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@ Intersection problems for random fields
© Hitting probabilities of Gaussian random fields
@ Polarity of points of Gaussian random fields

@ Systems of linear stochastic heat and wave equations
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7.1 Intersection problems for random fields

Let X = {X(#),t € R"} be a random field with values in
R?. Various intersection problems can be considered:

(1) For Borel sets E C RY and F C R, when is

P(X(E)NF #0) > 07 (1)

(2) [Multiple intersections] Given disjoint sets Ey, . . ., Ej
C RY, when does

P(X(E))N--NX(E)NF #0) > 0? (2)
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Question (1) is quite general, which includes intersections
of the graph set and level sets:
o Let GrX(E) = {(#,X(r)) : t € E} be the graph of X
on E. Then (1) is equivalent to

P(GrX(E) N (E x F) # () > 0.
e Take F = {0}, then (1) is equivalent to

P(X~'(0)NE#0) > 0.

The following are some known results about Question (1).
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In the case when E = [a,b], (a,b € RY), necessary and
sufficient conditions for (1) in terms of certain kind of ca-
pacity of F have been established for X being

@ Brownian motion Lévy processes

@ Some multiparameter Markov processes (Fitzsimmons
and Salisbury, 1989)

@ The Brownian sheet (Khoshnevisan and Shi, 1999)

@ Additive Lévy processes (Khoshnevisan and X., 2002,
2003, 2009)

@ Hyperbolic SPDEs (Dalang and Nualart, 2004)

In the special case when F = {0}, Khoshnevisan and Xiao
(2002) for a large class of additive Lévy processes.
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For general £ C RN and F C R4, a necessary and suffi-
cient condition in terms of “thermal capacity” of E x F was
established for Brownian motion B by Watson (1978).

The Hausdorff dimension B(E) N F was determined by
Khoshnevisan and X. (2015).

For Gaussian random fields and the solutions of some SPDEs,
some necessary conditions and sufficient conditions for the
hitting probability in (1) with E = la,b], (a,b € RY)
have been obtained by Dalang, Khoshnevisan and Nualart
(2007, 2009), Biermé, Lacaux and X. (2009), X. (2009),
Dalang and Sanz-Solé (2010), Hinojosa-Calleja and Sanz-
Solé (2020, 2021).

In Section 7.2, we will work to extend and strengthen the
existing results on the hitting probability in (1) for Gaus-
sian random fields.
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Question (2) is related to existence of self-intersections.

@ When F = R, then (2) gives existence of k-multiple
points.
o Lévy processes (Khoshnevisan and X., 2005): F = RY,
general Ey, ... E;
@ The Brownian sheet: Dalang et al (2012), Dalang and Mueller
(2015), Dalang, Lee, Mueller, and X. (2021): F = R,
E,, ..., E; are intervals.

@ No results for general F, Ey, ..., E}.
In Section 7.2, we will provide some results on the inter-

section of independent Gaussian random fields, which is
technically simpler than Question (2).
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7.2 Hitting probabilities of Gaussian random

fields

Let X = {X(¢),t € RY} be a Gaussian field in R? defined

X(t) = (X1(2), ..., X4(2)), teRY, 3)

where X, ..., X, are independent copies of a centered GF
Xo.

Given E C RY and F C R, in order to provide necessary
condition and sufficient condition for

P{X(E)NF # 0} >0,

we recall some concepts on fractals.
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Hausdorff dimension and Capacity

For any metric p on R?, any § > 0 and E C R?, the (-
dimensional Hausdorff measure in the metric p of E is de-
fined by

o0

HA(E) = lim inf{ > @r)?: EC|JBs(r), ra < 5},

n=1 n=1

where B;(r) denotes an open ball of radius r in the metric
space (R”, p).
The corresponding Hausdorff dimension of E is defined by
) AR . yB —
dim’E = inf {3 > 0 : H5(E) = 0}.

p will be omitted if it is the Euclidean metric.
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The Bessel-Riesz type capacity of order o on the metric
space (R”, p) is defined by

—1
Co(E) = | inf X p(du)p(dv)|
s, | [ mmianian

where P(E) is the family of probability measures carried
by E and the function f, : (0,00) — (0, o) is defined by

r e if a >0,
falr) = § log () if a =0, )
1 if a <0.
The dimension p and metric p can be chosen appropriately

based on the hitting probability problem, as we will show
below.



We start by stating the following result which was moti-
vated by Dalang, Khoshnevisan and Nualart (2007).

Theorem 7.1 [Biermé, Lacaux and X. (2009)]
If X 1s defined by (3) such that X, satisfies:

.
.
|
.

E[(Xo(s) = Xo(r)"] = D lsy — P forall 5,7 € I(=[e, 1]¥), (5)

j=1

where 0 < H; < 1 (1 < j < d) are constants, and 3
¢7,1 > 0 such that forall s,r € I

N
Var (Xo(1)|Xo(s)) > e70 Y Is; — 4. (6)
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Theorem 7.1 (continued)
Then V Borel set F C R?,

€72 CO(F) < IP{X(I) NF# (2)} < 13 HIQ(F),

where Q = Zjvzl &, €79 is (d — Q)-dimensional Riesz
capacity and H9~€ is (d — Q)-dimensional Hausdorff mea-
sure.

It is an open problem if HY"2(F) in the above can be re-
placed by C*~9(F).

Recently, Dalang, Mueller and X. (2017) proved that, if
d = Q, then for every x € R,

P{X(I)N{x} #0} =P{3re1:X(1) =x} =0.

We will discuss this result in Section 7.3 below.
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For any Borel set F C R4, consider the inverse image

X '(F)={teR": X(1) e F}.

Theorem 7.2 [Biermé, Lacaux and X. (2009)]

Let X be as in Theorem 7.1 and let F C RY be a Borel

set such that Zjvzl Hi > d — dim,F. Then with positive
J

probability,
dim, (X' (F) N 1)

k
. Hy |
a 1I<I}c1<nN{Zﬁ +N—k—Hk(d—d1mHF)},

=1
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The following extension of Theorem 7.1 is useful.

Theorem 7.3 [Z. Chen and X. (2012)]

Assume that (5) and (6) hold. Then for all compact sets
E Cland F C RY,

¢74CL(EX F) < IP{X(E) NF Q)} < cr5HL (E X F),

where C;ll and Hzl denote respectively the d-dimensional
Riesz capacity and d-dimensional Hausdorff measure in
the metric space (RV*4 p;), and where

N

p1((5,%), (1,9)) = max { 3 Isy =, [lx =yl }.

J=1
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Theorem 7.3 implies the following result on hitting proba-
bility of X' ({a}):
For every a € R4 and Borel set E C I, 3 c76 > 1, 8.t

76 CUE) <P{X'({a}) NE # @} < 16 HA(E).

p

In the above, C;’ is the Bessel-Riesz capacity of order d in

the metric p, and H;’(E) is the d-dimensional Hausdorff
measure of E in the metric p defined as before by

N
s, 1) =) ls— /™.
j=1
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Proof of Theorem 7.3

The proof makes use of the following two lemmas.

Lemma 7.1 [Biermé, Lacaux and X. (2009)]

Assume the conditions of Theorem 7.1 hold. For any con-
stant M > 0, there exist positive constants ¢ and dy such
that for all » € (0, dy), t € I and all x € [-M, M|,

SEB,(t,r)N

]P{ inf IHX(S) —x|| < r} <cr (7)

In the above B,(1,r) = {s € RY : p(s,1) < r} denotes the
closed ball of radius r in the metric p in RY.
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.
|
.

Lemma 7.2 [Biermé, Lacaux and X. (2009)]

There exists a positive and finite constant ¢ such that for all
e€(0,1),s,t€Iandx,y € R? we have

/Rza exp ( — 1(57 1) (ehq + Cov(X(s), X (1)) (&, n)T)

e (&) +(n,) dfdn < ¢
_— d'
pl((S,)C),(l,y))

In the above, I; denotes the identity matrix of order 2d,
Cov(X(s),X(r)) denotes the covariance matrix of the ran-

dom vector (X(s),X(z)), and (£,n)T is the transpose of the
row vector (&, 7).
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Proof of Theorem 7.3 The upper bound in (14) can be
proved by a covering argument using Lemma 7.1.

The the lower bound in (14) can be proved by using Lemma
7.2 and a capacity argument.

We omit the details.
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Intersections of independent Gaussian fields

Let X7 = {X#(s),s € RM} and XX = {XX(¢),t € RM}
be two independent Gaussian fields with values in R such
that the associate random fields X4 and X¥ satisfy (5) and
(6) respectively on I} C RM with H = (Hy,...,Hy,) and
onl, C R™ with K = (Ky,...,Ky,).

Theorem 7.4 [Z. Chen and X. (2012)]

There exists a constant C > 1 such that

C™'Co (E1 X Ep) <P{X"(E\) NX*(E,) # @} < CH! (Ey X Ey),

where

Ny N,
p2((s,1), (5, 7)) = Zl |si — sif" + Zl |4 — 4%
i= Jj=
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When E; = I, and E, = I, are two intervals, Theorem 7.4
implies that

(i) Ifd > Zjv:ll [% + Zj\/:z] Kij, then
P{X"(I) N X* (L) # @} = 0.

(i) Ifd <3000 7 + 7 g then
P{x"(1) N x*(L) # &} > 0.

@ What happens in the critical case of

d=) =+ A (8)
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Theorem 7.5 [Z. Chen and X. (2012)]

If X¥ (or X¥) satisfies the conditions of Theorem 5.6, then,
in the critical case (8), P{X?(I;) N XX () # @} = 0.

Proof By Theorem 5.6, the exact Hausdorff measure func-
tion for X7 (I}) is

N

1
o(r) = rZ’ll i loglog—
This implies that

H, s (XH(Il)) =0 as.

Therefore, the conclusion follows from Theorem 7.1.
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7.3 Polarity of points (the critical case)

In Dalang, Mueller and X. (2017), the following assump-
tions are made.

Condition (A1)
Consider a compact interval T C R". There exists a Gaus-
sian random field {v(A,7) : A € ZA(R.), t € T} such that
(a) Forallt € T, A — v(A,1) is a real-valued Gaussian
noise, v(R,,7) = X;(¢), and v(A, -) and v(B,-) are inde-
pendent whenever A and B are disjoint.
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Condition (A1) (continued)

(b) There are constants ap > Oand ; > 0,7 = 1,...
such that forallag < a < b < occands,r €T,

[v([a, b), 5) — Xi(s) — v([a,b), ) + X (1),

N
<c(Yarly—ul+57), ©

j=1

where || Y|z = [E(Y?)] '/2 for a random variable ¥ and

[v([0, a0), s) — v([0, a0),1)|| . < CZ Is; — 1. (10)

Recall that p(s, 1) = Z |s; — 4], where H; = (y; + 1)\
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Condition (AS)
(a). There is a constant ¢ > 0 such that ||X;(¢)||;» > ¢ for
allr e T.

(b). For I C T and ¢ > O small, let I° be the e-

neighborhood of I. For every ¢t € I, there is f € OI®
such that for all x,x € I with p(¢,x) < 2¢ and p(z,%) < 2e,

‘E((Xl( ) — Xi(x < CZ [ _x1|6

where §; € (H;, 1], G = 1,...,N) are constants.
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The following is the main result of Dalang, Mueller and X.
(2017).

Theorem 7.6

Yin

Let X = {X(¢),t € R} be a centered Gaussian random
field that satisfies Conditions (A1) and (AS5). Assume that
Q =d. Thenforeveryz e R, P{3r € T : X(¢t) =z} = 0.

Theorem 7.6 is proved by constructing an economic cov-
ering for the image X (B.(1°)) (where ¢ > 0 and 1° € T are
fixed) by using the method of Talagrand (1998).

See also X. (1997), where the exact Hausdorff measure of
the level set L, = {¢r € T : X(t) = z} was determined.
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The main ingredient for proving Theorem 7.6 is the fol-
lowing proposition, which was proved as Proposition 5.2
in Lecture 5.

Proposition 7.1

Let Assumption (A1) hold. Then there are constants K;
and &, such that for every 0 < ry < dp and 1 € T, we have

r
PL3r € [rg,ro): sup | X(1) — X(£)] §K1—}
{ 0 t:p(t,00)<r (log log %)I/Q

1 1
Zl—exp{ — <log —)2].
o
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For ! € T and ¢ > 0, set

B.(°)={teT:p(t) <e},

B.(°) ={teT:p(t) <2}
For proving Theorem 7.6, it is sufficient to prove the fol-
lowing

Proposition 7.2

Assume that (A1) holds and Q = d. Fix ° € T, and con-
sider the following (random) subset of R:

M(e,1°) = X(B.(1")),

which is the image of B.(1°) under the mapping ¢ — X(¢).
Then for every z € R,

P{z e M(¢,1°)} =P{3t € B.(*) : X(t) =z} = 0.
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We work to prove Proposition 7.2.

Let ¢ € B.() be given by (A5) (b). We define two R%-
valued Gaussian random fields

X)) =EX0)|X(©),  X'(t)=X@) —X(1).

Notice that the random fields X' and X? are independent.
Further, X! is independent of the random vector X(¢'). The
following lemma shows that X2 can be viewed as a pertur-
bation part.

There is a finite constant C such that for 7,7 € B.(1°),
[X2() = X2(D)] < CIX()| 505 1 — 51
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For p > 1, consider the random set
R, = {x € B.(1") :3r € [27%,277) with
K
sup () XG0 £
X p(xx)<r (log log %)@

and the event
001 = iR 2 3B (1- 00 (— v5/4)) b

which can be described as the event “a large portion of
B.(°) consists of points at which X has minimal oscilla-
tion.” As in the proof of the upper bound in Theorem 5.6,
we have
E(Av(BL() \ R,))
P2
SDES N(BL(1%)) exp ( — /p/4

<o (—Z\/ﬁ)- (11)
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This gives
Z P( ) < +o0. (12)

p=1
Fix 3 €]0, min(minj—, _n(&;H; ' — 1),1)[ (which is pos-
sible since 0; > H;,j = 1,...,N) and set
Q= {IX(7)] < 277}

Then ) ., P(€2 ,) < +oo.
By Lemma 7.3, we have that, on the event (2, ,,

N

N
1X2(x) — X*(x)| < CZBPZ |x; _jcj|5.i < C2Pr Zr@‘H{l

J=1 J=1

for all for x, X € B.(1°) that satisfy p(x,x) < cr.
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Therefore, there is a constant K, > K; such that on the

event Q,3 = Q,; N Q,,, for each x € R,, there exists

re2” 2P,2 7] such that
.

sup  [x'(x) - X'(x)| < K

<K——r. (13)
% plE ) <r (loglog 1)1/©

An “anisotropic dyadic cubes” of order ¢ in R" is of the

form .
H [ m; m; + 1:|
19 _ )
il 2€H 2@H

where m; € N. Forx € R let C/(x) denote the anisotropic
dyadic cube of order ¢ that contains x.
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The cube Cy(x) is called “good” if

sup X'(y) = X' (x)] < dp, (14)
XECy(x)NBe (1Y)
where ,
-
d) =

K

* (loglog 2¢)1/2
By (13), when (2, 3 occurs, we can find a family H; , of
non-overlapping good anisotropic dyadic cubes (they may

have intersecting boundaries) of order ¢ € [p, 2p] that cov-
ers R,. This family only depends on the random field X'
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Let H, , be the family of non-overlapping dyadic cubes of
order 2p that meet B, (1°) but are not contained in any cube
of H;,. For p large enough, these cubes are contained in
BL(1°), hence in B.(1°) \ R,

Therefore, when €2, 3 occurs, the number of cubes in H, ),
1s at most N,,, where

N, 272 < A (BL(f%)) exp (= v/p/4),

SO
N, < K2%2exp (—/p/4), (15)

where K does not depend on p.
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Let €2, 4 be the event “the inequality

sup  |X(x) — X(%)| < K327%/p (16)

x,xeC

holds for each dyadic cube C of order 2p of R that meets
B.(1°)”

We choose Kj large enough so that -, ]P’(Q;A) < F00.
This 1s possible by Lemma 3.3 in Lecture 3 [it is Lemma
2.1 from Talagrand (1995)].

Set H, = Hi, U H,p. This family is well-defined for all
p > 1, and it is a non-overlapping cover of B.(°).
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Set

ra = 4dy = 4K,2 “(log £)~"/? if A € H,, and A is of
order ¢ € |p,2p],
ra=K27%\/p ifA € Hap.

Let f(r) = r'loglog 1. If €, 3 N 2,4 occurs, then we can
verify that for p large enough,

> fra) < KAn(B.(1)). (17)

AcH,
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For each A € H,, we pick a distinguished point p4 in A

(say the lower left corner). Let B4 be the Euclidean ball in

R? centered at X(p,) with radius r,.

Let F, be the family of balls {B4, A € H,}. For p large

enough, on 2,3 N €, 4, F, covers M (e, 1°).

Since f(r)/rY — 0 as r — 0+, it follows from (17) that
Aa(M(e, 1)) = 0as.

This and Fubini’s theorem imply that for a.e. z € R,

P(z € M(s,1°)) = 0.

To prove that for every z € RY, P(z € M(,1°)) = 0, we

introduce the random field X* defined by

X3 (1) = %(z —X'(¢)), VteRY,
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where
E[X,(6)X, ()]

0= "Ex @)
Notice that E[X(¢)|X(¢)] = a(t)X(7).
It can be verified that 1/2 < a(t) < 3/2 forall € B.(1°)
when ¢ is small enough. Moreover, the function # — «a(t)
is Holder continuous by Condition (AS5)(b).
For any z € R?, by the decomposition

X(x) = X'(x) + a(x)X(1),
we have

X(x) =z —  X(x)=X(). (18)



Yin

Denote by gx()(w) the density function of X(¢'). By the
independence of X'(x) and X(¢'), we have

P{z e M(c,1°)} =P{3x € B.(1") : X’(x) = X(/')}

= / dw gx(y(w)P{3x € B.(1°) : X*(x) = w}. (19)
Rd

It can be proved as on the previous page that Ay [ X*(B-(1"))]
= 0 a.s. This implies that for a.e. w € R,
P{Ix € B.({") : X*(x) = w} = 0.

Therefore, (19) yields P{z € M(¢,1°)} = 0.
This proves Proposition 7.2 and thus Theorem 7.6.
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7.4 Polarity of points for systems of linear

stochastic heat and wave equations

Let it = {u(t,x), t € R,, x € R*} be the mild solution of
a linear system of d uncoupled heat equations:
{ %ﬁj(t,x) = Aiy(t,x) + Wi(t, x), j=1,....,d,

(20)
u(0,x) = 0, x € Rk,

Here, it(t,x) = (@1 (t,x), ..., ita(t,x)) and A is the Lapla-
cian in the spatial variables. The Gaussian noise W is white

in time and has a spatially homogeneous covariancegiven
by the Riesz kernel with exponent 5 € (0,k A 2), i.e.

E(W (1, 2)W,(s5,)) = (1 — )|x — y] 7.

If k = 1 = j3, then W is the space-time white noise.
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Theorem 7.7

Suppose (4 + 2k)/(2 — ) = d. Then d is the critical
dimension for hitting points and points are polar for &. That
is, for all z € R4+20)/(2=5)

P{3(t,x) € (0,400) x R*:a(t,x) =z} = 0.

In particular, in the case when W is the space-time white
noise and d = 6, all points are polar for i.
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Now let v be the solution of the stochastic wave equation
in spatial dimension k driven by W with 5 > 1.

Dvi(t,x) = Av(e,x)+Wi(t,x),  j=1,....d,
p(0,x) = 0, 25(0,x) =0,  xeRL

Theorem 7.8

Supposek =1=porl < < kA2,andd = ( ) . Then
d 1s the critical dimension for hitting points and pomts are
polar for v, that is, for all z € R,

P{3(t,x) € (0,400) x R*: 9(t,x) =z} = 0.

In particular, in the case when W is the space-time white
noise and d = 4, all points are polar for V.
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Thank you!




