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This presentation includes five parts

Part I: Introduction to the dynamics of avian influenza

Part II: Aquatic bird migration facts and control strategies of
the panzootic disease

Part III: Fisher Kolmogorov type equations

Part IV: Stochastic SI model with space-uniform white noise

Part V: Results:Exact solution of stochastic Fisher’s equation.
of Exact and numerical solutions (using a stochastic mesh) of
stochastic SI model

Part VI: A numerical method to simulate the solution of the
stochastic fisher equation.

Part VII: Conclusion and future considerations
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Avian Influenza

Avian Influenza (AI) is a global infectious disease (panzootic)
with high fatality rate in wild aquatic birds such as mallards
(Anas platyrhynchos), Canadia Geese (Branta canadensis).

The first AI H5N1 virus was detected in geese population in
China in 1996.

A year later, during the major poultry outbreak, the virus was
found in humans in Hong Kong (1997).
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Facts about aquatic birds migration movement

Birds fly in groups when changing their habitat

Birds diffuse and move forcefully along migratory routes that
can be simplified as a straight line.

Momentary changes happen in the direction of advection due
to their seasonal behavior changes; such as predating animals.

Interaction frequency among wild birds changes seasonally due
to different cycles on social behaviour

There are mainly two big stopover sites wintering and summer
(breeding) locations.
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Eradication strategies to control AI

Vaccination

Culling

Movement Restriction

MOTIVATION: Is that possible to apply a random
perturbation to the dispersal movement of animals to
eradicate/control AI?
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Fisher’s Equation

ut = Duxx + λu(1− u) (1)

First used by Ronald Fisher (Fisher-KPP equation) in 1937 to
model diffusion of species in 1D habitat.

Simplest nonlinear reaction diffusion equation

Solution of the Fisher’s equation generates traveling waves
with minimum speed C ∗min = 2

√
λD

7 / 36
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Asymptotic solution generates a traveling wave
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Fisher-Kolmogorov-Petrovsky-Piskunov (KPP) Equation

∂u

∂t
= A(x , t)

∂2U

∂x2
+C (x , t)

∂u

∂x
+ +B(x , t)u+H(x , t)u(1−u) (2)

Eqn (2) is used to model the smooth heterogeneous problem,
where H(x,t) is the nonuniform reaction term, and A(t)=1,
B(t)=0, C(t)=0.
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Stochastic SI Model with Time Dependent White Noise

dS

dt
= −βI (1− I )

dI

dt
= −µI + βI (1− I ) + DIxx + (γ(t) + σẆ )Ix I (0, x) = I0(x)

β is the infection rate
µ is the death rate of infected birds
D is the diffusivity constant
γ(t) is the advection coefficient.
σ is degree of dispersion in the noise of advection coefficient
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Lemma-1

The stochastic Fisher equation with initial value problem has a
solution u(t, z) = U(t,Xt), such that U(t, x) is the solution of

∂tU =

(
D − 1

2
σ2
)
∂xxU+βU(1−U)−µU, U(0, x) = φ(x) (3)

and Xt is the solution of

dXt = γ(t)dt + σdWt , (4)

with initial state Xt0 = z and for t ∈ [t0,T ].
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Important Result of Lemma-1

Using the solution of the deterministic Fisher equation (3) and
applying the suitable transformation to the stochastic process of
Xt , we can find the solution of the stochastic SI equation, I(t,x).
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Theorem-1

Immigration with Stochastic noise can eradicate epidemics. That
is, with the appropriate selection of speed of immigration s.t.

It = DIxx + βI (1− I )− µI + (γ(t) + σẆt)Ix

and I (0, x) = I0 (non-random) where Ẇt is white noise. Let

lim
t→∞

∫ t
0 γ(s)ds

t = γ0 ≥ 0 and I ∗ = 1− µ
β . Then, The disease free

equilibrium is going to be exponentially asymptotically stable
almost surely.

13 / 36
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Proof of Theorem-1

For the equation below we assume that β > µ:

It = (D − 1

2
σ2)Ixx + βI (1− I )− µI

Then let’s introduce following parameters:
d0 = D − 1

2σ
2 and I ∗ = 1− µ

β with the condition d0 > 0 so the
following equation arises:

It = d0Ixx + (β − µ) I

(
1− I

I ∗

)
.

With the transformation such that T = d0t, we get the following
equation:

IT = Ixx +
(β − µ)

d0
I

(
1− I

I ∗

)
14 / 36
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Then define M where J = I
I∗ , we obtain

JT = Jxx I
∗ +

(β − µ)

d0
J (1− J) .

Let ρ = (β−µ)
d0

> 0 and the solution for our equality is given by
EqWorld.

I (t, x) = I ∗J (t, z) = I ∗

 1

1 + exp
(√

ρ
6z −

5ρ
6 d0t

)
2

where z = x + σWt +
∫ t
0 γ(s)ds Therefore, we have that

log
(
I
)

= log
(
I ∗
)
− 2log

1 + exp

√ρ

6

x + σWt +

t∫
0

γ(s)ds


−5ρ

6
d0t))
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log
(
I
)

=

log
(
I ∗
)
− 2log

(
1 + exp

(√
ρ
6

(
x + σWt +

∫ t
0 γ(s)ds

)
− 5ρ

6 d0t
))

log
(
I
)
≤ log

(
I ∗
)
− 2

(√
ρ
6

(
x + σWt +

∫ t
0 γ(s)ds

)
− 5ρ

6 d0t
)

log
(
I
)
/t

≤ log
(
I∗
)

t − 2
√

(β−µ)
6d0

(
x
t + σWt

t +
∫ t
0 γ(s)ds

t

)
+ 5

3 (β − µ) .

Now, by taking the limit supremum as t →∞ we obtain
( lim
t→∞

Wt
t = 0 a.s. by Strong Law of Strong Numbers for Brownian

motion.)
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limsup
t→∞

log
(
I
)

t
≤ 5

3
(β − µ)− 2

√
(β − µ)

6d0
γ0.

This implies that the stochastic endemic equilibrium is still
exponentially stable contrary to the deterministic endemic
equilibrium if

4 =
5

3
(β − µ)− 2

√
(β − µ)

6d0
γ0 < 0

R̃ = β

µ+ 6
25
·
γ2
0

d0

< 1.
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Results: Example

dI

dt
= 3∂zz I (t, z) + (25− sin(t))∂z I (t, z) + I (t, z) (1− I (t, z))−

(0.1)I (t, z) + ∂z I dWt ,
where,

I(0,z)=
1[

1 + exp(
√

3
50z)

]2 for t ∈ [0, 1].

By Lemma-1, equation has a solution I (t, z) = (I ∗)U(t,Xt), such
that U(t, x) is the solution of

∂tU = (2.5)∂xxU+U(1−U)−(0.1)U, U(0, x) =
1[

1 + exp(
√

3
50x)

]2
(5)

and Xt is the solution of
18 / 36
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Results: Example, continues

dXt = (25− sin(t))dt + dWt ,
with initial state X0 = z and for t ∈ [0, 1].
By Suazo’s work, U(t,x) has the following solution

U(t, x) =

 1

1 + exp

(√
3
50x −

3
4 t

)

2

for x ∈ R.
The stochastic equation has a solution given by

Xt = z + Wt +

t∫
0

25− sin(s)ds

for t ∈ [0, 1].
19 / 36



PART I PART II PART III PART IV PART V Part VI PART VII

Results: Example, continues

Therefore, the general solution of the stochastic Fisher equation is
given by

I (t, z) = I ∗

 1

1 + exp

(√
3
50

(
z + Wt +

∫ t
0 25− sin(s)ds

)
− 3

4 t

)

2

(6)
for t ∈ [0, 1] and z ∈ R.
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Results: Numerical approximation and exact solution are
represented by (A) and (B), respectively.
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Numerical method/Iterative Method

To solve the partial differential equation on the stochastic
mesh, the algorithm uses time discretization by finite
difference and Runge-Kutta method, and central difference for
space. We call the last scheme RKCD.
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Algorithm

Discretize [t0,T ] into a time line space
DT : t0, t1, . . . , tm = T and discretize space [a, b] into
DS : a = z0, z1, . . . , zn = b

For each j = 1, . . . , n we solve for Xt0 = zj using RKM-1.5
resulting in xi(j) := Xti (zj) with i = 0, 1, . . . ,m. This step will
result in a stochastic mesh
{(ti , xi(j)) : i = 0, . . . ,m; j = 0, . . . , n}.
Use a finite (central) difference for time and space in the
deterministic partial differential equation and then use RKCD
to solve a first order ODE boundary value problem with
boundaries at xi(0) and xi(n), for all i = 1, . . . ,m.

The approximate solution of the stochastic Fisher equation
u(ti , zj) = U(ti , xi(j)) for i = 1, . . . ,m and j = 1, . . . , n.
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Solving PDEs on a Stochastic Mesh

The numerical scheme uses the stencil in the figure below. If the
space coordinate on the mesh is xi(j) = xj , then xi+1(j) := xj + `i .

Stencil of the numerical scheme with the realization of the
incremental trajectory dXt when it is positive (right) and negative
(left). The stencil is shown for ∆t = k and ∆x = h which are
fixed.
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The bi-variate Taylor expansion of U(t + k , x + `) about (t, x)
gives the following approximations

U(t +k , x +`)−U(t, x) ≈ k∂tU(t, x)+`∂xU(t, x)+
1

2
`2∂xxU(t, x)

and

U(t, x ± h)− U(t, x) ≈ ±h∂xU(t, x) +
1

2
h2∂xxU(t, x)

or equivalently h h2

2 0

−h h2

2 0

` `2

2 k

 ·
 ∂xU(t, x)
∂xxU(t, x)
∂tU(t, x)

 =

 U(t, x + h)− U(t, x)
U(t, x − h)− U(t, x)

U(t + k , x + `)− U(t, x)

 .
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Thus,

∂xU(t, x) =
U(t, x + h)− U(t, x − h)

2h
,

∂xxU(t, x) =
U(t, x + h)− 2U(t, x) + U(t, x − h)

h2
,

and

∂tU(t, x) =
U(t + k, x + `)− U(t, x)

k
− `
k
∂xU(t, x)− `

2

2k
∂xxU(t, x).

26 / 36
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These equations lead to the iterative scheme

U(ti+1, xi+1(j)) = U(ti , xj) + k

[
(A(ti )−

1

2
E 2(ti ) +

`2i
2k

)

×
U(ti , xj + h)− 2U(ti , xj) + U(ti , xj − h)

h2

+B(ti )
U2(ti , xj + h)− U2(ti , xj − h)

4h
+
`i
k

U(ti , xj + h)− U(ti , xj − h)

2h

+D(ti )U(ti , xj)]

starting with U(t0, zj) = φ(zj), where `i = xi+1(j) − xi(j),
h = zj+1 − zj , and k = ti+1 − ti .

27 / 36
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Samples of stochastic meshes

These stochastic meshes are generated for different ∆x and ∆t
values to solve the stochastic fisher equation for D=250, β = 5.5,
µ = 1.5, σ = 3
Figure on left: The space and time intervals are divided by 20 sub
intervals
Figure on right: The space and time intervals are divided by 15 sub
intervals
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Solution curve along with a given stochastic mesh
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Summary and conclusions

Important condition is found to stabilize the stochastic fisher
equation, so to eradicate the disease.

Future work includes working with the real migration and AI
influenza case data to help health officers for finding best
methods to stop/eradicate the spread of AI.

Some challenges are; estimating diffusion coefficient, finding
parameters depending on the yearly migration behaviour, etc.
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Avian Influenza Birds to Human Model

Human population is divided into three groups as susceptible,
infected, and recovered humans with the size H, C, and R.

dI (t, x)

dt
= −µI (t, x)+βI (t, x)(1−I (t, x))+DIxx(t, x)+(γ(t)+σẆ )Ix(t, x)

dH(t, x)

dt
= λ− αH(t, x)− β1H(t, x)I (t, x)

dC (t, x)

dt
= β1H(t, x)I (t, x)− (α + ξ)C (t, x)− θC (t, x)

dR(t, x)

dt
= θC (t, x)− αR(t, x)

31 / 36
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Parameter Estimations

Parameter Description Symbol Value

Death rate in wild birds µ 0.01
AI transmission rate in wild birds β 1.5
Diffusivity rate of infected birds D computed
Advection coefficient γ computed
Degree of dispersion σ computed
Natural birth rate for susceptible human λ 100
Natural death rate for H and C α 0.39
AI related death rate for infected human ξ 0.3
AI transmission rate to human. β1 0.8
AI recovery rate for infected human. θ 100
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Estimating D

D =

n∑
i=1

l2i

n∑
i=1

ti

(7)

Migration Mean travel dist (km) Mean travel time (days)

Wintering period 636 12
Molt migration 1765 24.5
Spring migration 2987 67

Table: Mean travel distance and time for migratory birds
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