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Introduction

The dynamics of many systems in Biology and Ecology such as:
epidemic models, tumor-immune models, chemostat models,
prey-predator models, competitive models, and among others can
be mathematically described.
The earliest and simplest mathematical models are given by
ordinary differential equations (ODEs)

dXi(t) = fi(X1(t), . . . ,Xn(t))dt , i = 1, . . . ,n.
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Stochastic perturbation and stochastic differential equations
frameworks

Motivation. It is well-recognized that the fluctuations of the
environment make the dynamics of populations inherently stochastic.
So, the coefficients in the systems are often perturbed by random
factors.
Model: Stochastic differential equations. Therefore, one has
corresponding stochastic equations

dXi(t) =fi(X1(t), . . . ,Xn(t))dt +
d

∑
k=1

gik (X1(t), . . . ,Xn(t))dBk (t),

for i = 1, . . . ,n.

Here Bk (t),k = 1, . . . ,d are standard Brownian motions, which may or
may not independent.
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Stochastic perturbation and stochastic differential equations
frameworks
Overview of literature

Such stochastic models are modeled in 1970s and have studied
widely for 30-40 years.
The models under SDEs framework are now relatively
well-understood. For example, see [Benaïm, 2018] for general
abstract theory, Hening and D. Nguyen (AAP 18), and A. Hening,
D. Nguyen and Schreiber (AAP 21) for Kolmogorov type
equations, N. N. and N. Du (JDE 20) for epidemic SIR model, D.
Nguyen, N.N. and G. Yin (SPA 20) for chemostat model, N.N., T.
Tuong, G. Yin (SCL 20) for tumor-immune model, N.N., T. Tuong
(CNSNS 20) for NP model, D. Nguyen, G. Yin and C. Zhu (SIAP
20) for SIRS model, Benaïm and Schreiber (JMB 19) for discrete
setting, Benaïm and Strickler (AAP 19) for PMDPs setting, among
others.
The general methodology is that: looking at the solution on the
boundary and then defining a threshold from the Lyapunov
exponent (on the boundary problem).



Past dependence and stochastic functional (delay) differential
equations frameworks

Motivation.
The delays or past dependence are unavoidable in natural
phenomena and dynamical systems. So, the framework of SFDEs
is more realistic, more effective, and more general for the
population dynamics in real life than SDEs counterpart.

Model:
Consider a stochastic delay Kolmogorov system

dXi(t) = Xi(t)fi(Xt )dt + Xi(t)gi(Xt )dBi(t), i = 1, . . . ,n, (1.1)

where for function ϕ(t), t ∈ R,

ϕt := {ϕ(t + s) : s ∈ [−r ,0]} ∈ C([−r ,0])

is a segment function; and

Xt = (X1,t , . . . ,Xn,t ) ∈ C := C([−r ,0],Rn),

with Xi ,t being segment function of Xi(t).
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Past dependence and stochastic functional (delay) differential
equations frameworks

Overview of literature
In contrast to Kolmogorov stochastic differential equations, the
work on Kolmogorov stochastic differential equations with delay is
relatively scarce excepting a few studies. Nevertheless, other than
the specific models and applications treated, there has not been a
unified framework and a systematic treatment for Kolmogorov
SFDEs yet. Moreover, most of the existing results involving delays
are not as sharp as desired.
Recently, D. Nguyen, N. Nguyen, G. Yin develop a unified
frameworks and a systematic treatment for general stochastic
delay systems for wide range of application; provide almost
complete characterization of the longtime behaviors; and present
how to apply our proposed results to common systems.



Spatial inhomogeneity and stochastic partial differential equations
frameworks

Motivation. It is recognized that the population lives in a domain and
their densities is inhomogeneous (w.r.t space variable). Therefore, we
should specialize the population and its dynamics in both time-flow and
space-flow.
Model: Stochastic partial differential equations

∂Xi(t ,x)

∂ t
=AiXi(t ,x) + fi(t ,x ,X1(t ,x), . . . ,Xn(t ,x))

+ gi(t ,x ,X1(t ,x), . . . ,Xn(t ,x))
∂ 2Wi(t ,x)

∂ t∂x
, t ∈ R+,x ∈ O,

for i = 1, . . . ,n. Here O is a bounded domain, Ai are (second-order)
differential operators (w.r.t x) endowed with Neumann boundary
condition, which indicate the diffusion in space; and
∂ 2Wi (t ,x)

∂ t∂x , i = 1, . . . ,d are two-parameters (space-time) noises.



Spatial inhomogeneity and stochastic partial differential equations
frameworks

Motivation. It is recognized that the population lives in a domain and
their densities is inhomogeneous (w.r.t space variable). Therefore, we
should specialize the population and its dynamics in both time-flow and
space-flow.

Model: Stochastic partial differential equations

∂Xi(t ,x)

∂ t
=AiXi(t ,x) + fi(t ,x ,X1(t ,x), . . . ,Xn(t ,x))

+ gi(t ,x ,X1(t ,x), . . . ,Xn(t ,x))
∂ 2Wi(t ,x)

∂ t∂x
, t ∈ R+,x ∈ O,

for i = 1, . . . ,n. Here O is a bounded domain, Ai are (second-order)
differential operators (w.r.t x) endowed with Neumann boundary
condition, which indicate the diffusion in space; and
∂ 2Wi (t ,x)

∂ t∂x , i = 1, . . . ,d are two-parameters (space-time) noises.



Spatial inhomogeneity and stochastic partial differential equations
frameworks

Motivation. It is recognized that the population lives in a domain and
their densities is inhomogeneous (w.r.t space variable). Therefore, we
should specialize the population and its dynamics in both time-flow and
space-flow.
Model: Stochastic partial differential equations

∂Xi(t ,x)

∂ t
=AiXi(t ,x) + fi(t ,x ,X1(t ,x), . . . ,Xn(t ,x))

+ gi(t ,x ,X1(t ,x), . . . ,Xn(t ,x))
∂ 2Wi(t ,x)

∂ t∂x
, t ∈ R+,x ∈ O,

for i = 1, . . . ,n. Here O is a bounded domain, Ai are (second-order)
differential operators (w.r.t x) endowed with Neumann boundary
condition, which indicate the diffusion in space; and
∂ 2Wi (t ,x)

∂ t∂x , i = 1, . . . ,d are two-parameters (space-time) noises.



Spatial inhomogeneity and stochastic partial differential equations
frameworks

Overview of literature
Without the noise, i.e., gi = 0,∀i , the system is deterministic partial
differential equations (PDEs). Such problems are so-called
reaction-diffusion system, and studied widely in PDE community,
for example

I The studies of coexistence states in the Volterra-Lotka competitive
model by Cosner and Lazer (SIAP 84), Gui and Lou (CPAM 94),
Hutson, Lou and Mischaikow (JDE 02), Lam and Ni (SIAP 12).

I The studies of small diffusion by Hutson, Lou, and Mischaikow
(JDE 05), and some other studies by He and Ni (JDE 13, CPAM 16,
Calc. Var. PDE 16, 17).

There seems to have no works before considering the ecological
and biological systems involving both random effects and spatial
inhomogeneity.



Stochastic reaction-diffusion Lotka-Volltera competitive models
This talk focuses on stochastic reaction-diffusion Lotka-Volltera
competitive models perturbed by space-time noises, given by

∂U(t ,x)

∂ t
= ∆U(t ,x) + U(t ,x)(m1(x)−a1(x)U(t ,x)−b1(x)V (t ,x))

+σ1(x)U(t ,x)
∂ 2W1(t ,x)

∂ t∂x
, 0≤ x ≤ 1, t ≥ 0,

∂V (t ,x)

∂ t
= ∆V (t ,x) + V (t ,x)(m2(x)−a2(x)V (t ,x)−b2(x)U(t ,x))

+σ2(x)V (t ,x)
∂ 2W2(t ,x)

∂ t∂x
, 0≤ x ≤ 1, t ≥ 0,

∂U
∂x

(t ,0) =
∂U
∂x

(t ,1) =
∂V
∂x

(t ,0) =
∂V
∂x

(t ,1) = 0, t ≥ 0,

U(0,x) = U0(x),V (0,x) = V0(x), 0≤ x ≤ 1.,
(1.2)

where U(t ,x),V (t ,x) represent the densities of species at time t and
location x , mi(x), ai(x), bi(x), for i = 1,2 are functions defined on
[0,1], and ∆ is the Laplace operator. The use of Neumann boundary
condition is motivated by applications in biology and ecology, namely,
the population will not leave a finite domain.



Main focuses of this work

We focus on
Well-posedness of the problem: existence, uniqueness, continuity
on initial data of the solution; and regularity of solution.

Absolute continuity of the law and the existence of a density
The existence of an invariant measure
Sufficient conditions for the permanence and extinction.
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Space-time white driving noise.

Assume that {β1,k (t)}∞

k=1, and {β2,k (t)}∞

k=1 are two sequences of
independent {Ft}t≥0-adapted one-dimensional standard Wiener
processes. Now, let {ek}∞

k=1 be a complete orthonormal system in
L2((0,1),R) including eigenfunctions of Neumann Laplace operator in
[0,1]. It is seen that they are uniformly bounded. That is,

sup
k∈N

sup
x∈[0,1]

|ek (x)|< ∞.

We define the standard cylindrical Q-Winner processes Wi(t), i = 1,2
as follows

Wi(t) =
∞

∑
k=1

βk ,i(t)ek , i = 1,2.

In higher dimension, we will need to use colored noise in space to
obtain more regularity but do not need to require it be a finite-trace
Q-Wiener process.



Definition of solution

Now, we define a mild solution of (1.2) as a processes satisfying

U(t ,x) =
∫ 1

0
Gt (x ,y)U0(y)dy

+
∫ t

0

∫ 1

0
Gt−s(x ,y)U(s,y)(m1(y)−a1(y)U(s,y)−b1(y)V (s,y))dyds

+
∫ t

0

∫ 1

0
Gt−s(x ,y)σ1(y)U(s,y)W1(ds,dy),

V (t ,x) =
∫ 1

0
Gt (x ,y)V0(y)dy

+
∫ t

0

∫ 1

0
Gt−s(x ,y)V (s,y)(m2(y)−a2(y)V (s,y)−b2(y)U(s,y))dyds

+
∫ t

0

∫ 1

0
Gt−s(x ,y)σ2(y)V (s,y)W2(ds,dy),

(2.1)
where the stochastic integrals are in Walsh’s sense with respect to the
corresponding Brownian sheets of W1(t), W2(t) (denoted by
W1(t ,y),W2(t ,y) for simplicity of notation);



Definition of solution (cont)

or satisfying the following stochastic integral equation

U(t) = et∆N U0 +
∫ t

0
e(t−s)∆N U(s)(m1−a1U(s)−b1V (s))ds

+
∫ t

0
e(t−s)∆N σ1U(s)dW1(s),

V (t) = et∆N V0 +
∫ t

0
e(t−s)∆N V (s)(m2−a2V (s)−b2U(s))ds

+
∫ t

0
e(t−s)∆N σ2V (s)dW2(s),

(2.2)

where the stochastic integrals, in which σ1U(s) and σ2V (s) as
multiplication operators, are defined as in infinite-dimensional
integration theory and U(t) = U(t ,x), V (t) = V (t ,x), mi = mi(x),
ai = ai(x), bi = bi(x), σi = σi(x) (i = 1,2) are understood as elements
in a Hilbert space L2((0,1),R).



Difficulties

The coefficients are neither Lipschitz nor linear growth. The
well-posedness results from SPDEs can not be applied directly.
We need to work in infinite dimensional spaces and then it is not
easy to obtain the tightness.
The classical Itô formula is not valid for the mild solutions in
SPDEs.
The evolution involves both time-flow and space-flow in random
environment, the analysis is much different from either SDEs or
PDEs setting.



Difficulties

The coefficients are neither Lipschitz nor linear growth. The
well-posedness results from SPDEs can not be applied directly.

We need to work in infinite dimensional spaces and then it is not
easy to obtain the tightness.
The classical Itô formula is not valid for the mild solutions in
SPDEs.
The evolution involves both time-flow and space-flow in random
environment, the analysis is much different from either SDEs or
PDEs setting.



Difficulties

The coefficients are neither Lipschitz nor linear growth. The
well-posedness results from SPDEs can not be applied directly.
We need to work in infinite dimensional spaces and then it is not
easy to obtain the tightness.

The classical Itô formula is not valid for the mild solutions in
SPDEs.
The evolution involves both time-flow and space-flow in random
environment, the analysis is much different from either SDEs or
PDEs setting.



Difficulties

The coefficients are neither Lipschitz nor linear growth. The
well-posedness results from SPDEs can not be applied directly.
We need to work in infinite dimensional spaces and then it is not
easy to obtain the tightness.
The classical Itô formula is not valid for the mild solutions in
SPDEs.

The evolution involves both time-flow and space-flow in random
environment, the analysis is much different from either SDEs or
PDEs setting.



Difficulties

The coefficients are neither Lipschitz nor linear growth. The
well-posedness results from SPDEs can not be applied directly.
We need to work in infinite dimensional spaces and then it is not
easy to obtain the tightness.
The classical Itô formula is not valid for the mild solutions in
SPDEs.
The evolution involves both time-flow and space-flow in random
environment, the analysis is much different from either SDEs or
PDEs setting.



Main ideas

We use the truncated methods, then establish the uniform
boundedness of the sequence of truncated solutions.
Due to the lack of linear-growth property, we could not obtain the
(uniformly) boundedness of truncated solutions. However, we can
overcome by establishing the non-negativity and then, ignoring the
negative terms.
Due to we are studying the system in infinite dimensional space,
to establish the tightness of a family of measures, we need to
establish estimates as well as regularities of the solution in an
appropriate Hölder space, which is embedded compactly to some
continuous spaces.
We use an approximation of mild solution by strong solutions and
a novel mild Itô formula developed recently by Da Prato, Jentzen
and Röckner (Trans. AMS 2019) to study the longtime behavior.
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Our formal results

The system has a unique (mild) solution, which is positive and
depends continuously on initial data. The solution also satisfy the
classical Holder continuity in space and time.

The law of the solution (for fixed time and state) is continuous
(w.r.t Lebesgue measure) and admit a density.
There is an invariant measure.
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The mild Itô formula

Theorem 4.1
(Da Prato, Jentzen and Röckner (Trans. AMS 2019)) Let X : [0,∞)×Ω→ H
be a mild Itô formula with evolution family
S : {(t1, t2) : 0≤ t1 < t2}→ L(Ĥ, Ȟ), mild drift F : [0,∞]×Ω→ Ĥ and mild
diffusion G : [0,∞)×Ω→ HS(U0, Ĥ). Let V be a real separable Hilbert
space and U⊂ U0 be an arbitrary orthonormal basis of U0. Then, for
all ϕ ∈ C1,2([0,∞)× Ȟ,V ), t0 < t ∈ [0,∞), it holds a.s. that∫ t

0 ‖
∂ϕ

∂X (s,Ss,tXs)Ss,tFs‖V +‖ ∂ϕ

∂X (s,Ss,tXs)Ss,tGs‖2HS(U0,V )ds < ∞, and∫ t
0 ‖

∂ϕ

∂ t (s,Ss,tXs)‖V +‖ ∂ 2ϕ

∂X 2 (s,Ss,tXs)‖‖Ss,tGs‖2HS(U0,Ȟ)
ds < ∞, and

ϕ(t ,Xt ) =ϕ(t0,St0,tXt0) +
∫ t

t0

∂ϕ

∂ t
(s,Ss,tXs)ds +

∫ t

t0

∂ϕ

∂X
(s,Ss,tXs)Ss,tFsds

+
1
2 ∑

u∈U

∫ t

t0

∂ 2ϕ

∂X 2 (s,Ss,tXs)(Ss,tGsu,Ss,tGsu)ds

+
∫ t

t0

∂ϕ

∂X
(s,Ss,tXs)Ss,tZsdWs.



Longtime behavior

Theorem 4.2

Assume that supx∈[0,1] m1(x) < 1
2 infx∈[0,1] σ2

1 (x). For any initial
(U0,V0) ∈ E, U0,V0 ≥ 0, one has that

limsup
t→∞

E ln
∫ 1

0
U(t ,x)dx =−∞.

Similarly, if supx∈[0,1] m2(x) < 1
2 infx∈[0,1] σ2

2 (x) then

limsup
t→∞

E ln
∫ 1

0
V (t ,x)dx =−∞.



Further Remarks
In the future, we are going to study

Strictly positivity, in sense of existence negative moments.

The regularity of the density
Uniqueness of the invariant measure
Provide sufficient but also almost necessary condition for the
persistence and extinction. Formally, we expect to introduce a
Hypothesis (E) such that under (E),

limsup
t→∞

sup
x∈[0,1]

U(t ,x) = 0, limsup
t→∞

sup
x∈[0,1]

V (t ,x) = 0,

in some sense (almost surely or in expectation or in probability);
and a Hypothesis (C) such that under C,

liminf
t→∞

inf
x∈[0,1]

U(t ,x) > δ , liminf
t→∞

inf
x∈[0,1]

V (t ,x) > δ ,

for some positive constant δ (independent of the initial value) in
some sense (almost surely or in expectation or in probability).
Moreover, the Hypotheses (E) and (C) cover almost all possible
cases and only critical cases are left.
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Hypothesis (E) such that under (E),

limsup
t→∞

sup
x∈[0,1]

U(t ,x) = 0, limsup
t→∞

sup
x∈[0,1]

V (t ,x) = 0,

in some sense (almost surely or in expectation or in probability);
and a Hypothesis (C) such that under C,

liminf
t→∞

inf
x∈[0,1]

U(t ,x) > δ , liminf
t→∞

inf
x∈[0,1]

V (t ,x) > δ ,

for some positive constant δ (independent of the initial value) in
some sense (almost surely or in expectation or in probability).
Moreover, the Hypotheses (E) and (C) cover almost all possible
cases and only critical cases are left.



Thanks for your attention!
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