.
- Interaction frequency among wild birds changes seasonally due to different cycles on social behaviour
- There are mainly two big stopover sites wintering and summer (breeding) locations.

PART I PART II	PART III	PART IV	PART V	Part VI 00000000	PART VII
○ ○●	000	00000000	0000	00000000	0000000

Eradication strategies to control AI

- Vaccination
- Culling
- Movement Restriction

PART I	PART II	PART III	PART IV	PART V	Part VI	PART VII
○	○●	000	00000000	0000	00000000	0000000

Eradication strategies to control AI

- Vaccination
- Culling
- Movement Restriction
- **MOTIVATION:** Is that possible to apply a random perturbation to the dispersal movement of animals to eradicate/control AI?

PART I	PART II	PART III	PART IV	PART V	Part VI	PART VII
O	00	●○○		0000	00000000	0000000
Fisher	's Equat	ion				

$$u_t = Du_{xx} + \lambda u(1 - u) \tag{1}$$

- First used by Ronald Fisher (Fisher-KPP equation) in 1937 to model diffusion of species in 1D habitat.
- Simplest nonlinear reaction diffusion equation
- Solution of the Fisher's equation generates traveling waves with minimum speed $C^*_{min} = 2\sqrt{\lambda D}$

PART I	PART II	PART III	PART IV	PART V	Part VI	PART VII
		000				

Asymptotic solution generates a traveling wave

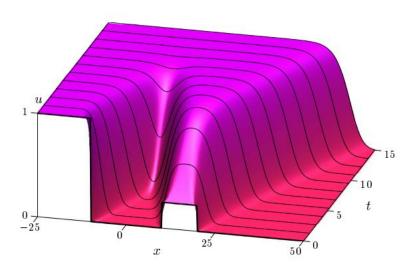


Fig. 1: Formation of traveling wave

PART I	PART II	PART III	PART IV	PART V	Part VI	PART VII
		000				

Fisher-Kolmogorov-Petrovsky-Piskunov (KPP) Equation

$$\frac{\partial u}{\partial t} = A(x,t)\frac{\partial^2 U}{\partial x^2} + C(x,t)\frac{\partial u}{\partial x} + B(x,t)u + H(x,t)u(1-u)$$
(2)

Eqn (2) is used to model the smooth heterogeneous problem, where H(x,t) is the nonuniform reaction term, and A(t)=1, B(t)=0, C(t)=0.

PART I	PART II	PART III	PART IV	PART V	Part VI	PART VII
			0000000			

Stochastic SI Model with Time Dependent White Noise

$$\frac{dS}{dt} = -\beta I(1-I)$$

$$\frac{dI}{dt} = -\mu I + \beta I(1-I) + DI_{xx} + (\gamma(t) + \sigma \dot{W})I_x \quad I(0,x) = I_0(x)$$

- β is the infection rate
- $\boldsymbol{\mu}$ is the death rate of infected birds
- D is the diffusivity constant
- $\gamma(t)$ is the advection coefficient.
- $\boldsymbol{\sigma}$ is degree of dispersion in the noise of advection coefficient

PART I	PART II	PART III	PART IV	PART V	Part VI	PART VII
O	00	000	○●○○○○○○	0000	00000000	
Lemm	ia-1					

The stochastic Fisher equation with initial value problem has a solution $u(t, z) = U(t, X_t)$, such that U(t, x) is the solution of

$$\partial_t U = \left(D - \frac{1}{2}\sigma^2\right)\partial_{xx}U + \beta U(1 - U) - \mu U, \quad U(0, x) = \phi(x)$$
(3)

and X_t is the solution of

$$dX_t = \gamma(t)dt + \sigma dW_t, \qquad (4)$$

with initial state $X_{t_0} = z$ and for $t \in [t_0, T]$.

PART I	PART II	PART III	PART IV	PART V	Part VI	PART VII
O	00	000	○○●○○○○○	0000	00000000	
Import	tant Resi	ult of Len	nma-1			

Using the solution of the deterministic Fisher equation (3) and applying the suitable transformation to the stochastic process of X_t , we can find the solution of the stochastic SI equation, I(t,x).

PART I	PART II	PART III	PART IV	PART V	Part VI	PART VII
O	00	000	○○○●○○○○	0000	00000000	
Theor	em-1					

Immigration with Stochastic noise can eradicate epidemics. That is, with the appropriate selection of speed of immigration s.t.

$$I_t = DI_{xx} + \beta I(1-I) - \mu I + (\gamma(t) + \sigma \dot{W}_t)I_x$$

and $I(0, x) = I_0$ (non-random) where W_t is white noise. Let $\lim_{t \to \infty} \frac{\int_0^t \gamma(s) ds}{t} = \gamma_0 \ge 0 \text{ and } I^* = 1 - \frac{\mu}{\beta}.$ Then, The disease free equilibrium is going to be exponentially asymptotically stable almost surely.

PART I	PART II	PART III	PART IV	PART V	Part VI	PART VII
o	00	000	0000€000	0000	00000000	
		4				

Proof of Theorem-1

For the equation below we assume that $\beta > \mu$:

$$I_t = (D - \frac{1}{2}\sigma^2)I_{xx} + \beta I(1 - I) - \mu I$$

Then let's introduce following parameters: $d_0 = D - \frac{1}{2}\sigma^2$ and $I^* = 1 - \frac{\mu}{\beta}$ with the condition $d_0 > 0$ so the following equation arises:

$$I_t = d_0 I_{xx} + (\beta - \mu) I \left(1 - \frac{I}{I^*}\right).$$

With the transformation such that $T = d_0 t$, we get the following equation:

$$I_{T} = I_{xx} + rac{\left(eta - \mu
ight)}{d_{0}}I\left(1 - rac{I}{I^{*}}
ight)$$

 PART I
 PART II
 PART III
 PART IV
 PART V
 Part VI
 PART VI

 0
 00
 000
 0000
 0000
 0000
 00000000

Then define M where $J = \frac{I}{I^*}$, we obtain

$$J_T = J_{xx}I^* + rac{\left(eta-\mu
ight)}{d_0}J\left(1-J
ight).$$

Let $\rho = \frac{(\beta - \mu)}{d_0} > 0$ and the solution for our equality is given by EqWorld.

$$I(t,x) = I^*J(t,z) = I^* \left[\frac{1}{1 + \exp\left(\sqrt{\frac{\rho}{6}z - \frac{5\rho}{6}d_0t}\right)}\right]^2$$

where $z = x + \sigma W_t + \int_0^t \gamma(s) ds$ Therefore, we have that

$$log(l) = log(l^*) - 2log\left(1 + \exp\left(\sqrt{\frac{\rho}{6}}\left(x + \sigma W_t + \int_0^t \gamma(s)ds\right) \frac{5\rho}{6}d_0t\right)\right)$$

PART I	PART II	PART III	PART IV	PART V	Part VI	PART VII
			00000000			

$$\begin{split} \log(I) &= \\ \log(I^*) - 2\log\left(1 + \exp\left(\sqrt{\frac{\rho}{6}}\left(x + \sigma W_t + \int_0^t \gamma(s)ds\right) - \frac{5\rho}{6}d_0t\right)\right) \\ \log(I) &\leq \log(I^*) - 2\left(\sqrt{\frac{\rho}{6}}\left(x + \sigma W_t + \int_0^t \gamma(s)ds\right) - \frac{5\rho}{6}d_0t\right) \\ \log(I)/t \\ &\leq \frac{\log(I^*)}{t} - 2\sqrt{\frac{(\beta-\mu)}{6d_0}}\left(\frac{x}{t} + \frac{\sigma W_t}{t} + \frac{\int_0^t \gamma(s)ds}{t}\right) + \frac{5}{3}(\beta - \mu). \end{split}$$

Now, by taking the limit supremum as $t \to \infty$ we obtain $(\lim_{t\to\infty} \frac{W_t}{t} = 0 \text{ a.s.}$ by Strong Law of Strong Numbers for Brownian motion.)

PART I	PART II	PART III	PART IV	PART V	Part VI	PART VII
O	00	000	○○○○○○●	0000	00000000	0000000

$$\limsup_{t\to\infty} \frac{\log\left(I\right)}{t} \leq \frac{5}{3}\left(\beta-\mu\right) - 2\sqrt{\frac{(\beta-\mu)}{6d_0}}\gamma_0.$$

This implies that the stochastic endemic equilibrium is still exponentially stable contrary to the deterministic endemic equilibrium if

$$riangle = rac{5}{3}\left(eta-\mu
ight) - 2\sqrt{rac{\left(eta-\mu
ight)}{6d_0}}\gamma_0 < 0$$

$$\widetilde{R} = rac{eta}{\mu + rac{6}{25} \cdot rac{\gamma_0^2}{d_0}} < 1.$$

PART I	PART II	PART III	PART IV	PART V	Part VI	PART VII
				0000		

Results: Example

$$\begin{aligned} \frac{dI}{dt} &= 3\partial_{zz}I(t,z) + (25 - \sin(t))\partial_z I(t,z) + I(t,z)(1 - I(t,z)) - \\ (0.1)I(t,z) &+ \partial_z I \, dW_t, \\ \text{where,} \\ I(0,z) &= \frac{1}{\left[1 + \exp(\sqrt{\frac{3}{50}}z)\right]^2} \text{ for } t \in [0,1]. \end{aligned}$$
By Lemma-1, equation has a solution $I(t,z) = (I^*)U(t,X_t)$, such

By Lemma-1, equation has a solution $I(t, z) = (I^*)U(t, X_t)$, such that U(t, x) is the solution of

$$\partial_t U = (2.5)\partial_{xx}U + U(1-U) - (0.1)U, \quad U(0,x) = \frac{1}{\left[1 + \exp(\sqrt{\frac{3}{50}x})\right]^2}$$
(5)

and X_t is the solution of

Results: Example, continues

 $dX_t = (25 - sin(t))dt + dW_t$, with initial state $X_0 = z$ and for $t \in [0, 1]$. By Suazo's work, U(t,x) has the following solution

$$U(t,x) = \left[\frac{1}{1 + \exp\left(\sqrt{\frac{3}{50}}x - \frac{3}{4}t\right)}\right]^2$$

for $x \in \mathbb{R}$. The stochastic equation has a solution given by

$$X_t = z + W_t + \int_0^t 25 - \sin(s) ds$$

for $t \in [0, 1]$.

PART I O	PART II 00	PART III 000	PART IV	PART V ○○●○	Part VI 00000000	PART VII
Result	s: Exam	ple, conti	nues			

Therefore, the general solution of the stochastic Fisher equation is given by

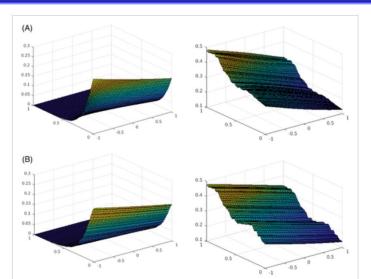
$$I(t,z) = I^* \left[\frac{1}{1 + \exp\left(\sqrt{\frac{3}{50}} \left(z + W_t + \int_0^t 25 - \sin(s)ds\right) - \frac{3}{4}t\right)} \right]^2$$
(6)

for $t \in [0,1]$ and $z \in \mathbb{R}$.

 PART I
 PART II
 PART III
 PART IV
 PART VI
 PART VI

 00
 000
 00000000
 0000
 00000000
 00000000

Results: Numerical approximation and exact solution are represented by (A) and (B), respectively.



21/36

PART I	PART II	PART III	PART IV	PART V	Part VI	PART VII
O	00	000	00000000	0000	●○○○○○○○	
Nume	rical met	hod/Itera	ative Meth	od		

• To solve the partial differential equation on the stochastic mesh, the algorithm uses time discretization by finite difference and Runge-Kutta method, and central difference for space. We call the last scheme RKCD.

PART I	PART II	PART III	PART IV	PART V	Part VI	PART VII
o	00	000	00000000	0000	○●○○○○○○	
Algorit	thm					

• Discretize $[t_0, T]$ into a time line space $DT : t_0, t_1, \dots, t_m = T$ and discretize space [a, b] into $DS : a = z_0, z_1, \dots, z_n = b$

PART I o	PART II 00	PART III 000	PART IV	PART V 0000	Part VI ○●○○○○○○	PART VII
Algori	thm					

- Discretize $[t_0, T]$ into a time line space $DT : t_0, t_1, \dots, t_m = T$ and discretize space [a, b] into $DS : a = z_0, z_1, \dots, z_n = b$
- For each j = 1, ..., n we solve for $X_{t_0} = z_j$ using RKM-1.5 resulting in $x_{i(j)} := X_{t_i}(z_j)$ with i = 0, 1, ..., m. This step will result in a stochastic mesh

$$\{(t_i, x_{i(j)}) : i = 0, \dots, m; j = 0, \dots, n\}.$$

PART I	PART II	PART III	PART IV	PART V	Part VI	PART VII
O	00	000	00000000	0000	○●○○○○○○	
Algorit	thm					

- Discretize $[t_0, T]$ into a time line space $DT : t_0, t_1, \dots, t_m = T$ and discretize space [a, b] into $DS : a = z_0, z_1, \dots, z_n = b$
- For each j = 1,..., n we solve for X_{t0} = z_j using RKM-1.5 resulting in x_{i(j)} := X_{ti}(z_j) with i = 0, 1, ..., m. This step will result in a stochastic mesh

 $\{(t_i, x_{i(j)}) : i = 0, \dots, m; j = 0, \dots, n\}.$

 Use a finite (central) difference for time and space in the deterministic partial differential equation and then use RKCD to solve a first order ODE boundary value problem with boundaries at x_{i(0)} and x_{i(n)}, for all i = 1,..., m.

PART I O	PART II 00	PART III 000	PART IV	PART V 0000	Part VI ○●○○○○○○	PART VII
Algori	thm					

- Discretize $[t_0, T]$ into a time line space $DT : t_0, t_1, \dots, t_m = T$ and discretize space [a, b] into $DS : a = z_0, z_1, \dots, z_n = b$
- For each j = 1, ..., n we solve for $X_{t_0} = z_j$ using RKM-1.5 resulting in $x_{i(j)} := X_{t_i}(z_j)$ with i = 0, 1, ..., m. This step will result in a stochastic mesh

$$\{(t_i, x_{i(j)}) : i = 0, \dots, m; j = 0, \dots, n\}.$$

- Use a finite (central) difference for time and space in the deterministic partial differential equation and then use RKCD to solve a first order ODE boundary value problem with boundaries at x_{i(0)} and x_{i(n)}, for all i = 1,..., m.
- The approximate solution of the stochastic Fisher equation $u(t_i, z_j) = U(t_i, x_{i(j)})$ for i = 1, ..., m and j = 1, ..., n.

 PART I
 PART II
 PART IV
 PART V
 Part VI
 PART VI

 0
 00
 000
 0000000
 0000
 0000000
 00000000

Solving PDEs on a Stochastic Mesh

The numerical scheme uses the stencil in the figure below. If the space coordinate on the mesh is $x_{i(i)} = x_i$, then $x_{i+1(i)} := x_i + \ell_i$. $\bigcirc U(t_i, x_j + h)$ ⊃ U(t_i, x_j + h) $U(t_{i+1}, x_i + \ell_i)$ U(t_i, x_j) $U(t_i, x_i)$ $U(t_{i+1}, x_j + \ell_i)$ $U(t_i, x_i - h)$ $U(t_i, x_i - h)$

Stencil of the numerical scheme with the realization of the incremental trajectory dX_t when it is positive (right) and negative (left). The stencil is shown for $\Delta t = k$ and $\Delta x = h$ which are fixed.

 PART I
 PART II
 PART IV
 PART V
 Part VI
 PART VI

 0
 00
 000
 0000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000

The bi-variate Taylor expansion of $U(t + k, x + \ell)$ about (t, x) gives the following approximations

$$U(t+k,x+\ell) - U(t,x) \approx k \partial_t U(t,x) + \ell \partial_x U(t,x) + \frac{1}{2} \ell^2 \partial_{xx} U(t,x)$$

and

$$U(t,x\pm h) - U(t,x) \approx \pm h\partial_x U(t,x) + \frac{1}{2}h^2\partial_{xx}U(t,x)$$

or equivalently

$$\begin{bmatrix} h & \frac{h^2}{2} & 0 \\ -h & \frac{h^2}{2} & 0 \\ \ell & \frac{\ell^2}{2} & k \end{bmatrix} \cdot \begin{bmatrix} \partial_x U(t,x) \\ \partial_{xx} U(t,x) \\ \partial_t U(t,x) \end{bmatrix} = \begin{bmatrix} U(t,x+h) - U(t,x) \\ U(t,x-h) - U(t,x) \\ U(t+k,x+\ell) - U(t,x) \end{bmatrix}$$

PART I	PART II	PART III	PART IV	PART V	Part VI	PART VII
o	00	000		0000	○○○○●○○○	0000000

Thus,

$$\partial_x U(t,x) = rac{U(t,x+h) - U(t,x-h)}{2h},$$
 $\partial_{xx} U(t,x) = rac{U(t,x+h) - 2U(t,x) + U(t,x-h)}{h^2},$

 and

$$\partial_t U(t,x) = \frac{U(t+k,x+\ell) - U(t,x)}{k} - \frac{\ell}{k} \partial_x U(t,x) - \frac{\ell^2}{2k} \partial_{xx} U(t,x).$$

PART I	PART II	PART III	PART IV	PART V	Part VI	PART VII
					00000000	

These equations lead to the iterative scheme

$$U(t_{i+1}, x_{i+1(j)}) = U(t_i, x_j) + k \left[(A(t_i) - \frac{1}{2}E^2(t_i) + \frac{\ell_i^2}{2k}) \right]$$

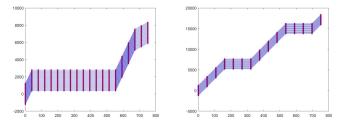
$$\times \frac{U(t_i, x_j + h) - 2U(t_i, x_j) + U(t_i, x_j - h)}{h^2}$$

$$+ B(t_i) \frac{U^2(t_i, x_j + h) - U^2(t_i, x_j - h)}{4h} + \frac{\ell_i}{k} \frac{U(t_i, x_j + h) - U(t_i, x_j - h)}{2h} + D(t_i)U(t_i, x_j) \right]$$

starting with $U(t_0, z_j) = \phi(z_j)$, where $\ell_i = x_{i+1(j)} - x_{i(j)}$, $h = z_{j+1} - z_j$, and $k = t_{i+1} - t_i$.

PART I	PART II	PART III	PART IV	PART V	Part VI	PART VII
					00000000	

Samples of stochastic meshes

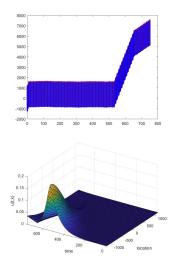


These stochastic meshes are generated for different Δx and Δt values to solve the stochastic fisher equation for D=250, $\beta = 5.5$, $\mu = 1.5$, $\sigma = 3$ Figure on left: The space and time intervals are divided by 20 sub intervals

Figure on right: The space and time intervals are divided by 15 sub intervals

PART I	PART II	PART III	PART IV	PART V	Part VI	PART VII
					0000000	

Solution curve along with a given stochastic mesh



PART I	PART II	PART III	PART IV	PART V	Part VI	PART VII
O	00	000	00000000	0000	00000000	●○○○○○○
Summ	nary and	conclusio	ns			

- Important condition is found to stabilize the stochastic fisher equation, so to eradicate the disease.
- Future work includes working with the real migration and Al influenza case data to help health officers for finding best methods to stop/eradicate the spread of Al.
- Some challenges are; estimating diffusion coefficient, finding parameters depending on the yearly migration behaviour, etc.

PART I	PART II	PART III	PART IV	PART V	Part VI	PART VII
						○●00000

Avian Influenza Birds to Human Model

Human population is divided into three groups as susceptible, infected, and recovered humans with the size H, C, and R.

$$\frac{dI(t,x)}{dt} = -\mu I(t,x) + \beta I(t,x)(1 - I(t,x)) + DI_{xx}(t,x) + (\gamma(t) + \sigma \dot{W})I_x(t,x)$$
$$\frac{dH(t,x)}{dt} = \lambda - \alpha H(t,x) - \beta_1 H(t,x)I(t,x)$$
$$\frac{dC(t,x)}{dt} = \beta_1 H(t,x)I(t,x) - (\alpha + \xi)C(t,x) - \theta C(t,x)$$
$$\frac{dR(t,x)}{dt} = \theta C(t,x) - \alpha R(t,x)$$

PART I	PART II	PART III	PART IV	PART V	Part VI	PART VII
						0000000

Parameter Estimations

Parameter Description	Symbol	Value
Death rate in wild birds	μ	0.01
AI transmission rate in wild birds	β	1.5
Diffusivity rate of infected birds	D	computed
Advection coefficient	γ	computed
Degree of dispersion	σ	computed
Natural birth rate for susceptible human	λ	100
Natural death rate for H and C	α	0.39
AI related death rate for infected human	ξ	0.3
AI transmission rate to human.	β_1	0.8
Al recovery rate for infected human.	θ	100

PART I	PART II	PART III	PART IV	PART V	Part VI	PART VII
o	00	000		0000	00000000	○○○●○○○
Estim	ating D					

$$D = \frac{\sum_{i=1}^{n} l_i^2}{\sum_{i=1}^{n} t_i}$$
(7)

Migration	Mean travel dist (km)	Mean travel time (days)
Wintering period	636	12
Molt migration	1765	24.5
Spring migration	2987	67

Table: Mean travel distance and time for migratory birds

PART I o	PART II 00	PART III 000	PART IV	PART V 0000	Part VI 00000000	PART VII ○○○○●○○
Refere	ences					

D. J. Aldous, *Stochastic Models and Descriptive Statistics for Phylogenetic Trees from Yule to Today*, Statistical Science, **16** (2001), 23-34.

E. J. Allen, "Modeling With Itô Stochastic Differential Equations", Springer, Dordrecht, 2007.

E. J. Allen, L. J. S. Allen, A. Arciniega, P. E. Greenwood, *Construction of equivalent stochastic differential equation models*, Stochastic Analysis and Applications, **26** (2008), 274-297.

L. J. S. Allen, "An Introduction to Stochastic Processes with Applications to Biology", CRC Press, Florida, 2011.

T. C. Gard, "Introduction to Stochastic Differential Equations", Marcel Decker, New York, 1987.

PART I	PART II	PART III	PART IV	PART V	Part VI	PART VII
O	00	000	00000000	0000	00000000	○○○○○●○
Refere	nces					

Polyanin, Andrei D. "Fisher Equation - EqWorld." EqWorld e, 2004, eqworld.ipmnet.ru/en/solutions/npde/npde1101.pdf.

D. T. Gillespie, *Exact stochastic simulation of coupled chemical reactions*, The Journal of Physical Chemistry, **81** (1977), 2340-2361.

P. E. Kloeden, E. Platen, "Numerical Solution of Stochastic Differential Equations", Springer-Verlag, New York, 1992.

Pereira E, Suazo E, Trespalacios J. Riccati–Ermakov systems and explicit solutions for variable coefficient reaction–diffusion equations. Appl Math Comput. 2018;329:278-296.

P. E. Kloeden, E. Platen, H. Schurz, "Numerical Solution of SDE Through Computer Experiments", Springer, Berlin, 1994.

PART I	PART II	PART III	PART IV	PART V	Part VI	PART VII
o		000	00000000	0000	00000000	○○○○○○●

Thank You ubulut@tamusa.edu