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9.1. Linear Stochastic Wave Equation
We consider the linear stochastic wave equation

∂2

∂t2 u(t, x) = ∆u(t, x) + Ẇ(t, x), t ≥ 0, x ∈ Rk,

u(0, x) =
∂

∂t
u(0, x) = 0.

(1)

Here, Ẇ is a Gaussian noise that is white in time and has a
spatially homogeneous covariance given by the Riesz ker-
nel with exponent β ∈ (0, k ∧ 2), i.e.

E(Ẇ(t, x)Ẇ(s, y)) = δ(t − s)|x− y|−β.

If k = 1 = β, then Ẇ is the space-time Gaussian white
noise.
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Dalang (1999) proved that the real-valued process solution
of equation (1) is given by

u(t, x) =

∫ t

0

∫
Rk

G(t − s, x− y) W(ds dy), (2)

where G is the fundamental solution of the wave equation
and W is the martingale measure induced by the noise Ẇ.
We only consider the case of k = 1. Hence 0 < β ≤ 1 and

G(t, x) =
1
2

1{|x|<t}.

The mild solution of (1) is

u(t, x) =
1
2

∫ t

0

∫
R

1{|x−y|≤t−s}(s, y) W(ds dy) =
1
2

W(∆(t, x)), (3)

where ∆(t, x) = {(s, y) ∈ R+ × R : 0 ≤ s ≤ t, |x − y| ≤
t − s}, see Figure 1.
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Consider a new coordinate system (τ, λ) obtained by rotat-
ing the (t, x)-coordinates by −45◦. In other words,

(τ, λ) =
( t − x√

2
,

t + x√
2

)
and (t, x) =

(τ + λ√
2
,
−τ + λ√

2

)
.

For τ ≥ 0, λ ≥ 0, denote

ũ(τ, λ) = u
(τ + λ√

2
,
−τ + λ√

2

)
.

We will study the simultaneous LIL and propagation of
singularities for {ũ(τ, λ), τ ≥ 0, λ ≥ 0}.
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9.2 The simultaneous law of the iterated
logarithm and singularities

Recall that, if B = {B(t), t ≥ 0} is standard Brownian mo-
tion, then for every t ≥ 0, the law of the iterated logarithm
states:

lim sup
h→0+

|B(t + h)− B(t)|√
2h log log 1/h

= 1, a.s.

By Fubini’s theorem, we have

P
(

lim sup
h→0+

|B(t + h)− B(t)|√
2h log log 1/h

= 1 for almost all t ≥ 0
)

= 1. (4)

In the above, “for almost all t ≥ 0” can not be strengthened
to “for all t ≥ 0”.
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In fact, Orey and Taylor (1974) proved that the set

S =

{
t ≥ 0 : lim sup

h→0+

|B(t + h)− B(t)|√
2h log log 1/h

=∞
}

is dense in [0,∞), even though it follows from (4) that the
Lebesgue measure of S equals 0.

The points in S are called singularities of Brownian mo-
tion.
Some geometric properties of S and the λ-fast sets

F (λ) =

{
t ≥ 0 : lim sup

h→0+

|B(t + h)− B(t)|√
2h log 1/h

≥ λ

}
were studied by Orey and Taylor (1974), Khoshnevisan,
Peres and X. (2000), among others.
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For a random field X = {X(t), t ∈ RN}, the set of its sin-
gularities may have interesting topological and geometric
properties.
This was first studied by Walsh (1982) for the Brownian
sheet W = {W(s, t), s ≥ 0, t ≥ 0}, which is a centered
Gaussian random field with covariance function

E
(
W(s1, t1)W(s2, t2)

)
= (s1 ∧ s2)(t1 ∧ t2).

For each fixed s > 0, { 1√
sW(s, t), t ≥ 0} is standard Brow-

nian motion. Hence the LIL states that for every t ≥ 0,

lim sup
h→0+

|W(s, t + h)−W(s, t)|√
2h log log 1/h

=
√

s, a.s.
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Zimmerman (1972) proved the following simultaneous LIL:
For any t ≥ 0 fixed,

P
(

lim sup
h→0+

|W(s, t + h)−W(s, t)|√
2h log log 1/h

=
√

s for all s ≥ 0
)

= 1.

However, by the result of Orey and Taylor (1974), for any
s > 0 fixed, there is a random time τ such that

lim sup
h→0+

|W(s, τ + h)−W(s, τ)|√
2h log log 1/h

=∞, a.s.

In this case, we say that (s, τ) is a singularity in the t-
direction.
Similarly, we say that (s, t) is a singular point of W in the
s-direction if

lim sup
h→0+

|W(s + h, t)−W(s, t)|√
h log log(1/h)

=∞.
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Based on the simultaneous LIL of Zimmerman (1972), Walsh
(1982) proved the following surprising result.
Let s0 > 0 be fixed. If τ is any positive and finite σ(W(s0, t) :
t ≥ 0)-measurable random variable, then on an event of
probability 1, we have

lim sup
h→0+

|W(s0, τ + h)−W(s0, τ)|√
h log log(1/h)

=∞

⇐⇒ lim sup
h→0+

|W(s, τ + h)−W(s, τ)|√
h log log(1/h)

=∞

for all s > s0 simultaneously.
The existence of a positive and finite σ(W(s0, t) : t ≥ 0)-
measurable random variable τ is guaranteed by Meyer’s
section theorem. Walsh’s theorem shows that the singu-
larities of the Brownian sheet W propagate in directions
parallel to the coordinate axis.
Walsh (1986) studied the singularities of the linear SWE
with k = β = 1 and their propagation.
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Carmona and Nualart (1988) extended the results of Walsh
(1982, 1986) to one-dimensional nonlinear stochastic wave
equations driven by the space-time white noise.

The method of Carmona and Nualart (1988) is based on
the general theory of semimartingales and two-parameter
strong martingales. They showed that, in the white noise
case, their solution X(t, x) has the following important prop-
erties:

(i). For any x ∈ R,
{

X( h√
2
, x+ h√

2
), h ≥ 0

}
is a continuous

semimartingale.

(ii). The increments of X(t, x) over a certain class of rect-
angles form a two-parameter strong martingale.
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Carmona and Nualart (1988) proved the law of the iterated
logarithm for a semimartingale by the LIL of Brownian
motion and a time change.
They also proved that, for a class of two-parameter strong
martingales, the law of the iterated logarithm in one vari-
able holds simultaneously for all values of the other vari-
able.
By applying these results and properties (i) and (ii), Car-
mona and Nualart proved the existence and propagation of
singularities of the solution.
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In the context of Gaussian random fields, Blath and Martin
(2008) extended the result of Walsh (1982) to the semi-
fractional Brownian sheets.
Due to the scaling property of the semi-fractional Brown-
ian sheets, Blath and Martin (2008) was able to use the fol-
lowing large deviation result to prove their simultaneous
LIL: If {Z(t), t ∈ T} is a continuous centered Gaussian
random field which is a.s. bounded, then

lim
γ→∞

1
γ2 logP

(
sup
t∈T

Z(t) > γ

)
= − 1

2 supt∈T E(Z(t)2)
. (5)

However, this large deviation result is not enough for prov-
ing the following analogous LIL for {ũ(s, y), s ≥ 0, y ≥
0}, where

ũ(s, y) = u
(s + y√

2
,
−s + y√

2

)
.
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Theorem 9.1 [Lee and X. (2020+)]
For any y > 0 fixed, we have

P
(

lim sup
h→0+

|ũ(s, y + h)− ũ(s, y)|√
(s + y)h2−β log log(1/h)

= Kβ for all s ∈ [0,∞)

)
= 1,

(6)
where Kβ is

Kβ =

(
2(1−β)/2

(2− β)(1− β)

)1/2

.

To prove the simultaneous LIL, we make use of more pre-
cise results on the tail probability for the supremum of
Gaussian random fields based on the metric entropy ob-
tained by Talagrand (1994).
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Lemma 9.1 [Talagrand (1994)]
Let {Z(t), t ∈ T} be a mean zero continuous Gaussian pro-
cess and σ2

T = supt∈T E[Z(t)2]. Let dZ be the canonical
metric defined by dZ(s, t) = E[(Z(s)− Z(t))2]1/2. Assume
that for some constant M > σT , α > 0 and 0 < ε0 ≤ σT ,

N(T, dZ, ε) ≤
(

M
ε

)α
for all ε < ε0,

Then for any γ > σ2
T [(1 +

√
α)/ε0], we have

P
{

sup
t∈T

Z(t) ≥ γ
}
≤
( KMγ√

ασ2
T

)α
Φ
( γ
σT

)
, (7)

where Φ(x) = (2π)−1/2
∫∞

x exp(−z2/2) dz and K is a uni-
versal constant.
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The upper bound in (7) is more precise than (5) if M/σT is
not too large. However, the upper bound in (7) may not be
useful when M/σT becomes very large (which will be the
case in one part of the proof of Theorem 9.1).

To deal with the latter case, we use the following lemma,
which is more efficient if the variance of Z(t) attains its
maximum at a unique point because the size of the set Tρ
can be very small.
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Lemma 9.2
Let {Z(t), t ∈ T} be a mean zero continuous Gaussian pro-
cess. For ρ > 0, set

Tρ = {t ∈ T : E[Z(t)2] ≥ σ2
T − ρ2}.

Assume that there exist constants v ≥ w ≥ 1 such that for
all ρ > 0, and 0 < ε ≤ ρ(1 +

√
v)/
√

w, we have

N(Tρ, dZ, ε) ≤ Aρwε−v.

Then for any γ > 2σT
√

w, we have

P
{

sup
t∈T

Z(t) ≥ γ
}
≤ Aww/2

vv/2 Kv+w
( γ
σ2

T

)v−w
Φ
( γ
σT

)
.
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We will also need the following estimates on the variance
of two types of increments.

Lemma 9.3
For any τ, λ, h > 0,

E[(ũ(τ, λ+ h)− ũ(τ, λ))2]

=
1
2

K2
β

[
(τ + λ)h2−β + (3− β)−1h3−β] ,

where Kβ is the constant defined by

Kβ =

(
2(1−β)/2

(2− β)(1− β)

)1/2

. (8)
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Lemma 9.4
Fix λ ≥ 0. Then, for any 0 ≤ τ ≤ τ ′ and 0 ≤ h ≤ h′,

E
[
(ũ(τ ′, λ+ h′)− ũ(τ ′, λ+ h)− ũ(τ, λ+ h′) + ũ(τ, λ+ h))2]

=


1
2K2

β(h′ − h)2−β[(τ ′ − τ)− 1−β
3−β (h′ − h)

]
if h′ − h ≤ τ ′ − τ,

1
2K2

β(τ ′ − τ)2−β[(h′ − h)− 1−β
3−β (τ ′ − τ)

]
if h′ − h > τ ′ − τ.
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Proof of the upper bound in Theorem 9.1
First we prove that for any fixed λ > 0,

P
(

lim sup
h→0+

|ũ(τ, λ+ h)− ũ(τ, λ)|√
(τ + λ)h2−β log log(1/h)

≤ Kβ for all τ ∈ [0,∞)
)

= 1,

where Kβ is the constant in Lemma 9.3.
It suffices to show that for any 0 ≤ a < b < ∞ and any
0 < ε < 1,

P
(

lim sup
h→0+

|ũ(τ, λ+ h)− ũ(τ, λ)|√
(τ + λ)h2−β log log(1/h)

≤ (1+ε)Kβ, ∀ τ ∈ [a, b]
)

= 1.

(9)
Let δ = (c + λ)ε/2. Since we can cover [a, b] by finitely
many intervals [c, d] of length δ, we only need to show
that (9) holds for all τ ∈ [c, d], where [c, d] ⊂ [a, b] and
d = c + δ.
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Choose a real number q such that 1 < q < (1 + ε)1/(2−β).
For every integer n ≥ 1, consider the event

An =
{

sup
τ∈[c,d]

sup
h∈[0,q−n]

∣∣ũ(τ, λ+ h)− ũ(τ, λ)
∣∣ > γn

}
, (10)

where

γn = (1 + ε)Kβ

√
(c + λ)(q−n−1)2−β log log qn.

To estimate P(An), we will apply Lemma 9.2.
Define T = [c, d] × [0, q−n] and Z(τ, h) = ũ(τ, λ + h) −
ũ(τ, λ) for (τ, h) ∈ T . It follows from Lemma 9.3 that
E
[
Z(τ, h)2

]
attains its unique maximum σ2

T at (d, q−n), where

σ2
T =

1
2

K2
β

[
(d + λ)q−n(2−β) + (3− β)−1q−n(3−β)].
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For any (τ, h), (τ ′, h′) ∈ T , without loss of generality, we
may assume that τ ≤ τ ′. Then by Lemma 9.3 and 9.4, we
have

dZ((τ, h), (τ ′, h′))

≤ E
[
(Z(τ, h)− Z(τ, h′))2]1/2

+ E
[
(Z(τ ′, h′)− Z(τ, h′))2]1/2

= E
[
(ũ(τ, λ+ h)− ũ(τ, λ+ h′))2]1/2

+ E
[
(ũ(τ ′, λ+ h′)− ũ(τ ′, λ)− ũ(τ, λ+ h′) + ũ(τ, λ))2]1/2

≤ C(q−n(2−β)/2|τ − τ ′|1/2 + |h− h′|(2−β)/2).

(11)

Next, in order to apply Lemma 9.2, we estimate N(Tρ, dZ, ε),
where

Tρ = {(τ, h) ∈ T : σ2
T − E[Z(τ, h)2] ≤ ρ2}.
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It can be shown that

Tρ ⊂ [d − C1qn(2−β)ρ2, d]× [q−n − C2ρ
2/(2−β), q−n]

for some constants C1 and C2. This and (11) imply that

N(Tρ, dZ, ε) ≤ C0(ρ/ε)
2+ 2

2−β .

By Lemma 9.2 with v = w = 2 + 2
2−β , we have

P(An) ≤ C exp
(
− γ2

n
2σ2

T

)
= (n log q)−pn,

where

pn =
(1 + ε)2

q2−β
[

d+λ
c+λ + (3− β)−1(c + λ)−1q−n

]
which is eventually bigger than 1. Hence

∑∞
n=1 P(An) <

∞. This is enough for proving (??).
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Proof of the lower bound in Theorem 9.1

Next, we prove the corresponding lower bound: For any
λ > 0,

P
(

lim sup
h→0+

|ũ(τ, λ+ h)− ũ(τ, λ)|√
(τ + λ)h2−β log log(1/h)

≥ Kβ, ∀τ ∈ [a, b]
)

= 1,

(12)
where Kβ is the constant in (8).

Similarly to the previous section, we only need to show
that (12) holds for all τ ∈ [c, d], where [c, d] ⊂ [a, b] and
d = c + δ.
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The following are the main ingredients.

Lemma 9.5
Let τ > 0, λ > 0 and q > 1. Then for all 0 < ε < 1,

P
( ũ(τ, λ+ q−n)− ũ(τ, λ+ q−n−1)

σ̃[(τ, λ+ q−n), (τ, λ+ q−n−1)]
≥ (1−ε)

√
2 log log qn i.o.

)
= 1,

where

σ̃[(τ, λ), (τ ′, λ′)] = E[(ũ(τ, λ)− ũ(τ ′, λ′))2]1/2.

This is proved by an extended Borel-Cantelli lemma.
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For all τ ∈ [c, d] we write

ũ(τ, λ+ q−n)−ũ(τ, λ) = ũ(d, λ+ q−n)− ũ(d, λ+ q−n−1)

+ ũ(τ, λ+ q−n−1)− ũ(τ, λ)

−∆ũ((τ, d]× (λ+ q−n−1, λ+ q−n]),

where the last term is the the increment of ũ over the rect-
angle (τ, d]× (λ+ q−n−1, λ+ q−n].
The first difference in the right hand side of (27) is dealt by
Lemma 9.5.
For the second difference, (9) says that for all τ ∈ [c, d]
simultaneously,

|ũ(τ, λ+ q−n−1)− ũ(τ, λ)|
≤ Kβ

√
(τ + λ+ q−n−1)(q−n−1)2−β log log qn.

eventually for all large n.
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To derive a bound for the term ∆ũ((τ, d]× (λ+ q−n−1, λ+
q−n]), we consider the event

An =
{

sup
τ∈[c,d]

|∆ũ((τ, d]× (λ+ q−n−1, λ+ q−n])| > γn

}
,

where
γn = Kβ φn(d)

√
(q−n)2−β log log qn

and

φn(τ) = (1− ε/4)

(
q− 1

q

) 2−β
2

(d + λ)1/2

− q−
2−β

2 (τ + λ+ q−n−1)1/2 − (1− ε)(τ + λ)1/2.

Consider n large enough such that q−n − q−n−1 ≤ d − c.
Then

P(An) ≤ P(A1
n) + P(A2

n),
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where

A1
n =

{
sup

τ∈[c,d−(q−n−q−n−1)]

|∆ũ((τ, d]× (λ+ q−n−1, λ+ q−n])| > γn

}
,

A2
n =

{
sup

τ∈[d−(q−n−q−n−1),d]
|∆ũ((τ, d]× (λ+ q−n−1, λ+ q−n])| > γn

}
.

By Lemma 9.2,

P(A1
n) ≤ C exp

(
− γ2

n

2σ2
T

)
≤ (n log q)−pn ,

where
pn =

1
d − c

(
q

q− 1

)2−β

φn(d)2.

We can check that
∑∞

n=1 P(A1
n) <∞.
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Since the size of [d − (q−n − q−n−1), d] is small, we can
apply Lemma 9.1 to see that for n large,

P(A2
n) ≤ Cφn(d)2(qn log n) exp(−C′φn(d)2qn log n)

which also yields
∑∞

n=1 P(A2
n) <∞.

Combing the three parts, we derive that for all τ ∈ [c, d]
simultaneously,∣∣ũ(τ, λ+ q−n)− ũ(τ, λ)

∣∣
≥
∣∣ũ(d, λ+ q−n)− ũ(d, λ+ q−n−1)

∣∣
−
∣∣ũ(τ, λ+ q−n−1)− ũ(τ, λ)

∣∣
−
∣∣∆ũ((τ, d]× (λ+ q−n−1, λ+ q−n])

∣∣
≥ (1− ε)Kβ

√
(τ + λ)(q−n)2−β log log qn,

where the last inequality holds infinitely often in n. This
concludes the proof.
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9.3 Propagation of singularities
For s0 > 0, denote by Fs0 be the σ-field generated by
{W
(
B ∩ Π(s0)

)
: B ∈ B(R2)} and the P-null sets, where

Π(s0) =
{

(s, y) : 0 ≤ s < s0/
√

2, y ∈ R
}

.
The following theorem shows that the singularities of u(t, x)
propagate along the straight lines curves s + y = c and
s− y = −c.

Theorem 9.2 [Lee and X. (2020+)]
Let s0 > 0. The following statements hold.

(i) There exists a positive and finite Fs0-measurable r.v.
Λ such that

lim sup
h→0+

|ũ(s0,Λ + h)− ũ(s0,Λ)|√
h2−β log log(1/h)

=∞ a.s.
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Theorem 9.2 [continued]
(ii) For any positive and finite Fs0-measurable r.v. Λ, with

probability 1,

lim sup
h→0+

|ũ(s0,Λ + h)− ũ(s0,Λ)|√
h2−β log log(1/h)

=∞

⇐⇒ lim sup
h→0+

|ũ(s,Λ + h)− ũ(s,Λ)|√
h2−β log log(1/h)

=∞

for all s > s0 simultaneously.
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Part (i) of Theorem 9.2 is proved by using Meyer’s section
theorem [Dellacherie (1972, p.18)]:

Let (Ω,G ,P) be a complete probability space and S be a
B(R+) × G -measurable subset of R+ × Ω. Then there
exists a G -measurable random variable Λ with values in
(0,∞] such that
(a) the graph of Λ, denoted by [Λ] := {(t, ω) ∈ R+ × Ω :

Λ(ω) = t}, is contained in S;
(b) {Λ <∞} is equal to the projection π(S) of S onto Ω.
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For fixed s0 > 0, we decompose ũ into ũ1 + ũ2, where

ũi(τ, λ) = ui

(τ + λ√
2
,
−τ + λ√

2

)
, i = 1, 2,

and

u1(t, x) =
1
2

W
(
∆(t, x) ∩ Π(s0)

)
,

u2(t, x) =
1
2

W
(
∆(t, x) ∩ Π(s0)

c).
It can be proven that there exists a positive, finite, Fτ0-
measurable random variable Λ such that

lim sup
h→0+

|ũ1(s0,Λ + h)− ũ1(s0,Λ)|√
h2−β log log(1/h)

=∞ a.s.
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This is proved by taking

S =

{
(λ, ω) : lim sup

h→0+

|ũ1(s0, λ+ h)(ω)− ũ1(s0, λ)(ω)|√
h2−β log log(1/h)

=∞
}

and applying Meyer’s section theorem.
Moreover, for λ > 0,

P
(

lim sup
h→0+

|ũ2(τ, λ+ h)− ũ2(τ, λ)|√
h2−β log log(1/h)

= Kβ(τ − s0 + λ)1/2 for all τ ≥ s0

)
= 1.

Combining the above ingredients yields Theorem 9.2.
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Thank you!
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