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Skorokhod problem in R

Let α, β ∈ D [0,∞) be such that α ≤ β. Given ψ ∈ D[0,∞), a
pair of functions (φ, η) ∈ D[0,∞)× BV [0,∞) is said to be a
solution of the Skorokhod problem on [α, β] for ψ, if the following
two properties are satisfied:

i. For every t ∈ [0,∞) φ(t) = ψ(t) + η(t) ∈ [α(t), β(t)];
ii. η (0−) = 0 and η has the decomposition η = ηl − ηu,
where ηl , ηu ∈ I[0,∞),∫ ∞

0
I{φ(s)>α(t)}dηl (s) = 0 and

∫ ∞
0

I{φ(s)<β(s)}dηu (s) = 0
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Skorokhod Map

The mapping ψ → φ from D [0,∞) to D [0,∞) is called the
Skorokhod map on [α, β] for ψ.
The original Skorokhod map was introduced by Skorokhod in 1961
as a tool for solving stochastic differential equations on the
half-line R+ with a reflecting boundary condition at 0. In other
words in the original Skorohod’s paper α = 0 and β =∞.
The explicit representation for the original Skorokhod map is

φ(t) = ψ(t) + sup
0≤s≤t

[−ψ(s)]+, ψ ∈ D[0,∞).
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An explicit formula for the Skorokhod Map on [0, a]

Kruk, Lehoczky, Ramanan and Shreve published in 2007 an explicit
formula and studied the properties of the two sided Skorokhod
map (reflection map) constraining the process in D[0,∞) to
remain in the interval [0, a], where a is a positive constant.
From the applications point of view, it is desirable to allow the
reflection boundary to be dependent on time.
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Skorokhod Map with time dependent boundaries (1 of 2)

The concept of Skorokhod map with time dependent boundaries
have been studied by K. Burdzy, K. Kang and K. Ramanan in The
Skorokhod problem in a time dependent interval that appeared in
Stochastic Processes and their Applications in 2009. They
considered a general case, where both the lower and the upper
boundaries are time dependent. They also developed an explicit
formula for the Skorokhod map with such boundaries. In addition,
their analysis includes a more relaxed version of the Skorokhod
map called the extended Skorokhod map.
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Skorokhod Map with time dependent boundaries (2 of 2)

Somewhat different explicit formulas were developed independently
by M. Slaby for the Skorokhod map in "Explicit representation of
the Skorokhod map with time dependent boundaries." Probability
and Mathematical Statistics 2010 and for the extended Skorokhod
map in " An explicit representation of the extended Skorokhod
map with two time dependent boundaries." Journal of Probability
and Statistics 2010. These papers provide also detailed study of
the properties of the SM and ESM.
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Definition 1 (Extended Skorokhod problem in R)

Let α, β ∈ D[0,∞) be such that α ≤ β, and let ψ ∈ D[0,∞). A
pair of real valued càdlàg functions (φ, η), is said to be a solution
of the extended Skorokhod problem (ESP) on [α, β] for ψ, if the
following three properties are satisfied:

i. For every t ≥ 0 φ (t) = ψ (t) + η (t) ∈ [α(t), β(t)];
ii. For every 0 ≤ s ≤ t

η(t)− η(s) ≥ 0, if φ(r) < β(r) for all r ∈ (s, t],

η(t)− η(s) ≤ 0, if φ(r) > α(r) for all r ∈ (s, t],

iii. For every t ≥ 0

η(t)− η(t−) ≥ 0, if φ(t) < β(t),

η(t)− η(t−) ≤ 0, if φ(t) > α(t).
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Solution of the extended Skorokhod Problem in R

Let α, β ∈ D[0,∞) be such that α ≤ β, and let ψ ∈ D[0,∞). The
evolving ESP for ψ on [α, β] has the unique solution (φ, η) given
by η = −Ξα,β(ψ) and φ = ψ + η, where

Ξα,β(ψ)(t) = I{τβ≤τα}I[τβ ,∞)(t)Hα,β(ψ)(t)

+ I{τα<τβ}I[τα,∞)(t)Lα,β(ψ)(t).

τα = inf {t > 0|α(t)− ψ(t) > 0} , τβ = inf {t > 0|ψ(t)− β(t) > 0}

Hα,β(ψ)(t) = sup
0≤s≤t

[(ψ(s)− β(s)) ∧ inf
s≤r≤t

(ψ(r)− α(r))],

Lα,β(ψ)(t) = inf
0≤s≤t

[(ψ(s)− α(s)) ∨ sup
s≤r≤t

(ψ(r)− β(r))].
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A stratum and a block in Rn

A closed set G in Rn will be called a stratum if it admits the
following representation

G ={
(x : x i ∈ [ai , bi ], i < n, xn ∈ [A(x1, . . . , xn−1),B(x1, . . . , xn−1)]

}
,

where ai ≤ bi for i = 1, 2, . . . , n − 1 and A,B are two real valued
continuous functions on [a1, b1]× . . .× [an−1, bn−1] such that
A(x) ≤ B(x) for every x . In such case we will shortly write

G = S
(

[a1, b1]× . . .× [an−1, bn−1], [A,B]
)
.

In the special case when A and B are constant functions G will be
called a block. In other words a block is a cross product of n
intervals.
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Hausdorff distance

We are interested in the constraining domains in Rn that change
with time and so we shall need to introduce the convergence for
sets. This will be defined in the sense of the Housdorff metric. For
any two sets G1,G2 ⊂ Rn their Hausdorff distance is defined by

dH (G1,G2) =
(

sup
x∈G1

d (x ,G2)
)
∨
(

sup
x∈G2

d (x ,G1)
)
,

where d (x ,G) = infy∈G ‖x − y‖ and where ‖ · ‖ is the Euclidean
norm on Rn.
It is well known that the set of all non-empty compact subsets of
Rn forms a complete metric space with dH .
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Definition 2 (A càdlàg family of strata)

A family {Gt : t ≥ 0} of closed subsets of Rn will be called càdlàg
if the function t 7→ Gt is càdlàg with respect to the Hausdorff
metric dH .

To represent càdlàg family of strata we shall use the following
notation

Gt = S
(

[α1
t , β

1
t ]× . . .× [αn−1

t , βn−1
t ], [At ,Bt ]

)
,

where αi
t ≤ βi

t for i = 1, 2, ..., d and At ≤ Bt .
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Orthogonal evolving stratum constraining system

A family of pairs {(Gt , dt(·)) : t ≥ 0} will be called an orthogonal
evolving stratum constraining system if Gt is a stratum for every
t ≥ 0, {Gt : t ≥ 0} is càdlàg, and

dt(x) =


∑
i∈I+

t

r iei −
∑
i∈I−

t

r iei : ri ≥ 0, for i ∈ I+
t (x) ∪ I−t (x)

 ,

where I+
t (x)

=
{
i : 1 ≤ i < n and x i = αi

t or i = n and xn = A
(
x1, ..., xn−1

)}
,

and I−t (x) ={
i : 1 ≤ i < n and x i = βi

t or i = n and xn = B
(
x1, ..., xn−1

)}
.
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Orthogonal evolving block constraining system

In the special case when Gt is a block for every t the orthogonal
evolving stratum constraining system will be called an orthogonal
evolving block constraining system.
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Definition 3 (Solution of ESP on an orthogonal evolving
stratum constraining system)

Given an orthogonal evolving stratum constraining system
{(Gt , dt(·)) : t ≥ 0} and a càdlàg function ψ ∈ DG0 ([0,∞),Rn),
the pair (φ, η) ∈ DG0 ([0,∞),Rn)× D{0} ([0,∞),Rn) is the
solution of the evolving ESP for ψ with respect to (Gt , dt(·)) if the
following conditions hold for every t ≥ 0:

(i) φ(t) = ψ(t) + η(t);
(ii) φ(t) ∈ Gt ;
(iii) η(t)− η(s) ∈ co

[⋃
u∈(s,t] du(φ(u))

]
for every s ∈ [0, t];

(iv) η(t)− η(t−) ∈ dt(φ(t)).
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Explicit formula for the solutions of ESP on an orthogonal
evolving stratum constraining system

Let {(Gt , dt(·)) : t ≥ 0} be an orthogonal evolving stratum
constraining system with
Gt = S

(
[α1

t , β
1
t ]× . . . [αn−1

t , βn−1
t ], [At ,Bt ]

)
. Then, the evolving

ESP for any ψ ∈ DG0 ([0,∞),Rn) on (Gt , d(·)) has a unique
solution (φ, η) given by
η =

(
−Ξα1,β1(ψ1),−Ξα2,β2(ψ2), ...,−Ξαn,βn (ψn)

)
and φ = ψ + η,

where
αn

t = At
(
ψ1(t)− Ξα1

t ,β
1
t
, ψ2(t)− Ξα2

t ,β
2
t
, ..., ψn−1(t)− Ξαn−1

t ,βn−1
t

)
,

βn
t = Bt

(
ψ1(t)− Ξα1

t ,β
1
t
, ψ2(t)− Ξα2

t ,β
2
t
, ..., ψn−1(t)− Ξαn−1

t ,βn−1
t

)
,

and for every i = 1, 2, . . . , n

Ξαi ,βi (ψi )(t) = I{τβi≤ταi}I[τβi ,∞)Hαi ,βi

(
ψi
)

(t)

+ I{ταi<τβi}I[ταi ,∞)Lαi ,βi

(
ψi
)

(t).
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Projections in R

The projections πa,b : R→ [a, b] are used to construct the SM or
ESM in R. They are defined by

πa,b =


a, if x ≤ a;
x , if a ≤ x ≤ b;
b, if x ≥ b.
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Projections in Rn

In the vector valued case we will need similar projections onto
blocks and strata. Given a block D = [a1, b1]× . . .× [an, bn] we
define πD : Rn → D by

πD(x) =
(
πa1,b1(x1), πa2,b2(x2), ..., πan,bn (xn)

)
.

Finally, the projection on a stratum
G = S

(
[a1, b1]× . . .× [an−1, bn−1], [A,B]

)
will be defined by

πG(x) =(
πa1,b1(x1), ..., πan−1,bn−1(xn−1), πĀ(x1,...,xn−1),B̄(x1,...,xn−1)(xn)

)
.
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Example 1 (ESM for a simple function)

Consider the ESP for a function ψ ∈ S ([0,∞)],Rn) with an
orthogonal evolving stratum constraining system (Gt , dt(·)) such
that

ψ(t) = ψ(tk) and Gt = Gtk for every t ∈ [tk , tk+1), k = 0, 1, ...,m,

where 0 = t0 < t1 < t2 < ... < tm <∞ and tm+1 =∞. Then, the
corresponding ESM is the function φ such that for
t ∈ [tk , tk+1), k = 0, 1, ...,m

φ(t) = φ(tk) = πGtk
(φ(tk−1) + ψ(tk)− ψ(tk−1)) .
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Expansion from strata to quasistrata

We are ready now to expand our explicit formula from strata to a
much bigger class of constraining domains that will be called
quasistrata.
Let E = {e1, e2, . . . , en} be the standard orthonormal basis and
V = {v1, v2, . . . , vn} be any basis of Rn. We will use
(x1, x2, . . . , xn)V to represent the vector
x = x1v1 + x2v2 + . . .+ xnvn in terms of its coordinates with
respect to V . The subscript will be omitted when V is the
standard orthonormal basis.
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Quasistratum

A closed set G in Rn will be called a quasi-stratum if there is a
basis V such that

G =
{

(x1, x2, . . . , xn)V : x i ∈ [ai , bi ] for i = 1, 2, . . . , n − 1,

xn ∈ [A(x1, . . . , xn−1),B(x1, . . . , xn−1)]
}
,

where ai ≤ bi for i = 1, 2, . . . , n − 1 and A,B are two real valued
continuous functions defined on [a1, b1]× . . .× [an−1, bn−1] such
that A(x) ≤ B(x) for every x. For short, we will write

G = SV
(

[a1, b1]× . . .× [an−1, bn−1], [A,B]
)
.

The superscript will be omitted when V is a standard orthonormal
basis. In the special case when A and B are constant functions G
will be called a quasi-block.
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Quasiblock

In two dimensions a quasi-block is simply a parallelogram, in three
dimensions it is a parallelepiped. In general, a quasi-block in Rn is
a parallelotope. This perhaps not quite popular name was
introduced by H.S.M. Coxeter in his 1973 book Regular politopes.
Alternatively, a quasi-block in Rn can be described as an
n-dimensional parallelepiped.
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Quasistratum as a linear transformation of a stratum

Note that in the special case, when V is an orthonormal basis the
quasi-stratum becomes a stratum and a quasi-block becomes a
block.
By TV we will denote the unique linear transformation
TV : Rn → Rn mapping the standard orthonormal basis onto V ,
i.e. such that TV (ei ) = vi for i = 1, 2, . . . , n. Then

SV
(

[a1, b1]× . . .× [an−1, bn−1], [A,B]
)

= TV (G),

where G = S
(
[a1, b1]× . . .× [an−1, bn−1], [A,B]

)
. Note that TV

can be represented by a matrix whose columns are v1, v2, . . . , vn.
Any invertible affine transformation of Rn can be represented as a
composition of a translation with TV for some basis V .

p. 23 of 40



Evolving quasi-stratum constraining system
A family of pairs {(Gt , dt(·)) : t ≥ 0} will be called an evolving
quasi-stratum constraining system if there is a basis V such that
Gt = SV

(
[α1

t , β
1
t ]× . . .× [αn−1

t , βn−1
t ], [At ,Bt ]

)
, {Gt : t ≥ 0} is

càdlàg with respect to the Hausdorff distance between constraining
sets, and dt satisfies the following conditions.
For any x =

(
x1, x2, . . . , xn)

V on the boundary of Gt

dt(x) = dV
t (x) =

∑
i∈IV

t

r ivi −
∑
i∈JV

t

r ivi : r i ≥ 0, for i ∈ IVt (x) ∪ JV
t (x)

 ,
where IVt (x) ={
i : 1 ≤ i < n and x i = αi

t or i = n and xn = A
(
x1, x2, ..., xn−1

)}
,

and JV
t (x) ={

i : 1 ≤ i < n and x i = βi
t or i = n and xn = B

(
x1, x2, ..., xn−1

)}
.

Finally, dt (x) = 0 for any x in the interior of Gt .
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Evolving quasi-block constraining system

In the special case when Gt is a quasi-block for every t ≥ 0, the
evolving quasi-stratum constraining system will be called an
evolving quasi-block constraining system.
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Remark 1

Let {(Gt , dt(·)) : t ≥ 0} be an orthogonal evolving stratum
constraining system with
Gt = S

(
[α1

t , β
1
t ]× . . .× [αn−1

t , βn−1
t ], [At ,Bt ]

)
, let V be any basis

and let dV
t (x) = TV

(
dt
(
T−1

V (x)
))

. Then
{(

TVGt , dV
t

)
: t > 0

}
is a quasi-stratum constraining system. In particular,

TVGt = SV
(

[α1
t , β

1
t ]× . . .× [αn−1

t , βn−1
t ], [At ,Bt ]

)
and

dV
t (x) =

∑
i∈IV

t

r ivi −
∑
i∈JV

t

r ivi : r i ≥ 0, for i ∈ IVt (x) ∪ JV
t (x)

 .
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Proposition 1 (How solutions of ESP are affected by affine
mappings of Rn)

Let {(Gt , dt(·)) : t ≥ 0} be an orthogonal evolving stratum
constraining system, let T : Rn −→ Rn be an invertible affine
transformation and let T0 = T − T (0) be its linear transformation
component. For any ψ ∈ DG0 ([0,∞),Rn), if (φ, η) is a solution of
ESP for ψ with respect to {(Gt , dt(·)) : t ≥ 0}, then (Tφ,T0η) is
the unique solution of ESP for Tψ with respect to{

(TGt , dV
t (·)) : t ≥ 0

}
, where V = T0(E ) and E is the standard

orthonormal basis.
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Idea: expanding the results for the orthogonal constraining
systems via affine transformations

The above result suggests that through the use of affine
transformations the orthogonal evolving constraining systems can
generate much larger class of constraining systems. Moreover, the
affine transformation provides the link between the solutions of
ESP with respect to the image constraining system and the
solutions of ESP with respect to the original orthogonal
constraining system.
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Constraining system generated by an orthogonal
constraining system

A time-dependent constraining system
{

(G̃t , d̃t(·)) : t ≥ 0
}
in Rn

is generated by an orthogonal constraining system, if there is an
orthogonal evolving stratum constraining system
{(Gt , dt(·)) : t ≥ 0} and an affine mapping T : Rn −→ Rn such
that, for every ψ ∈ DG0 ([0,∞),Rn), if (φ, η) is the solution of
ESP for ψ with respect to {(Gt , dt(·)) : t ≥ 0} then
(T ◦ φ,T0 ◦ η) is the solution of ESP for T ◦ ψ with respect to{(

T (Gt) ,T0
(
dt
(
T−1

0 (·)
)))

: t ≥ 0
}
. Such a mapping will be

referred to as preserving the solutions of ESP.
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Proposition 2 (Every quasi-stratum constraining system is
generated by an orthogonal constraining system)

Let
{(

G̃t , d̃t
)

: t ≥ 0
}
be an evolving quasi-stratum constraining

system in Rn, let V be the associated basis as described in the
definition, and let TV : Rn −→ Rn be the linear mapping such that
TV (ei ) = vi for i = 1, 2, . . . , n. Then

{(
G̃t , d̃t

)
: t ≥ 0

}
is

generated by an orthogonal evolving stratum constraining system
and TV is preserving the solutions of the ESP.
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Theorem 1 (Explicit solutions of ESP on quasi-stratum
constraining systems) Page 1 of 2

Let
(
G̃ , d̃

)
be an evolving quasi-stratum constraining system in

Rn, i.e. there is a basis V = {v1, v1, . . . , vn}, such that
G̃t = SV

(
[α1

t , β
1
t ]× . . .× [αn−1

t , βn−1
t ], [At ,Bt ]

)
and d̃t = dV

t , for
every t ≥ 0. Then for any ψ̃ ∈ DG̃0

([0,∞) ,Rn) the evolving ESP
on
(
G̃ , d̃

)
has the unique solution

(
φ̃, η̃

)
given by

η̃ = TV
(
−Ξα1,β1(ψ1),−Ξα2,β2(ψ2), ...,−Ξαn,βn (ψn)

)
and φ̃ = ψ̃+η̃,

where TV : Rn −→ Rn is the linear transformation defined by
TV (ei ) = vi for every i = 1, 2, . . . , n,

ψ(t) =
(
ψ1(t), ψ2(t), . . . , ψn(t)

)
= (TV )−1

((
ψ̃1(t), ψ̃2(t), . . . , ψ̃n(t)

)
V

)
= (TV )−1

(
ψ̃(t)

)
,
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Theorem 1 (Explicit solutions of ESP on quasi-stratum
constraining systems) Page 2 of 2

αn
t = At

(
ψ1(t)− Ξα1

t ,β
1
t
, ψ2(t)− Ξα2

t ,β
2
t
, ..., ψn−1(t)− Ξαn−1

t ,βn−1
t

)
,

βn
t = Bt

(
ψ1(t)− Ξα1

t ,β
1
t
, ψ2(t)− Ξα2

t ,β
2
t
, ..., ψn−1(t)− Ξαn−1

t ,βn−1
t

)
.

In the above, for every i = 1, 2, . . . , n,

Ξαi ,βi (ψi )(t) = I{τβi≤ταi}I[τβi ,∞)Hαi ,βi

(
ψi
)

(t)+I{ταi<τβi}I[ταi ,∞)Lαi ,βi

(
ψi
)

(t),

where ταi = inf
{
t > 0 | αi (t)− ψi (t) > 0

}
,

τβ
i = inf

{
t > 0 | ψi (t)− βi (t) > 0

}
, while

Hα,β(ψ)(t) = sup
0≤s≤t

[(ψ(s)− β(s)) ∧ inf
s≤r≤t

(ψ(r)− α(r))],

Lα,β(ψ)(t) = inf
0≤s≤t

[(ψ(s)− α(s)) ∨ sup
s≤r≤t

(ψ(r)− β(r))].
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Continuity and Lipschitz Conditions - constant CV

Let Λ be the set of all permutations
λ : {1, 2, . . . , n} −→ {1, 2, . . . , n}. Given any sequence of n
independent vectors v1, v2, . . . , vn and any λ ∈ Λ we define

Cλk (V ) = tan

1
2∠

 k∑
i=1

vλ(i),
n∑

i=k+1
vλ(i)

 for k = 1, 2, . . . , n − 1,

Cλn (V ) =1.

Finally, we set
CV = max

1≤k≤n
max
λ∈Λ

Cλk (V ).
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Continuity and Lipschitz Conditions - constant KV

Given a sequence of n independent vectors V = {v1, v2, . . . , vn},
let Vj denote the linear subspace spanned by vectors V \ {vj}, let
Kj = sin∠ (vj ,Vj) and let KV = min1≤j≤n Kj . It will be also
convenient to use the following notations: v̄ = v

‖v‖ and
V̄ = {v̄1, v̄2, . . . , v̄n}. It is important to notice two things. First,
for every j = 1, 2, . . . , n

KV ≤ Kj = sin (∠ (vj ,Vj)) ≤ sin
(
∠

(
vj ,

n∑
i=1

vi − vj

))
.

Second, KV depends only on the directions of vectors in V and not
on their magnitudes, i.e.

KV = KV̄ .
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Theorem 2 (Continuity and Lipschitz Conditions)

Let
(
G̃ , d̃

)
be an evolving quasi-block constraining system in Rn

that can be represented as an image of an orthogonal evolving
block constraining system via an invertible linear transformation T
and let V be the image of the orthonormal basis through T . If(
φ̃1, η̃1

)
and

(
φ̃2, η̃2

)
are the solutions of the ESP for ψ̃1 and ψ̃2

with respect to
(
G̃ , d̃

)
then the following Lipschitz conditions hold

‖η̃1 − η̃2‖ ≤ LV · ‖ψ̃1 − ψ̃2‖,

‖φ̃1 − φ̃2‖ ≤ (1 + LV ) ‖ψ̃1 − ψ̃2‖,

where
LV =

CV̄
KV̄

∥∥∥∥∥
n∑

i=1
v̄i

∥∥∥∥∥ .
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Remark 2

The Lipschitz constants of Theorem 2 depend only on the angles
defining the shape of the quasi-block and not on its size.
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Remark 3

In the special case of an orthogonal block constraining system, all
the relevant angles are right angles and therefore CV̄ = 1 and
KV̄ = 1. Thus, the Lipschitz constant in Theorem 2 becomes
‖
∑n

i=1 v̄i‖ =
√
n matching the result of Proposition 3.1 in 2013

paper "Explicit Solutions of the extended Skorokhod problems in
time-dependednt bounded regions with orthogonal reflection
fields",Probability and Mathematical Statistics by M. Slaby.

The following example will show that the Lipschitz constant LV in
Theorem 2 is tight in R2. Essentially, it will demonstrate that for
any quasi-block constraining system in R2 there are functions ψ1
and ψ2 such that ‖η1 − η2‖ = LV ‖ψ1 − ψ2‖.
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Example 2 (1 of 2)

Let
(
G̃ , d̃

)
be an arbitrary non-evolving quasi-block constraining

system in R2. Then G̃ is a parallelogram. Let α be the obtuse
angle in G̃ and let ᾱ = π − α. We can assume without the loss of
generality that

(
G̃ , d̃

)
is generated by vectors v1 = ae1 and

v2 = b (cosαe1 + sinαe2). More specifically, we assume that G̃
has vertices at 0, v1, v2 and v1 + v2. Then
CV̄ = max

{
tan α

2 , 1
}

= tan α
2 = cot ᾱ2 ,

KV̄ = sinα = sin ᾱ = 2 sin ᾱ
2 cos ᾱ2 and

‖v̄1 + v̄2‖ = 2 cos α2 = 2 sin ᾱ
2 and so LV = csc ᾱ

2 .
Let ψ̃1 = −r

(
cotαv̄1I[0,1) + cscαv̄1I[1,∞)

)
and

ψ̃2 = −r
(

cscαv̄2I[0,1) + cotαv̄2I[1,∞)
)
, where

r < min
{
−a tanα, b cot α2

}
. Then, using projections as in

Example 1, we can evaluate φ1 and φ2.
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Example 2 (2 of 2)

φ̃1(0) = πG̃

(
ψ̃1(0)

)
= ψ̃1(0) = −r cotαv̄1. On the other hand

φ̃2(0) = πG̃ (ψ2(0)) = 0. Therefore η̃1(0) = φ̃1(0)− ψ̃1(0) = 0
and η̃2(0) = φ̃2(0)− ψ̃2(0) = r cscαv̄2.
φ̃1(1) = 0 and η̃1(1) = r cscαv̄1.
φ̃2(1) = r tan α

2 v̄2 and η̃2(1) = r cscαv̄2.
Now, ‖η̃1(0)− η̃2(0)‖ = ‖r cscαv̄2‖ = r cscα and
‖η̃1(1)− η̃2(1)‖ = r‖

(
tan α

2 ,−1
)
‖ = rsecα2 = r csc ᾱ

2 . Thus
‖η̃1 − η̃2‖ = r max

{
cscα, csc ᾱ

2

}
= r csc ᾱ

2 . On the other hand,
‖ψ̃1(0)− ψ̃2(0)‖ = r and ‖ψ̃1(1)− ψ̃2(1)‖ = r . Therefore
‖ψ̃1 − ψ̃2‖ = r and so ‖η̃1 − η̃2‖ = csc ᾱ

2 ‖ψ̃1 − ψ̃2‖.
In other words, in this case, ‖η̃1 − η̃2‖ = LV ‖ψ̃1 − ψ̃2‖.
Because G̃ represents an arbitrary quasi-block constraining system
in R2, LV is a tight Lipschitz constant in R2.
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The details of the research presented here has been published by
the author a month ago in
Explicit Solutions of the Extended Skorokhod Problems in Affine
Transformations of Time-dependent Strata,
Journal of Probability and Statistics, vol. 2021,
Article ID 9992546.

Thank you!
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