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@ Continuity of Gaussian random fields

@ The entropy method
@ Majorizing measure

@ Differentiability of Gaussian random fields
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2. Regularity of Gaussian random fields: some

general methods

Let X = {X(t),t € R"} be a random field. For each
w € €, the function X(-,w) : RN — RY, 1+ X(t,w), is
called a sample function of X.
The following are natural questions:
(i) When are the sample functions of X bounded, or con-
tinuous?
(ii)) When are the sample functions of X differentiable?

(iii) How to characterize the analytic and geometric prop-
erties of X(-) precisely?

Yimin Xiao (Michigan State University)  Regularity of Gaussian Random Fields: Some C



2.1 The entropy method

We start with some general methods for Gaussian fields.

Let X = {X(¢),t € T} be a centered Gaussian process
with values in R, where (T, 7) is a metric space; e.g., T =
[0,1]Y,or T = SV-1,

We define a pseudo metric dx(-,-) : T x T — [0, 00) by

dx(s, 1) = \/IE ]

(dx 1s often called the canonical metric for X.)

Let D = sup, .7 dx(s,t) be the diameter of T, under dx.
For any ¢ > 0, let N(T, dx, ) be the minimum number of
dx-balls of radius ¢ that cover T.

N(T,dx, ) is also called the metric entropy of T
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Theorem 2.1 [Dudley, 1967]

Assume N(T, dx,e) < oo for every € > 0. If

D
/ V91ogN(T,dy,e) de < oc.
0

Then 3 a modification of X, still denoted by X, such that

]E<supx(z)) < 16v2 /0 V10g N(T, dy, €) de. )

teT

The proof of Dudley’s Theorem is based on a chaining ar-
gument. See Talagrand (2005), Marcus and Rosen (2007).
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The proof of Dudley’s Theorem gives an upper bound for
the uniform modulus of continuity of X:

wX,T(é) - Sups,teT,T(s,t)Sé |X(S) - X(t) | .

Theorem 2.2

Under the condition of Dudley’s theorem, there is a ran-
dom variable n € (0, c0) such that for all 0 < § < 7,

0
wX,dx((s) < K/ \% IOgN(T, an 5) d€7
0

where wy 4,(6) is the modulus of continuity of X(¢) on
(T, dx) and K is a universal constant.

Fernique (1975) proved that (1) is also necessary if X is
a Gaussian process which is stationary or has stationary
increments.
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Theorem 2.2 can be applied easily to a wide class of Gaus-
sian processes.
For example,

@ fractional Brownian motion (see below)

@ solutions of linear stochastic heat and wave equations
o for a Gaussian random field {X(¢),r € T} satisfying

1 -
dy(s,1) < (log T t|> :

its sample functions are continuous if vy > 1/2.
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Corollary 2.3

Let BY = {B"(1),t € R"} be a fractional Brownian mo-
tion with index H € (0,1). Then B¥ has a modification,

still denoted by BY, whose sample functions are almost
surely continuous. Moreover,

) maxeo,1v,s|< |B7 (t + 5) — B (1)
lim sup

e—0 efl\/logl/e

<K, a.s.

Proof: Recall that dgu(s, 1) = |s — /T and V ¢ > 0,

N[0, 1], dgn, &) < K (L)N

SI/H
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It follows from Theorem 2.2 that 4 a random variable n >
0 and a constant K > 0 such that forall 0 < ¢ < 7,

P
/ 1
0
1
<K$§ logg a.s.

Returning to the Euclidean metric and noticing
dpi(s,1) <6 = |s—1] < 6VH,

yields the desired result.
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Later on, we will prove that there is a constant K € (0, 00)
such that

. max,eo,ijv,s|<= |B” (t +5) — B (1)| B
im sup =K

e=0 efly/log1/e ’

This is an analogue of Lévy’s uniform modulus of conti-
nuity for Brownian motion.

a.s.

Yimin Xiao (Michigan State University)  Regularity of Gaussian Random Fields: Some C



2.2 Majorizing measure

In general, (1) is not necessary for sample continuity.
Talagrand (1987) proved the following necessary and suf-
ficient for the boundedness and continuity.

Theorem 2.4 [Talagrand, 1987]

LetX = {X(t), t € T} be a centered Gaussian process with
values in R. Suppose D = sup, .y dx(s,t) < oo. Then

(i) X has a modification which is bounded on 7 if and
only if there exists a probability measure 1 on T such

that
/D(l ! )]/zd < )
su og———— £ < 00,
er Jo \ O (B (t,2))

where By, (t,e) = {s € T : dx(s,t) < €}.
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Theorem 2.4 (Continued)

Moreover,
E( (1) tsup [ (1 ! "
qut)SKinsu/ (0—) €.
Z‘EYP H IEYP 0 g/’l’(de(t7€>>

(ii) There exists a modification of X with bounded, uni-
formly continuous sample functions if and only if
there exists a probability measure ¢ on 7" such that

€ 1 1/2
lim su / (lo —) du = 0.
e—0 teg 0 s (1(Bay (t,u))

Kwapien and Rosifiski (2004) provided an upper bound for
the uniform modulus of continuity in terms of “weakly ma-
jorizing measure”.
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2.3 Differentiability

(1). Mean-square differentiability: the mean square partial
derivative of X at 7 is defined as

OX(r) _ l-l-m;HoX(t + he;) — X(r))
ot h

where ¢; is the unit vector in the j-th direction.

For a Gaussian field, sufficient conditions can be given
in terms of the differentiability of the covariance function
(Adler, 1981).

(11). Sample path differentiability: the sample function
t — X () is differentiable. This is much stronger and more
useful than (1).
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Sample path differentiability of X () can be proved by us-
ing criteria for continuity.

Consider a centered Gaussian field with stationary incre-
ments whose spectral density function satisfies

1
(5 )™

where (31, .., By) € (0,00)" and

F) = YAERY, N> 1, 3)
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Differentiability

Theorem 2.5 (Xue and X. 2011)

Let X = {X(¢),t € RV} be a centered Gaussian field with
stationary increments and spectral density which satisfies

3). () It
N
1
s(1-2g)>2 0
then the partial derivative 0X(¢)/0t is continuous almost
surely. In particular, if (4) holds for all 1 < j < N, then
almost surely X(7) is continuously differentiable.
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Differentiability

Theorem 2.5 (Xue and X. 2011)

Let X = {X(¢),t € RV} be a centered Gaussian field with
stationary increments and spectral density which satisfies

3). () If
AR
5~ 3)>2 4)

i=1
then the partial derivative 0X(¢)/0t is continuous almost
surely. In particular, if (4) holds for all 1 < j < N, then
almost surely X(7) is continuously differentiable.
(ii) If max f3;(y— SV, 1/5;) < 2, then X(¢) is not differ-
1<j<N

entiable in any direction.
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Proof of (i): Under (4), we know that the mean square par-
tial derivative X’ (¢) exists. In order to show that X;(7) has a

continuous version, by Kolmorogov’s continuity theorem,

it is enough to show that for any compact interval I C RY,
there exist constants ¢ > 0 and n > 0 such that

E[Xf(s)—Xf(t)]2§c\s—t|" Vs, tel 5)

J J

By the spectral representation of X, we have

E(X/(s) — X/())?

J J

E[(X(5))*] +E[(X/(1))*] - 2E[(X](s)X;](2))]
2/ A7 (1 = cos(s — 1, X)) f(A\)dA.

From this, we can verify that (5) holds under (4).
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It follows from (5) that the Gaussian field X; = {X((¢),t €
RN} has a continuous version [still denoted by Xjf].

We define a new Gaussian field X = {X(r),7 € RV} by

X(t) :X(tla e 7tj71707tj+17 e 7tN)

Ty (6)
+/ Xi(ti, - i, Sjs b, oo ty) dsj
0

Then we can verify that X is a continuous version of X
and, for every r € RY, X/(r) = X/(r) almost surely. This
amounts to verify that for every t € RY,

E[(X(r) — X(1))’] =0,

which can be proved by using (6) and the representations
for X(¢) and X;(). We omit the details.
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Thank you!
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