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5.1. Introduction to fractal geometry

Let X = {X(t), t ∈ RN} be a random field with values in
Rd. It generates many random sets, for example,

Range X
(
[0, 1]N

)
=
{

X(t) : t ∈ [0, 1]N
}

Graph GrX
(
[0, 1]N

)
=
{

(t,X(t)) : t ∈ [0, 1]N
}

Level set X−1(x) =
{

t ∈ RN : X(t) = x
}

Excursion set X−1(F) =
{

t ∈ RN : X(t) ∈ F
}
, ∀F ⊆

Rd,

The set of self-intersections, . . ..

In order to study them, we need some tools such as Haus-
dorff dimension and packing dimension from fractal ge-
ometry.
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5.1 Definitions of Hausdorff measure and
dimension

Let Φ be the class of functions ϕ : (0, δ) → (0,∞) which
are right continuous, monotone increasing with ϕ(0+) = 0
and such that there exists a finite constant K > 0 such that

ϕ(2s)
ϕ(s)

≤ K for 0 < s <
1
2
δ.

A function ϕ in Φ is often called a measure function or
gauge function.
For example, ϕ(s) = sα (α > 0) andϕ(s) = sα log log(1/s)
are measure functions.
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Given ϕ ∈ Φ, the ϕ-Hausdorff measure of E ⊆ Rd is
defined by

ϕ-m(E) = lim
ε→0

inf
{∑

i

ϕ(2ri) : E ⊆
∞⋃

i=1

B(xi, ri), ri < ε

}
, (1)

where B(x, r) denotes the open ball of radius r centered at
x. The sequence of balls satisfying the two conditions on
the right-hand side of (1) is called an ε-covering of E.

It can be shown that ϕ-m is a metric outer measure and all
Borel sets in Rd is ϕ-m measurable.

A function ϕ ∈ Φ is called an exact Hausdorff measure
function for E if 0 < ϕ-m(E) <∞.
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If ϕ(s) = sα, we write ϕ-m(E) asHα(E).
The Hausdorff dimension of E is defined by

dimHE = inf
{
α > 0 : Hα(E) = 0

}
= sup

{
α > 0 : Hα(E) =∞},

Convention: sup∅ := 0.

Hausdorff dimension has the following properties:

1 E ⊆ F ⊆ Rd ⇒ dimHE ≤ dimHF ≤ d.
2 (σ-stability):

dimH

( ∞⋃
j=1

Ej

)
= sup

j≥1
dimHEj.
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An upper density theorem

For any Borel measure µ on Rd and ϕ ∈ Φ, the upper ϕ-
density of µ at x ∈ Rd is defined as

Dϕ

µ(x) = lim sup
r→0

µ(B(x, r))

ϕ(2r)
.

Lemma 5.1 [Rogers and Taylor, 1961]
Given ϕ ∈ Φ, ∃K > 0 such that for any Borel measure
µ on Rd with 0 < ‖µ‖=̂µ(Rd) < ∞ and every Borel set
E ⊆ Rd, we have

K−1µ(E) inf
x∈E

{
Dϕ

µ(x)
}−1 ≤ ϕ-m(E) ≤ K‖µ‖ sup

x∈E

{
Dϕ

µ(x)
}−1

.
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5.2 Packing measure and packing dimension
They were introduced by Tricot (1982), Taylor and Tricot
(1985). For any ϕ ∈ Φ and E ⊆ Rd, define

ϕ-P(E) = lim
ε→0

sup
{∑

i

ϕ(2ri) : {B(xi, ri)} is an ε-packing
}
.

Here ε-packing means that the balls are disjoint, xi ∈ E
and ri ≤ ε.
The packing measure ϕ-p of E is defined as:

ϕ-p(E) = inf
{∑

n

ϕ-P(En) : E ⊆
⋃

n

En

}
.

A function ϕ ∈ Φ is called an exact packing measure func-
tion for E for E if 0 < ϕ-p(E) <∞.
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If ϕ(s) = sα, we write ϕ-p(E) as Pα(E). The packing
dimension of E is defined as:

dimPE = inf{α > 0 : Pα(E) = 0}.

Comparison between dimH and dimP:
For any ϕ ∈ Φ and E ⊆ Rd,

ϕ-m(E) ≤ ϕ-p(E), dimHE ≤ dimPE.
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A lower density theorem
For any Borel measure µ on Rd and ϕ ∈ Φ, the lower ϕ-
density of µ at x ∈ Rd is defined as

Dϕ
µ(x) = lim inf

r→0

µ(B(x, r))

ϕ(2r)
.

Lemma 5.2 [Taylor and Tricot, 1985]
Given ϕ ∈ Φ, ∃K > 0 such that for any Borel measure
µ on Rd with 0 < ‖µ‖=̂µ(Rd) < ∞ and every Borel set
E ⊆ Rd, we have

K−1µ(E) inf
x∈E

{
Dϕ
µ(x)

}−1 ≤ ϕ-p(E) ≤ K‖µ‖ sup
x∈E

{
Dϕ
µ(x)

}−1
.
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Example: Cantor’s set

Let C denote the standard ternary Cantor set in [0 , 1]. At
the nth stage of its construction, C is covered by 2n inter-
vals of length/diameter 3−n each.
It can be proved that

dimHC = dimPC = log3 2.

By using the upper and lower density theorems, one can
prove that

0 < Hlog3 2(C) ≤ Plog3 2(C) <∞.
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Example: the range of Brownian motion
Let B([0, 1]) be the image of Brownian motion in Rd. Lévy
(1948) and Taylor (1953) proved that

dimHB([0, 1]) = min{d, 2} a.s.

Ciesielski and Taylor (1962), Ray and Taylor (1964) proved
that

0 < ϕd-m
(
B([0, 1])

)
<∞ a.s.,

where

ϕ1(r) = r,

ϕ2(r) = r2 log(1/r) log log log(1/r),

ϕd(r) = r2 log log(1/r), if d ≥ 3.
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Taylor and Tricot (1985) proved that

dimPB([0, 1]) = min{d, 2}

and, if d ≥ 3, then

0 < ψ-p
(
B([0, 1])

)
<∞ a.s.,

where ψ(r) = r2/ log log(1/r).

LeGall and Taylor (1986) proved that, if d = 2, then for
any measure function ϕ, either ϕ-p

(
B([0, 1])

)
= 0 or∞.

Question: How to extend the above results to Gaussian
random fields?
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5.3. Exact Hausdorff and packing measure
functions for fractional Brownian motion
For H ∈ (0, 1), the fBm BH = {BH(t), t ∈ RN} with in-
dex H is a centered (N, d)-Gaussian field whose covariance
function is

E
[
BH

i (s)BH
j (t)

]
=

1
2
δij
(
|s|2H + |t|2H − |s− t|2H) ,

where δij = 1 if i = j and 0 otherwise.
When N = 1 and H = 1/2, BH is Brownian motion.
BH is H-self-similar and has stationary increments.

Kahane (1985) proved that

dimHBH([0, 1]N) = min
{

d,
N
H

}
a.s.
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5.3.1 Exact Hausdorff measure functions for
BH([0, 1]N) and GrBH([0, 1]N)

Theorem 5.1 [Talagrand (1995, 1998)]
Let BH = {BH(t), t ∈ RN} be a fBm with values in Rd.
(i). If N < Hd, then

K−1 ≤ ϕ1-m
(
BH([0, 1]N)

)
≤ K, a.s.

where ϕ1(r) = r
N
H log log(1/r).

(ii). If N = Hd, then ϕ2-m
(
BH([0, 1]N)

)
is σ-finite, where

ϕ2(r) = rd log(1/r) log log log(1/r).
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Theorem 5.2 [X. (1997)]
Let BH = {BH(t), t ∈ RN} be a fBm with values in Rd.
(i). If N < Hd, then

K−1 ≤ ϕ1-m
(
GrBH([0, 1]N)

)
≤ K, a.s.

where ϕ1(r) = r
N
H log log(1/r).

(ii). If N > Hd, then

K−1 ≤ ϕ3-m
(
GrBH([0, 1]N)

)
≤ K, a.s.,

where
ϕ2(r) = rN+(1−H)d( log log(1/r)

)Hd/N
.
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5.3.2. Exact packing measure function for
BH([0, 1]N)

Theorem 5.3 (Xiao, 1996, 2003)
Let BH = {BH(t), t ∈ RN} be a fBm with values in Rd. If
N < Hd, then there exists a finite constant K ≥ 1 such that

K−1 ≤ ϕ4-p(BH([0, 1]N)) ≤ K, a.s.

where ϕ4(r) = r
N
H
(

log log(1/r)
)−N/(2H).
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For proving Theorem 5.3, one needs to study the liminf
behavior of the sojourn measure

T(r) =

∫
RN

1{|BH(t)|≤r}dt.

A key ingredient is the following small ball probability es-
timate for T(1).

Lemma 5.4 [Xiao, 1996, 2003]
Assume that N < Hd. Then there exists a positive and
finite constant K ≥ 1, depending only on H, N and d such
that for any 0 < ε < 1,

exp
(
− K
ε2H/N

)
≤ P{T(1) < ε} ≤ exp

(
− 1

Kε2H/N

)
.
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This leads to the following Chung’s LIL for T(r).

Theorem 5.5 (Xiao, 1996, 2003)
If N < Hd, then with probability one,

lim inf
r→0

T(r)

ϕ4(r)
= K, (2)

where 0 < K <∞ is a constant depending on H, N and d
only.

By the stationarity of increments of BH and the lower den-
sity theorem, we derive the lower bound in Theorem 5.3.

The proof of upper bound in Theorem 5.3 requires a dif-
ferent argument.
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5.4 Exact Hausdorff measure function for the
ranges of Gaussian random fields
Let X = {X(t), t ∈ RN} be a Gaussian field in Rd:

X(t) =
(
X1(t), . . . ,Xd(t)

)
, t ∈ RN , (3)

where X1, . . . ,Xd are independent copies of a centered Gaus-
sian field X0. We assume that X0 satisfies the following
conditions from Lecture 3.
Assumption (A1)
Consider a compact interval T ⊂ RN . There exists a Gaus-
sian random field {v(A, t) : A ∈ B(R+), t ∈ T} such that
(a) For all t ∈ T , A 7→ v(A, t) is a real-valued Gaussian
noise, v(R+, t) = X0(t), and v(A, ·) and v(B, ·) are inde-
pendent whenever A and B are disjoint.
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Assumption (A1) (continued)
(b) There are constants a0 ≥ 0 and γj > 0, j = 1, . . . ,N
such that for all a0 ≤ a ≤ b ≤ ∞ and s = (s1, . . . , sN), t =
(t1, . . . , tN) ∈ T ,∥∥v([a, b), s)− X0(s)− v([a, b), t) + X0(t)

∥∥
L2

≤ C
( N∑

j=1

aγj|sj − tj|+ b−1
)
,

(4)

where ‖Y‖L2 =
[
E(Y2)

]1/2 for a random variable Y and

∥∥v([0, a0), s)− v([0, a0), t)
∥∥

L2 ≤ C
N∑

j=1

|sj − tj|. (5)
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Condition (A4′) [strong local nondeterminism]
There exists a constant c > 0 such that ∀ n ≥ 1 and
u, t1, . . . , tn ∈ T ,

Var
(
X0(u)

∣∣X0(t1), . . . ,X0(tn)
)
≥ c min

1≤k≤n
ρ(u, tk)2, (6)

where ρ(s, t) is the metric on RN defined by

ρ(s, t) =
N∑

j=1

|sj − tj|Hj ,

and where Hj = (γj + 1)−1 (j = 1, . . . ,N).

These conditions are weaker than those in Luan and X.
(2012).
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Theorem 5.6
Let X = {X(t), t ∈ RN} be a centered Gaussian field with
values in Rd such that X0 satisfies (A1) and (A4′).

(i). If Q =
N∑

j=1
H−1

j < d, then

K−1 ≤ ϕ5-m
(
X([0, 1]N)

)
≤ K, a.s., (7)

where ϕ5(r) = rQ log log(1/r).
(ii). If Q > d, then X([0, 1]N) has positive d-dimensional
Lebesgue measure a.s.

The problem to determine the exact Hausdorff measure
function for X([0, 1]N) in the “critical case” Q = d is open.
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Proof of Theorem 5.6

The lower bound in (7) is proved by using the upper density
theorem in Lemma 5.1. A natural measure on X([0, 1]N) is
the sojourn measure

µ(B) = λN
{

t ∈ [0, 1]N : X(t) ∈ B
}
, ∀B ∈ B(Rd),

where λN denotes the Lebesgue measure on RN .
For any 0 < r < 1 and t0 ∈ [0, 1]N := I, we consider

µ
(
B(X(t0), r)

)
=

∫
I
1{|X(t)−X(t0)|≤r} dt,

which is the sojourn time of X in the ball B(X(t0), r).
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The following moment estimate is essential for determin-
ing the asymptotic behavior of µ

(
B(X(t0), r)

)
as r → 0.

Lemma 5.5
If d > Q, then there is a finite constant C such that for
every t0 ∈ I and all integers n ≥ 1,

E
[
µ
(
B(X(t0), r)

)n] ≤ Cnn! rQn.

Proof. For n = 1, by Fubini’s theorem we have

E
[
µ
(
B(X(t0), r)

)]
=

∫
I
P
{
|X(t)− X(t0)| < r

}
dt

≤
∫

I
min

{
1, c
( r
ρ(t, t0)

)d
}

dt

=

∫
{t:ρ(t,t0)≤cr}∩I

dt + c
∫
{t:ρ(t,t0)>cr}∩I

( r
ρ(t, t0)

)d
dt.

Yimin Xiao (Michigan State University) Lecture 5. Fractal Properties of Gaussian Random Fields August 2–6, 2021 25 / 44



It is elementary to verify that
E
[
µ
(
B(X(t0), r)

)]
≤ crQ.

For n ≥ 2,

E
[
µ
(
B(X(t0), r)

)n]
=

∫
In
P
{∣∣X(tj)−X(t0)

∣∣ < r, 1 ≤ j ≤ n
}

dt1 · · · dtn.

It is sufficient to consider t1, · · · , tn ∈ I that satisfy

tj 6= t0, for j = 1, · · · , n and tj 6= tk for j 6= k.

By Condition (A4′), we have

Var
(
X0(tn)− X0(t0)

∣∣X0(t1)− X0(t0), · · · ,X0(tn−1)− X0(t0)
)

≥ Var
(
X0(tn)

∣∣X0(t0),X0(t1), · · · ,X0(tn−1)
)

≥ c min
0≤k≤n−1

ρ(tn, tk)2.

(8)
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Since conditional distributions in Gaussian processes are
still Gaussian, it follows from Anderson’s inequality and
(8) that∫

I
P
{∣∣X(tn)− X(t0)

∣∣ < r
∣∣X(t1)− X(t0), · · · ,X(tn−1)− X(t0)

}
dtn

≤ c
∫

I

n−1∑
k=0

min
{

1, c
( r
ρ(tn, tk)

)d}
dtn

≤ c n
∫

I
min

{
1, c
( r
ρ(tn, 0)

)d}
dtn

≤ c nrQ.

Iterating the procedure proves Lemma 5.5.
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From Lemma 5.5 and the Borel-Cantelli lemma, we can
prove the following law of the iterated logarithm for the
sojourn measure of X.

Proposition 5.1
For every t0 ∈ I, we have

lim sup
r→0

µ
(
B(X(t0), r)

)
ϕ5(r)

≤ C <∞, a.s.

This and Fubini’s theorem yield: a.s.

lim sup
r→0

µ
(
B(X(t0), r)

)
ϕ5(r)

≤ C a.e. t0 ∈ I.

Hence, the lower bound in (7) follows from Lemma 5.1.
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For proving the upper bound in (7), we need the following
small ball probability estimates.

Lemma 5.6 [X. (2009)]
Under the conditions of Theorem 5.6, There exist constants
c and c′ such that for all t0 ∈ I = [0, 1]N and 0 < ε < r,

exp
(
−c′
( r
ε

)Q)
≤ P

{
sup

t∈I:ρ(t,t0)≤r
|X(t)−X(t0)| ≤ ε

}
≤ exp

(
−c
( r
ε

)Q)
.

The main estimate is given in the following lemma.
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Proposition 5.2
Assume that the conditions of Theorem 5.6 hold. There
exist positive constants δ0 and C such that for any t0 ∈ I
and 0 < r0 ≤ δ0, we have

P
{
∃ r ∈ [r2

0, r0], sup
t∈I:ρ(t,t0)≤r

|X(t)− X(t0)| ≤ Cr
(

log log(1/r)
)−1/Q

}
≥ 1− exp

(
−
(

log(1/r0
)1/2
)
.

Proof. The method of proof comes form Talagrand (1995).
We provide the main steps. Let U > 1 be a number whose
value will be determined later. For k ≥ 0, let rk = r0U−2k.
Consider the largest integer k0 such that

k0 ≤
log(1/r0)

2 log U
.
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Thus, for k ≤ k0 we have r2
0 ≤ rk ≤ r0. It thereby suffices

to prove that

P
{
∃k ≤ k0, sup

t∈I:ρ(t,t0)≤rk

|X(t)− X(t0)| ≤ c rk

(
log log

1
rk

)−1/Q}
≥ 1− exp

(
−
(

log
1
r0

)1/2
)
.

(9)

Let ak = r−1
0 U2k−1 and we define for k = 0, 1, · · ·

X0,k(t) = v([ak, ak+1), t)

and
X̂k(t) =

(
X1,k(t), · · · ,Xd,k(t)

)
,

where X1,k(t), · · · ,Xd,k(t) are independent copies of X0,k(t).
It follows that X1 − X1,k, · · · ,Xd − Xd,k are independent
copies of X0 − X0,k.
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The Gaussian random fields X̂0, X̂1, · · · are independent.
By Lemma 5.6 we can find a constant c > 0 such that, if r0
is small enough, then for each k ≥ 0

P
{

sup
t∈I:ρ(t,t0)≤rk

∣∣X̂k(t)− X̂k(t0)
∣∣ ≤ c rk

(
log log(1/rk)

)−1/Q
}

≥ exp
(
− 1

4
log log(1/rk)

)
=

1
(log 1/rk)1/4

≥
(
2 log 1/r0

)−1/4
.

By the independence,

P
{
∃k ≤ k0, sup

t∈I:ρ(t,t0)≤rk

∣∣X̂k(t)− X̂k(t0)
∣∣ ≤ c rk

(
log log(1/rk)

)−1/Q}
≥ 1−

(
1− 1

(2 log 1/r0)1/4

)k0

≥ 1− exp
(
− k0

(2 log 1/r0)1/4

)
,

(10)

where the last inequality follows from 1 − x ≤ e−x for all
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To deal with {X(t) − X̂k(t)}, we claim that for any u ≥
crkU−β

√
log U, where β = min{HN

−1 − 1, 1},

P
{

sup
t∈I:ρ(t,t0)≤rk

∣∣X(t)−X̂k(t)−(X(t0)−X̂k(t0))
∣∣ ≥ u

}
≤ exp

(
− u2

cr2
kU−2β

)
.

(11)
To see this, it’s enough to prove that (11) holds for X0, by
applying Lemma 3.3.
Consider S = {t ∈ I : ρ(t, t0) ≤ rk} and on S the distance

d(s, t) =
∥∥X0(s)− X0,k(s)− (X0(t)− X0,k(t))

∥∥
L2 .

Then d(s, t) ≤ c
∑N

i=1 |si− ti|Hi and N(S, d, ε) ≤ c
(
rk/ε

)Q.
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Now we estimate the d-diameter D of S. By Condition
(A1), we have for any s, t ∈ S,

‖X0(s)− X0,k(s)− (X0(t)− X0,k(t))‖L2

≤ C
( N∑

j=1

a
H−1

j −1
k |sj − tj|+ a−1

k+1

)
≤ CrkU−β,

where β = min{HN
−1 − 1, 1}. Therefore, D ≤ CrkU−β.

Notice that∫ D

0

√
log N(S, d, ε)dε ≤ c

∫ CrkU−β

0

√
log rk/ε dε

≤ crk

∫ CU−β

0

√
log 1/u du ≤ crkU−β

√
log U.

Hence (11) follows from Lemma 3.3.
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Let U = (log 1/r0)
1/β. Then for r0 > 0 small

Uβ (log U)−1/2 ≥
(

log log
1
r0

)1/Q

.

Take u = crk(log log 1/r0)
−1/Q. It follows from (11) that

P
{

sup
t∈I:ρ(t, t0)≤rk

∣∣X(t)− X̂k(t)−
(
X(t0)− X̂k(t0)

)∣∣ ≥ c rk
(

log log
1
r0

)−1/Q
}

≤ exp
(
− cUβ

(log log 1/r0)
2/Q

)
.
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Combining this with (10), we get

P
{
∃k ≤ k0, sup

ρ(t, t0)≤rk

∣∣X(t)− X(t0)
∣∣ ≤ c rk

(
log log(1/rk

)−1/Q
}

≥ 1− exp
(
− k0

(2 log 1/r0)1/4

)
− k0 exp

(
− cUβ

(log log 1/r0)
2/Q

)
.

This proves (9) and Proposition 5.2.

With Proposition 5.2 in hand, we proceed to construction
of an economic covering for X([0, 1]N).
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For k ≥ 1, consider the set

Rk =

{
t ∈ [0, 1]N : ∃ r ∈ [2−2k, 2−k] such that

sup
s∈I:ρ(s,t)≤r

∣∣X(s)− X(t)
∣∣ ≤ c r(log log

1
r

)−1/Q

}
.

By Lemma 5.7 we have that for every t ∈ [0, 1]N ,

P{t ∈ Rk} ≥ 1− exp(−
√

k/2).

This and Fubini’s theorem imply that

E[λN(Rk)] ≥ 1− exp(−
√

k/2).

Or
E[λN(I\Rk)] ≤ exp(−

√
k/2).
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By Markov’s inequality, we have

P
{
λN(Rk) < 1− exp(−

√
k/2)

}
= P

{
λN(I\Rk) > exp(−

√
k/2)

}
≤ E[λN(I\Rk)]

exp(−
√

k/2)

≤ exp
(
−
( 1√

2
− 1

2

)√
k
)
.

Hence, by the Borel-Cantelli lemma, we have P(Ω1) = 1,
where

Ω1 =
{
ω : λN(Rk) ≥ 1− exp(−

√
k/2) for all k large enough

}
.
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On the other hand, by Lemma 3.3, we have P(Ω2) = 1,
where Ω2 it the event that for every rectangle In of side-
lengths 2−n/Hi(i = 1, · · · ,N) that meets [0, 1]N , we have

sup
s,t∈In

∣∣X(t)− X(s)
∣∣ ≤ C2−n√n,

where C > 0 is a constant.
Now we show that for every ω ∈ Ω1 ∩ Ω2, we have

ϕ5-m(X([0, 1]N)) ≤ K <∞, a.s.

For any n ≥ 1, we divide [0, 1]N into 2nQ disjoint (half
open and half closed) rectangles of side-lengths 2−n/Hi (i =
1, · · · ,N). Denote by In(x) the unique rectangle of side-
lengths 2−n/Hi(i = 1, · · · ,N) containing x.
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Consider k ≥ 1 such that

λN(Rk) ≥ 1− exp(−
√

k/2).

For any x ∈ Rk we can find the smallest integer n with
k ≤ n ≤ 2k such that

sup
s,t∈In(x)

∣∣X(t)− X(s)
∣∣ ≤ c 2−n(log log 2n)−1/Q. (12)

Thus we have

Rk ⊆ V =
2k⋃

n=k

Vn

and each Vn is a union of rectangles In(x) satisfying (12).
Notice that X(In(x)) can be covered by a ball of radius rn =
c2−n(log log 2n)−1/Q.
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Since ϕ5(2rn) ≤ c2−nQ = cλN(In), we obtain

2k∑
n=k

∑
In∈Vn

ϕ5(2rn) ≤
∑

n

∑
In∈Vn

cλN(In) = CλN(V) ≤ C. (13)

Thus X(V) is contained in the union of a family of balls Bn
of radius rn with

∑
n ϕ5(2rn) ≤ C.

On the other hand, [0, 1]N\V is contained in a union of
rectangles of side-lengths 2−q/Hi(i = 1, · · · ,N) where q =
2k + 1, none of which meets Rk. There can be at most

2QqλN([0, 1]N\V) ≤ c2Qq exp(−
√

k/2)

such rectangles.
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Since ω ∈ Ω2, for each of these rectangles Iq, X(Iq) is
contained in a ball of radius c2−q√q.
Thus X([0, 1]N\V) can be covered by a sequence {Bn} of
balls of radius rn = c2−q√q such that∑

n

ϕ5(2rn) ≤
(

c2Qq exp(−
√

k/2)
)(

c2−qQqQ/2 log log(c2q/
√

q)
)

≤ 1
(14)

for all k large enough. Since k can be arbitrarily large, it
follows from (13) and (14) that

ϕ5-m
(
X([0, 1]N)

)
≤ K, a.s.

This finishes the proof of Part (i) of Theorem 5.6.
Part (ii) is related to the existence of local times. A proof
based on Fourier analysis will be given in Lecture 6.

Yimin Xiao (Michigan State University) Lecture 5. Fractal Properties of Gaussian Random Fields August 2–6, 2021 42 / 44



If Condition (A4′) in Theorem 5.6 is replaced by (A4), then
the exact Hausdorff measure function for X([0, 1]N) is dif-
ferent. See the recent paper of Lee (2021).

Yimin Xiao (Michigan State University) Lecture 5. Fractal Properties of Gaussian Random Fields August 2–6, 2021 43 / 44



Thank you
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