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2. Regularity of Gaussian random fields: some
general methods

Let X = {X(t), t ∈ RN} be a random field. For each
ω ∈ Ω, the function X(·, ω) : RN → Rd, t 7→ X(t, ω), is
called a sample function of X.

The following are natural questions:
(i) When are the sample functions of X bounded, or con-

tinuous?

(ii) When are the sample functions of X differentiable?

(iii) How to characterize the analytic and geometric prop-
erties of X(·) precisely?
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2.1 The entropy method
We start with some general methods for Gaussian fields.
Let X = {X(t), t ∈ T} be a centered Gaussian process
with values in R, where (T, τ) is a metric space; e.g., T =
[0, 1]N , or T = SN−1.

We define a pseudo metric dX(·, ·) : T × T → [0,∞) by

dX(s, t) =

√
E
[(

X(t)− X(s)
)2]

.

(dX is often called the canonical metric for X.)
Let D = supt,s∈T dX(s, t) be the diameter of T , under dX.
For any ε > 0, let N(T, dX, ε) be the minimum number of
dX-balls of radius ε that cover T .
N(T, dX, ε) is also called the metric entropy of T
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Theorem 2.1 [Dudley, 1967]
Assume N(T, dX, ε) <∞ for every ε > 0. If∫ D

0

√
log N(T, dX, ε) dε <∞.

Then ∃ a modification of X, still denoted by X, such that

E
(

sup
t∈T

X(t)
)
≤ 16

√
2
∫ D

2

0

√
log N(T, dX, ε) dε. (1)

The proof of Dudley’s Theorem is based on a chaining ar-
gument. See Talagrand (2005), Marcus and Rosen (2007).
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The proof of Dudley’s Theorem gives an upper bound for
the uniform modulus of continuity of X:

ωX,τ(δ) = sups,t∈T,τ(s,t)≤δ
∣∣X(s)− X(t)

∣∣.
Theorem 2.2
Under the condition of Dudley’s theorem, there is a ran-
dom variable η ∈ (0,∞) such that for all 0 < δ < η,

ωX,dX (δ) ≤ K
∫ δ

0

√
log N(T, dX, ε) dε,

where ωX,dX(δ) is the modulus of continuity of X(t) on
(T, dX) and K is a universal constant.

Fernique (1975) proved that (1) is also necessary if X is
a Gaussian process which is stationary or has stationary
increments.
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Theorem 2.2 can be applied easily to a wide class of Gaus-
sian processes.
For example,

fractional Brownian motion (see below)
solutions of linear stochastic heat and wave equations
for a Gaussian random field {X(t), t ∈ T} satisfying

dX(s, t) �
(

log
1
|s− t|

)−γ
,

its sample functions are continuous if γ > 1/2.
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Corollary 2.3
Let BH = {BH(t), t ∈ RN} be a fractional Brownian mo-
tion with index H ∈ (0, 1). Then BH has a modification,
still denoted by BH, whose sample functions are almost
surely continuous. Moreover,

lim sup
ε→0

maxt∈[0,1]N ,|s|≤ε |BH(t + s)− BH(t)|
εH
√

log 1/ε
≤ K, a.s.

Proof: Recall that dBH(s, t) = |s− t|H and ∀ ε > 0,

N
(
[0, 1]N , dBH , ε

)
≤ K

( 1
ε1/H

)N
.
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It follows from Theorem 2.2 that ∃ a random variable η >
0 and a constant K > 0 such that for all 0 < δ < η,

ωBH (δ) ≤ K

δ∫
0

√
log
( 1
ε1/H

)
dε

≤ K δ

√
log

1
δ

a.s.

Returning to the Euclidean metric and noticing

dBH (s, t) ≤ δ ⇐⇒ |s− t| ≤ δ1/H,

yields the desired result.
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Later on, we will prove that there is a constant K ∈ (0,∞)
such that

lim sup
ε→0

maxt∈[0,1]N ,|s|≤ε |BH(t + s)− BH(t)|
εH
√

log 1/ε
= K, a.s.

This is an analogue of Lévy’s uniform modulus of conti-
nuity for Brownian motion.
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2.2 Majorizing measure

In general, (1) is not necessary for sample continuity.
Talagrand (1987) proved the following necessary and suf-
ficient for the boundedness and continuity.

Theorem 2.4 [Talagrand, 1987]
Let X = {X(t), t ∈ T} be a centered Gaussian process with
values in R. Suppose D = supt,s∈T dX(s, t) <∞. Then

(i) X has a modification which is bounded on T if and
only if there exists a probability measure µ on T such
that

sup
t∈T

∫ D

0

(
log

1
µ(BdX (t, ε))

)1/2
dε <∞, (2)

where BdX(t, ε) = {s ∈ T : dX(s, t) ≤ ε}.
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Theorem 2.4 (Continued)
Moreover,

E
(

sup
t∈T

X(t)
)
≤ K inf

µ
sup
t∈T

∫ ∞
0

(
log

1
µ(BdX (t, ε))

)1/2
dε.

(ii) There exists a modification of X with bounded, uni-
formly continuous sample functions if and only if
there exists a probability measure µ on T such that

lim
ε→0

sup
t∈T

∫ ε

0

(
log

1
µ(BdX (t, u))

)1/2
du = 0.

Kwapień and Rosiński (2004) provided an upper bound for
the uniform modulus of continuity in terms of “weakly ma-
jorizing measure”.
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2.3 Differentiability

(i). Mean-square differentiability: the mean square partial
derivative of X at t is defined as

∂X(t)
∂tj

= l.i.mh→0
X(t + hej)− X(t)

h
,

where ej is the unit vector in the j-th direction.
For a Gaussian field, sufficient conditions can be given
in terms of the differentiability of the covariance function
(Adler, 1981).
(ii). Sample path differentiability: the sample function
t 7→ X(t) is differentiable. This is much stronger and more
useful than (i).
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Sample path differentiability of X(t) can be proved by us-
ing criteria for continuity.
Consider a centered Gaussian field with stationary incre-
ments whose spectral density function satisfies

f (λ) � 1(∑N
j=1 |λj|βj

)γ , ∀λ ∈ RN , |λ| ≥ 1, (3)

where (β1, . . . , βN) ∈ (0,∞)N and

γ >
N∑

j=1

1
βj
.
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Differentiability

Theorem 2.5 (Xue and X. 2011)
Let X = {X(t), t ∈ RN} be a centered Gaussian field with
stationary increments and spectral density which satisfies
(3). (i) If

βj

(
γ −

N∑
i=1

1
βi

)
> 2, (4)

then the partial derivative ∂X(t)/∂tj is continuous almost
surely. In particular, if (4) holds for all 1 ≤ j ≤ N, then
almost surely X(t) is continuously differentiable.

(ii) If max
1≤j≤N

βj
(
γ−

∑N
i=1 1/βi

)
≤ 2, then X(t) is not differ-

entiable in any direction.
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Proof of (i): Under (4), we know that the mean square par-
tial derivative X′j(t) exists. In order to show that X′j(t) has a
continuous version, by Kolmorogov’s continuity theorem,
it is enough to show that for any compact interval I ⊂ RN ,
there exist constants c > 0 and η > 0 such that

E
[
X′j(s)− X′j(t)

]2 ≤ c |s− t|η ∀ s, t ∈ I. (5)

By the spectral representation of X, we have

E
(
X′j(s)− X′j(t)

)2
= E

[
(X′j(s))2]+ E

[
(X′j(t))2]− 2E

[
(X′j(s)X′j(t))

]
= 2

∫
RN
λ2

j

(
1− cos〈s− t, λ〉

)
f (λ)dλ.

From this, we can verify that (5) holds under (4).
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It follows from (5) that the Gaussian field X′j = {X′j(t), t ∈
RN} has a continuous version [still denoted by X′j].
We define a new Gaussian field X̃ = {X̃(t), t ∈ RN} by

X̃(t) = X(t1, · · · , tj−1, 0, tj+1, · · · , tN)

+

∫ tj

0
X′j(t1, · · · , tj−1, sj, tj+1, · · · , tN) dsj.

(6)

Then we can verify that X̃ is a continuous version of X
and, for every t ∈ RN , X̃′j(t) = X′j(t) almost surely. This
amounts to verify that for every t ∈ RN ,

E
[(

X̃(t)− X(t)
)2]

= 0,

which can be proved by using (6) and the representations
for X(t) and X′j(t). We omit the details.
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Thank you!
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