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4.1 Properties of local nondeterminism
The concept of local nondeterminism (LND) of a Gaussian
process was first introduced by Berman (1973) for study-
ing local times of Gaussian processes.
A Gaussian process Y = {Y(t), t ∈ R} is called locally
nondeterministic on T ⊆ R if for every integer m ≥ 2,

lim
ε→0

inf
tm−t1≤ε

Vm > 0, (1)

where Vm is the relative prediction error:

Vm =
Var
(
Y(tm)− Y(tm−1)|Y(t1), . . . ,Y(tm−1)

)
Var
(
Y(tm)− Y(tm−1)

)
and the infimum in (1) is taken over all ordered points t1 <
t2 < · · · < tm in T with tm − t1 ≤ ε.
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(1) is equivalent to the following property: For every inte-
ger m ≥ 2, there exist positive constants C(m) and ε (both
may depend on m) such that

Var
( m∑

k=1

ak
(
Y(tk)− Y(tk−1)

))
≥ C(m)

m∑
k=1

a2
k Var

(
Y(tk)− Y(tk−1)

) (2)

for all ordered points t1 < t2 < · · · < tm in T with tm− t1 <
ε and ak ∈ R (k = 1, . . . ,m).
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Pitt (1978) used (2) to define local nondeterminism
of a Gaussian random field X = {X(t), t ∈ RN}
with values in R by introducing a partial order among
t1, . . . , tm ∈ RN .
Pitt (1978) proved that fractional Brownian motion
BH = {BH(t), t ∈ RN} has the following property:
For any u ∈ RN\{0}, and and r ∈ (0, |u|),

Var
(
BH(u)

∣∣BH(t), |t − u| ≥ r
)

= c r2H,

where c > 0 is a constant. This implies that BH satis-
fies the strong local nondeterminism on any compact
interval I ⊂ RN\{0}.
Cuzick and DuPreez (1982) introduced strong local φ-
nonderterminism and showed its usefulness in study-
ing local times.
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Let X = {X(t), t ∈ RN} be a centered Gaussian field in
R and let T ⊆ RN be a compact interval. In studying pre-
cise regularity properties of X, we have made use of the
following conditions:

(A4). ∃ a constant c > 0 such that for all n ≥ 1 and
u, t1, . . . , tn ∈ T ,

Var
(
X(u)

∣∣X(t1), . . . ,X(tn)
)
≥ c

N∑
j=1

min
1≤k≤n

∣∣uj − tk
j

∣∣2Hj
.

Here and below, Hj ∈ (0, 1) (j = 1, . . . ,N) are constants.
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(A4′). ∃ a constant c > 0 such that for all n ≥ 1 and
u, t1, . . . , tn ∈ T,

Var
(
X(u)

∣∣X(t1), . . . ,X(tn)
)
≥ c min

1≤k≤n
ρ(u, tk)2,

where

ρ(s, t) =
N∑

j=1

|sj − tj|Hj, ∀ s, t ∈ RN.

These conditions are referred to as properties of strong lo-
cal nondeterminism (with respect to the metric ρ).
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Remarks

The Brownian sheet W does not satisfy “strong lo-
cal nondeterminism” with H1 = · · · = HN = 1/2.
This caused difficulties in studies of some sample path
properties of W; cf. Mountford (1989a, 1989b).
The “sectorial local nondeterminism” was first dis-
covered by Khoshnevisan and X. (2007) for the Brow-
nian sheet; and extended to fractional Brownian sheets
by Wu and X. (2007).
X. (2009), Luan and X. (2012) proved sufficient con-
ditions for “strong local nondeterminism” for a large
class of Gaussian fields with stationary increments.
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4.2 Spectral conditions for strong local
nondeterminism

Let X = {X(t), t ∈ RN} be a centered Gaussian field with
stationary increments and X(0) = 0.
For any h ∈ RN we have

E
(
X(t + h)− X(t)

)2
= 2

∫
RN

(
1− cos〈h, λ〉

)
∆(dλ),

where ∆(dλ) is the spectral measure of X, which satisfies∫
RN

|λ|2

1 + |λ|2
∆(dλ) <∞.
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It follows that X has the stochastic integral representation:

X(t) d
=

∫
RN

(
ei〈t,λ〉 − 1

)
W̃(dλ),

where W̃(dλ) is a centered complex-valued Gaussian ran-
dom measure with ∆ as its control measure.

Remarks (i). If Y = {Y(t), t ∈ RN} is a stationary Gaus-
sian field, let X(t) = Y(t) − Y(0) for all t ∈ RN. Then
X = {X(t), t ∈ RN} has stationary increments and has the
same spectral measure as that of Y .
(ii). The spectral measure ∆ can be

absolutely continuous with density f (λ), or
singular with fractal support, or
singular with a discrete support.
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Theorem 4.1 [Xue and X., 2011]
Let X = {X(t), t ∈ RN} be a Gaussian field with stationary
increments and spectral density f (λ). If there are constants
H1, · · · ,HN ∈ (0, 1]N and K > 0 such that

f (λ) � 1(∑N
j=1 |λj|Hj

)2+Q , λ ∈ RN , |λ| ≥ K, (3)

where Q =
∑N

j=1
1
Hj

, then ∃ a constant c > 0 such that for
all n ≥ 1 and u, t1, . . . , tn ∈ RN ,

Var
(

X(u)
∣∣X(t1), . . . ,X(tn)

)
≥ c min

0≤k≤n
ρ(u, tk)2, where t0 = 0.

Observe from (3) that the behavior of f (λ) near 0 is not
needed.
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For proving Theorem 4.1, we need the following lemma.

Lemma 4.1
Assume (3) is satisfied, then for any fixed constant L > 0,
there exists a positive and finite constant c1 such that for
all functions g of the form

g(λ) =
n∑

k=1

ak(ei〈tk,λ〉 − 1), (4)

where ak ∈ R and tk ∈ [−L, L]N , we have

|g(λ)| ≤ c1 |λ|
(∫

RN
|g(ξ)|2f (ξ)dξ

)1/2
(5)

for all λ ∈ RN that satisfy |λ| ≤ K.
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Proof of Lemma 4.1. By (3), we can find positive constants
C and η, such that

f (λ) ≥ C
|λ|η

, ∀λ ∈ RN with |λ| large enough.

Let G be the collection of the functions g(z) defined by (4)
with ak ∈ R, sk ∈ [−L,L]N and z ∈ CN . Since each g ∈ G
is an entire function, it follows from Proposition 1 of Pitt
(1975) that for any given constant K,

c1 = sup
g∈G

z∈U(0,K)

{
|g(z)| :

∫
RN
|g(λ)|2f (λ) dλ ≤ 1

}
<∞,

where U(0,K) = {z ∈ CN : |z| < K} is the open ball of
radius K in CN .
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Since g(0) = 0 and g is analytic in U(0,K), Schwartz’s
lemma implies

∣∣g(z)
∣∣ ≤ c1K−1 |z|

(∫
RN
|g(ξ)|2 f (ξ)dξ

)1/2

for all z ∈ U(0,K). This finishes the proof of Lemma 4.1.

Proof of Theorem 4.2. Denote r ≡ min0≤k≤n ρ(u, tk). It is
sufficient to prove that for all ak ∈ R (1 ≤ k ≤ n),

E
(

X(u)−
n∑

k=1

ak X(tk)
)2
≥ c r2. (6)
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By the stochastic integral representation of X, the left hand
side of (6), up to a constant, can be written as

E
(

X(u)−
n∑

k=1

akX(tk)
)2

=

∫
RN

∣∣∣ei〈u,λ〉 − 1−
n∑

k=1

ak (ei〈tk, λ〉 − 1)
∣∣∣2 f (λ) dλ.

(7)

Hence, we only need to show∫
RN

∣∣∣ei〈u,λ〉 −
n∑

k=0

ak ei〈tk, λ〉
∣∣∣2 f (λ) dλ ≥ c r2, (8)

where t0 = 0 and a0 = −1 +
∑n

k=1 ak.
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Let δ(·) : RN → [0, 1] be a function in C∞(RN) such that
δ(0) = 1 and it vanishes outside the open ball Bρ(0, 1).

Denote by δ̂ the Fourier transform of δ. Then δ̂(·) ∈ C∞(RN)
and decays rapidly as |λ| → ∞.
Let A be the diagonal matrix with H−1

1 , . . . ,H−1
N on its di-

agonal and let δr(t) = r−Qδ(r−At). By the inverse Fourier
transform,

δr(t) = (2π)−N
∫
RN

e−i〈t,λ〉 δ̂(rAλ) dλ.

Since min{ρ(u, tk) : 0 ≤ k ≤ n} = r, we have

δr(u− tk) = 0 for k = 0, 1, . . . , n.
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Hence,

I =

∫
RN

(
ei〈u,λ〉 −

n∑
k=0

ak ei〈tk,λ〉
)

e−i〈u,λ〉 δ̂(rAλ) dλ

= (2π)N
(
δr(0)−

n∑
k=0

ak δr(u− tk)
)

= (2π)N r−Q.

(9)

Yimin Xiao (Michigan State University) Properties of Strong Local Nondeterminism of Gaussian Random FieldsAugust 2–6, 2021 17 / 43



We split the integral in (9) over {λ : |λ| < K} and {λ :
|λ| ≥ K} and denote the two integrals by I1 and I2, respec-
tively. It follows from Lemma 4.1 that

I1 ≤
∫
|λ|<K

∣∣∣ei〈u,λ〉 −
n∑

k=0

akei〈tk,λ〉
∣∣∣|δ̂(rAλ)|dλ

≤ c1

[ ∫
RN

∣∣∣ei〈u,λ〉 −
n∑

k=0

akei〈tk,λ〉
∣∣∣2 f (λ) dλ

]1/2

×
∫
|λ|<K

|λ||δ̂(rAλ)|dλ

≤ c2

[
E
(

X(u)−
n∑

k=0

akX(tk)
)2]1/2

.

(10)
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On the other hand, the Cauchy-Schwarz inequality gives

I2 ≤
∫
|λ|≥K

∣∣∣ei〈u,λ〉 −
n∑

k=0

ak ei〈tk,λ〉
∣∣∣2 f (λ) dλ

×
∫
|λ|≥K

∣∣δ̂(rAλ)
∣∣2

f (λ)
dλ

≤ E
(

X(u)−
n∑

k=1

akX(tk)
)2
· r−Q

∫
RN

∣∣δ̂(λ)
∣∣2

f (r−A λ)
dλ

≤ cE
(

X(u)−
n∑

k=1

akX(tk)
)2
· r−2Q−2.
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We square both sides of (9) and use the above to obtain

(2π)2N r−2Q ≤ c r−2Q−2 E
(

X(u)−
n∑

k=1

akX(tk)
)2
.

This proves (8) and hence the theorem.

Remarks
This method can be modified to prove sectorial lo-
cal nondeterminism (by choosing appropriate func-
tion δ(·) : RN → [0, 1].
The method is applied in Lan, Marinucci and X. (2018)
to prove strong local nondeterminism for isotropic Gaus-
sian random fields on the sphere S2.
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4.2 A comparison theorem

Now we consider the case where the spectral measure ∆
may be singular.

For any λ ∈ RN and h > 0, denote by C(λ, h) the cube
with side-length 2h and center λ, i.e.,

C(λ, h) =
{

x ∈ RN : |xj − λj| ≤ h, j = 1, · · · ,N
}
.

Let L2(C(0,L)) be the subspace of g ∈ L2(RN) whose sup-
port is contained in C(0,L).
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Theorem 4.2 [Luan and X., 2012]
Let {Y(t), t ∈ RN} be a real, centered Gaussian field with
stationary increments and Y(0) = 0. If for some h > 0 the
spectral measure ∆ of Y satisfies

0 < lim inf
|λ|→∞

ρ(0, λ)Q+2∆(C(λ, h))

≤ lim sup
|λ|→∞

ρ(0, λ)Q+2∆(C(λ, h)) <∞, (11)

then for any L > 0 such that LhN < log 2, for all
u, t1, . . . , tn ∈ C(0,L),

Var
(

Y(u)
∣∣Y(t1), . . . ,Y(tn)

)
≥ c min

0≤k≤n
ρ(u, tk)2.
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Proof of Theorem 4.2

Lemma 4.2 (Pitt, 1975)
Let ∆̃(dλ) be a positive measure on RN . If, for some con-
stant h > 0, ∆̃(dλ) satisfies

0 < lim inf
|λ|→∞

∆̃(C(λ, h)) ≤ lim sup
|λ|→∞

∆̃(C(λ, h)) <∞.

Then for every L > 0 satisfying LhN < log 2, we have∫
RN
|ψ̂(λ)|2∆̃(dλ) �

∫
RN
|ψ̂(λ)|2dλ

for all ψ ∈ L2(C(0,L)).
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Lemma 4.3 (Luan and X. 2012)
Let ∆1(dλ) be a measure on RN such that for some h > 0,

0 < lim inf
|λ|→∞

ρ(0, λ)Q+2∆1(C(λ, h))

≤ lim sup
|λ|→∞

ρ(0, λ)Q+2∆1(C(λ, h)) <∞.

Then for any L > 0 with LhN < log 2, ∃ constants c3 and
c4 such that∫

RN
|g(λ)|2∆1(dλ) �

∫
RN

|g(λ)|2

(
∑N

j=1 |λj|Hj)Q+2
dλ

for all g(λ) as in Lemma 4.1.

Theorem 4.2 follows from Lemma 4.3 and Theorem 4.2.
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Examples

Example 4.1. Let {ξn, n ∈ ZN} and {ηn, n ∈ ZN} be two
independent sequences of i.i.d. N(0, 1) random variables.
Let

Z(t) =
∑
n∈ZN

an
(
ξn cos 〈n, t〉+ ηn sin 〈n, t〉

)
, t ∈ RN ,

where {an, n ∈ ZN} is a sequence of real numbers such
that

a2
n �

1(∑N
j=1 |nj|Hj

)Q+2 .

By Theorem 4.2, the Gaussian field Y(t) = Z(t)−Z(0) has
the property of strong local nondeterminism.
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Example 4.2. Let µ be the measure on R obtained by
“patching” fractal probability measures on [n, n + 1], and
let the spectral measure ∆ be given by

dµ(λ)

|λ|1+2H ,

then Theorem 4.2 implies that any Gaussian process X with
spectral measure ∆ has the property of SLND which is
similar to that of fBm BH.
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4.3 SLND of linear SHE
Consider the linear stochastic heat equation

∂u
∂t

(t, x) =
1
2

∆u(t, x) + σ Ẇ, t ≥ 0, x ∈ Rk,

u(0, x) ≡ 0,
(12)

where ∆ is the Laplacian operator, σ is a constant or a
deterministic function, and Ẇ is a Gaussian noise that is
white in time and has a spatially homogeneous covariance
[Dalang (1999)] given by the Riesz kernel with exponent
β if k ≥ 1 and β ∈ (0, k ∧ 2), i.e.

E(Ẇ(t, x)Ẇ(s, y)) = δ(t − s)|x− y|−β.

If k = 1 = β, then Ẇ is the space-time Gaussian white
noise considered by Walsh (1986).
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It follows from Dalang (1999) that the mild solution of (12)
is the mean zero Gaussian random field u = {u(t, x), t ≥
0, x ∈ R} defined by

u(t, x) =

∫ t

0

∫
R

G̃t−r(x− y)σW(drdy), t ≥ 0, x ∈ R,

where G̃t(x) is the Green kernel given by

G̃t(x) = (2πt)−1/2 exp
(
− |x|

2

2t

)
, ∀ t > 0, x ∈ Rk.

Dalang, Khoshnevisan, and Nualart (2007) that for any 0 <
a < b <∞,

E
(
|u(t, x)− u(s, y)|2

)
� ρ((t, x), (s, y))2 (13)

for all (t, x), (s, y) ∈ [a, b]× [−b, b]k, where

ρ((t, x), (s, y)) = |t − s|
2−β

4 + |x− y|
2−β

2 .
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Even though the solution {u(t, x), t ≥ 0, x ∈ R} is not
stationary nor has stationary increments, by using the fol-
lowing representation in Dalang, Mueller and X. (2017):

u(t, x) =

∫
R

∫
Rk

e−iξx e−iτ t − e−tξ2

|ξ|2 − iτ
|ξ|(β−k)/2 W(dτ, dξ),

we can prove

Theorem 4.3 [Khoshnevisan, Lee, and X. (2021)]
For any 0 < a < b < ∞, there exists a con-
stant C > 0 such that for all integers n ≥ 1, for all
(t, x), (t1, x1), . . . , (tn, xn) ∈ [a, b]× [−b, b]k,

Var
(
u1(t, x)|u1(t1, x1), . . . , u1(tn, xn)

)
≥ C min

1≤i≤n
ρ((t, x), (ti, xi))2.

Consequently, many regularity properties of {u(t, x), t ≥
0, x ∈ R} can be derived.

Yimin Xiao (Michigan State University) Properties of Strong Local Nondeterminism of Gaussian Random FieldsAugust 2–6, 2021 29 / 43



4.4 SLND of linear stochastic wave equation

The linear stochastic wave equation
∂2

∂t2 u(t, x) = ∆u(t, x) + Ẇ(t, x), t ≥ 0, x ∈ Rk,

u(0, x) =
∂

∂t
u(0, x) = 0,

(14)

where Ẇ is a Gaussian noise as in the previous section with
exponent β if k ≥ 1 and β ∈ (0, k ∧ 2).

The existence of real-valued process solution to (14) was
studied by Walsh (1986) for the space-time while noise and
by Dalang (1999) in the more general setting.
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Recall that the fundamental solution of the wave equation
G is

G(t, x) =
1
2

1{|x|<t} if k = 1;

G(t, x) = ck

(
1
t
∂

∂t

)(k−2)/2

(t2 − |x|2)−1/2
+ , if k ≥ 2 is even;

and

G(t, x) = ck

(
1
t
∂

∂t

)(k−3)/2
σk

t (dx)

t
, if k ≥ 3 is odd,

where σk
t is the uniform surface measure on the sphere

{x ∈ Rk : |x| = t}.
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For any dimension k ≥ 1, the Fourier transform of G in
variable x is given by

F (G(t, ·))(ξ) =
sin(t|ξ|)
|ξ|

, t ≥ 0, ξ ∈ Rk. (15)

Dalang (1999) proved that the real-valued process solution
of equation (14) is given by

u(t, x) =

∫ t

0

∫
Rk

G(t − s, x− y) W(ds dy), (16)

where W is the martingale measure induced by the noise
Ẇ. The range of β has been chosen so that the stochastic
integral exists.
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Recall from Dalang (1999) that

E
[( ∫ t

0

∫
Rk

H(s, y)W(ds dy)
)2]

= c
∫ t

0
ds
∫
Rk
|F (H(s, ·))(ξ)|2 dξ

|ξ|k−β
(17)

provided that s 7→ H(s, ·) is a deterministic function with
values in the space of nonnegative distributions with rapid
decrease and∫ t

0
ds
∫
Rk
|F (H(s, ·)(ξ)|2 dξ

|ξ|k−β
<∞.

In the following, we show that the Gaussian random field
{u(t, x), t ≥ 0, x ∈ Rk} satisfies a form of strong local
nondeterminism.
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Let 0 < a < a′ <∞ and 0 < b <∞ be fixed constants.
Theorem 4.4 (Lee and X. (2019)
There exists a constant C > 0 such that for all integers
n ≥ 1 and (t, x), (t1, x1), . . . , (tn, xn) in [a, a′] × [−b, b]k

with |t − tj|+ |x− xj| ≤ a/2, we have

Var (u(t, x)|u(t1, x1), . . . , u(tn, xn))

≥ C
∫
Sk−1

min
1≤j≤n

|(t − tj) + (x− xj) · w|2−β dw,
(18)

where dw is the surface measure on the unit sphere Sk−1.
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When k = 1, the surface measure dw in (18) is supported
on {−1, 1}. It follows that u(t, x) satisfies sectorial local
nondeterminism:

Var(u(t, x)|u(t1, x1), . . . , u(tn, xn))

≥ C
(

min
1≤j≤n

|(t − tj) + (x− xj)|2−β + min
1≤j≤n

|(t − tj)− (x− xj)|2−β
)
.
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Proof of Theorem 4.4. For each w ∈ Sk−1, let

r(w) = min
1≤j≤n

|(tj − t)− (xj − x) · w|.

Since u is a centered Gaussian random field,it suffices to
show that there a exist constant C > 0 such that for all
(t, x), (t1, x1), . . . , (tn, xn) in [a, a′]× [−b, b]k with |t− tj|+
|x− xj| ≤ a/2,

E
[(

u(t, x)−
n∑

j=1

αju(tj, xj)
)2]
≥ C

∫
Sk−1

r(w)2−β dw (19)

for all possible choice of real numbers α1, . . . , αn.
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Using (15), (17) and spherical coordinate ξ = ρw, we have

E
[(

u(t, x)−
n∑

j=1

αju(tj, xj)
)2]

= c
∫ ∞

0
ds
∫
Rk

∣∣∣ sin((t − s)|ξ|)1[0,t](s)

−
n∑

j=1

αje−i(xj−x)·ξ sin((tj − s)|ξ|)1[0,tj](s)
∣∣∣2 dξ
|ξ|2+k−β

≥ c
∫ a/2

0
ds
∫ ∞

0

dρ
ρ3−β

∫
Sk−1

∣∣∣ sin((t − s)ρ)

−
n∑

j=1

αje−iρ(xj−x)·w sin((tj − s)ρ)
∣∣∣2dw

= c
∫ a/2

0
ds
∫ ∞
−∞

dρ
|ρ|3−β

∫
Sk−1

∣∣∣(ei(t−s)ρ − e−i(t−s)ρ)
−

n∑
j=1

αje−iρ(xj−x)·w(ei(tj−s)ρ − e−i(tj−s)ρ)∣∣∣2 dw

=: c
∫
Sk−1
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Let λ = min{1, a/[2(a′ + 2
√

kb)]} and consider the bump
function ϕ : R→ R defined by

ϕ(y) =

{
exp

(
1− 1

1−|λ−1y|2

)
, |y| < λ,

0, |y| ≥ λ.

Let ϕr(y) = r−1ϕ(y/r). For each w ∈ Sk−1 such that
r(w) > 0, consider the integral

I(w) =

∫ a/2

0
ds
∫ ∞
−∞

[(
ei(t−s)ρ − e−i(t−s)ρ)

−
n∑

j=1

αje−iρ(xj−x)·w(ei(tj−s)ρ − e−i(tj−s)ρ)]e−i(t−s)ρϕ̂r(w)(ρ)dρ.
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By the inverse Fourier transform, we have

I(w) = 2π
∫ a/2

0

[
ϕr(w)(0)− ϕr(w)

(
2(t − s)

)
−

n∑
j=1

αj
{
ϕr(w)

(
(xj − x) · w− (tj − t)

)
− ϕr(w)

(
(xj − x) · w− (tj − t) + 2(tj − s)

)}]
ds.

Note that r(w) ≤ |tj − t| + |xj − x| ≤ a′ + 2
√

kb. For any
s ∈ [0, a/2], we have 2(t− s)/r(w) ≥ a/[(a′+ 2

√
kb)] and

|(xj − x) · w− (tj − t)|/r(w) ≥ 1, thus

ϕr(w)
(
2(t−s)

)
= 0 and ϕr(w)

(
(xj−x)·w−(tj−t)

)
= 0 for j = 1, . . . , n.
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Also,

[(xj− x) ·w− (tj− t) + 2(tj− s)]/r(w) ≥ (−δ+ a)/[(a′+ 2
√

kb)] ≥ λ,

we have

ϕr(w)
(
(xj − x) · w− (tj − t) + 2(tj − s)

)
= 0.

It follows that
I(w) = aπ r(w)−1.
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On the other hand, by the Cauchy–Schwarz inequality and
scaling, we obtain

(aπ)2r(w)−2 = |I(w)|2 ≤ A(w)×
∫ a/2

0
ds
∫ ∞
−∞
|ϕ̂(r(w)ρ)|2|ρ|3−β dρ

= (a/2)A(w)r(w)β−4
∫ ∞
−∞
|ϕ̂(ρ)|2|ρ|3−β dρ

= CA(w)r(w)β−4

for some finite constant C. Hence we have

A(w) ≥ C′r(w)2−β (20)

and this remains true if r(w) = 0. Integrating both sides of
(20) over Sk−1 yields (19).
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As an application of Theorem 4.4., Lee and X. (2019) proved
the following uniform modulus of continuity.

Theorem 4.5 [Lee and X. (2019)]
There is a positive finite constant K such that

lim
ε→0+

sup
(t,x),(t′,x′)∈I,
|(t,x)−(t′,x′)|≤ε

|u(t, x)− u(t′, x′)|
γ
[
(t, x), (t′, x′)

] = K, a.s., (21)

where

γ
[
(t, x), (t′, x′)

]
=
(
|t − t′|+ |x− x|

)2−β
√

log
[
|t − t′|+ |x− x|

]−1
.

Remark Theorems 4.4 and 4.5 have been extended to SWE
with fractional-colored noise by Lee (2021).
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Thank you
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