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1. An introduction on random fields

A random field X = {X(t), t ∈ T} is a family of random
variables with values in state space S, where T is the pa-
rameter set.
We consider T ⊆ RN and S = Rd (d ≥ 1). Then X is called
an (N, d) random field.
Random fields arise naturally in

turbulence (A. N. Kolmogorov, 1941)
oceanography
spatial statistics, spatio-temporal geostatistics
image and signal processing
. . .
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1.1 Stationary random fields and their spectral
representations
A real-valued random field {X(t), t ∈ RN} is called second-
order stationary if E(X(t)) ≡ m,where m is a constant, and
the covariance function depends on s− t only:

E
[
(X(s)− m)(X(t)− m)

]
= C(s− t), ∀s, t ∈ RN.

Bochner’s Theorem (1932) says that a bounded and con-
tinuous function C is positive definite if and only if there
is a finite Borel measure µ such that

C(t) =

∫
RN

ei〈t, x〉 dµ(x), ∀t ∈ RN.
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If X = {X(t), t ∈ RN} is a centered, stationary Gaussian
random field with values in R whose covariance function
is the Fourier transform of µ, then there is a complex-
valued Gaussian random measure W̃ on B(RN) such that
E
(
W̃(A)

)
= 0,

E(W̃(A)W̃(B)) = µ(A ∩ B) and W̃(−A) = W̃(A)

and X has the following Wiener integral representation:

X(t) =

∫
RN

ei〈t, x〉 dW̃(x).

The finite measure µ is called the spectral measure of X.
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The Matérn class

An important class of isotropic stationary random fields are
those with the Matérn covariance function

C(t) =
1

Γ(ν)2ν−1

(√
2ν
|t|
ρ

)ν
Kν

(√
2ν
|t|
ρ

)
,

where Γ is the Gamma function, Kν is the modified Bessel
function of the second kind, and ρ and ν are non-negative
parameters.

Since the covariance function C(t) depends only on the
Euclidean norm |t|, the corresponding Gaussian field X is
called isotropic.
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By the inverse Fourier transform, one can show that the
spectral measure of X has the following density function:

f (λ) =
1

(2π)N

1

(|λ|2 + ρ2

2ν )ν+
N
2
, ∀λ ∈ RN .

Whittle (1954) showed that the Gaussian random field X
can be obtained as the solution to the following fractional
SPDE (

∆ +
ρ2

2ν
) ν

2 +
N
4 X(t) = Ẇ(t),

where ∆ = ∂2

dt2
1

+ · · ·+ ∂2

dt2
N

is the N-dimensional Laplacian,

and Ẇ(t) is the white noise.
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A smooth Gaussian field: N = 2, ν = 0.25
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A smooth Gaussian field: N = 2, ν = 2.5
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1.2 Gaussian fields with stationary increments

Let X = {X(t), t ∈ RN} be a centered Gaussian random
field with stationary increments and X(0) = 0. Yaglom
(1954) showed that, if R(s, t) = E

[
X(s)X(t)

]
is continu-

ous, then R(s, t) can be written as

R(s, t) = 〈s,At〉+

∫
RN

(ei〈s,λ〉 − 1)(e−i〈t,λ〉 − 1)∆(dλ),

where A is a nonnegative definite real N × N matrix and
∆(dλ) is a Borel measure which satisfies∫

RN
(1 ∧ |λ|2) ∆(dλ) <∞. (1)

The measure ∆ is called the spectral measure of X.
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We assume that A = 0. Then

E
[
(X(s)− X(t))2] = 2

∫
RN

(
1− cos〈s− t, λ〉

)
∆(dλ);

and X has the stochastic integral representation:

X(t) d
=

∫
RN

(
ei〈t,λ〉 − 1

)
W̃(dλ),

where d
= denotes equality of all finite-dimensional distribu-

tions, W̃(dλ) is a centered complex-valued Gaussian ran-
dom measure with ∆ as its control measure.

Gaussian fields with stationary increments can be constructed
by choosing spectral measures ∆.
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Two examples

Example 1 If ∆ has a density function

fH(λ) = c(H,N)|λ|−(2H+N),

where H ∈ (0, 1) and c(H,N) > 0, then X is fractional
Brownian motion with index H.
It can be verified that (for proper choice of c(H,N)),

E
[
(X(s)− X(t))2] = 2c(H,N)

∫
RN

1− cos〈s− t, λ〉
|λ|2H+N dλ

= |s− t|2H.

For the last identity, see, e.g., Schoenberg (1939).

Yimin Xiao (Michigan State University) Gaussian Random Fields and SPDEs: An Introduction August 2–6, 2021 12 / 36



FBm X has stationary increments: for any b ∈ RN ,{
X(t + b)− X(b), t ∈ RN

}
d
=
{

X(t), t ∈ RN
}
,

where d
= means equality in finite dimensional distri-

butions.
FBm X is H-self-similar: for every constant c > 0,{

X(ct), t ∈ RN
}

d
=
{

cHX(t), t ∈ RN
}
.
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Example 2 A large class of Gaussian fields can be obtained
by letting spectral density functions satisfy (1) and

f (λ) � 1(∑N
j=1 |λj|βj

)γ , ∀λ ∈ RN , |λ| ≥ 1, (2)

where (β1, . . . , βN) ∈ (0,∞)N and γ >
∑N

j=1
1
βj
.

More conveniently, we re-write (2) as

f (λ) � 1(∑N
j=1 |λj|Hj

)Q+2 , ∀λ ∈ RN , |λ| ≥ 1, (3)

where Hj =
βj

2

(
γ −

∑N
i=1

1
βi

)
and Q =

∑N
j=1 H−1

j .
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1.3 More examples of non-stationary Gaussian
random fields
1.3.1 The Brownian sheet and fractional Brownian sheets
The Brownian sheet W = {W(t), t ∈ RN

+} is a centered
(N, d)-Gaussian field whose covariance function is

E
[
Wi(s)Wj(t)

]
= δij

N∏
k=1

sk ∧ tk.

When N = 1, W is Brownian motion in Rd.
W is N/2-self-similar, but it does not have stationary
increments.
It gives rise to the Gaussian white noise Ẇ, which can
be used as a stochastic integrator.
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Fractional Brownian sheet W ~H =
{

W ~H(t), t ∈ RN
}

is a
mean zero Gaussian field in R with covariance function

E
[
W~H(s)W~H(t)

]
=

N∏
j=1

1
2

(
|sj|2Hj + |tj|2Hj − |sj − tj|2Hj

)
,

where ~H = (H1, . . . ,HN) ∈ (0, 1)N .
For all constants c > 0,{

W ~H(cEt), t ∈ RN
}

d
=
{

c W ~H(t), t ∈ RN
}
,

where E = (aij) is the N × N diagonal matrix with aii =
1/(NHi) for all 1 ≤ i ≤ N and aij = 0 if i 6= j. This is
referred to as an“operator-scaling” property.
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1.3.2 Linear stochastic heat equation
Consider the linear stochastic heat equation

∂u
∂t

(t, x) =
1
2

∆u(t, x) + σ Ẇ, t ≥ 0, x ∈ Rk,

u(0, x) ≡ 0,
(4)

where ∆ is the Laplacian operator in the spatial variables,
σ is a constant or a deterministic function, and Ẇ is a Gaus-
sian noise that is white in time and has a spatially homoge-
neous covariance [Dalang (1999)] given by the Riesz ker-
nel with exponent β ∈ (0, k ∧ 2), i.e.

E(Ẇ(t, x)Ẇ(s, y)) = δ(t − s)|x− y|−β.

If k = 1 = β, then Ẇ is the space-time Gaussian white
noise considered by Walsh (1986).
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It follows from Walsh (1986) and Dalang (1999) that the
mild solution of (4) is the mean zero Gaussian random field
u = {u(t, x), t ≥ 0, x ∈ R} defined by

u(t, x) =

∫ t

0

∫
R

G̃t−r(x− y)σW(drdy), t ≥ 0, x ∈ R,

where G̃t(x) is the Green kernel given by

G̃t(x) = (2πt)−1/2 exp
(
− |x|

2

2t

)
, ∀ t > 0, x ∈ Rk.
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1.3.3 Linear stochastic wave equation
The linear stochastic wave equation

∂2

∂t2 u(t, x) = ∆u(t, x) + Ẇ(t, x), t ≥ 0, x ∈ Rk,

u(0, x) =
∂

∂t
u(0, x) = 0,

(5)

where Ẇ is a Gaussian noise as in the previous example
with exponent β ∈ (0, k ∧ 2).

The existence of real-valued process solution to (5) was
studied by Walsh (1986) for the space-time white noise and
by Dalang (1999) in the more general setting.
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We recall briefly some known results.

Let G be the fundamental solution of the wave equation.
Then

G(t, x) =
1
2

1{|x|<t} if k = 1;

G(t, x) = ck

(1
t
∂

∂t

)(k−2)/2
(t2 − |x|2)−1/2

+ , if k ≥ 2 is even;

G(t, x) = ck

(1
t
∂

∂t

)(k−3)/2σk
t (dx)

t
, if k ≥ 3 is odd,

where σk
t is the uniform surface measure on the sphere

{x ∈ Rk : |x| = t}.
Note that for k ≥ 3, G is not a function but a distribution.
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For any dimension k ≥ 1, the Fourier transform of G in
variable x is given by

F (G(t, ·))(ξ) =
sin(t|ξ|)
|ξ|

, t ≥ 0, ξ ∈ Rk. (6)

Dalang (1999) proved that the real-valued process solution
of equation (5) is given by

u(t, x) =

∫ t

0

∫
Rk

G(t − s, x− y) W(ds dy), (7)

The range of β has been chosen so that the stochastic inte-
gral exists.

The solution u = {u(t, x), t ≥ 0, x ∈ Rk} is a centered
Gaussian random field.
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Recall from Theorem 2 of Dalang (1999) that

E
[( ∫ t

0

∫
Rk

H(s, y)W(ds dy)
)2]

= c
∫ t

0
ds
∫
Rk

dξ
|ξ|k−β

|F (H(s, ·))(ξ)|2

(8)

provided that s 7→ H(s, ·) is a deterministic function with
values in the space of nonnegative distributions with rapid
decrease and∫ t

0
ds
∫
Rk

dξ
|ξ|k−β

|F (H(s, ·)(ξ)|2 <∞.

Eq. (8) is a basic tool for studying the Gaussian random
field u = {u(t, x), t ≥ 0, x ∈ Rk}.
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1.3.4 Non-linear stochastic heat & wave eqs
Many authors have studied the following nonlinear SPDE:Lu = b(u) + σ(u)Ẇ, t ≥ 0, x ∈ Rk,

u(0, x) =
∂

∂t
u(0, x) = 0,

(9)

where L is a partial differential operator, σ and b are non-
random functions that satisfy some regularity conditions
[e.g., σ and b are Lipschitz continuous.]

For example, Lu = ∂u
∂t −

1
2∆u and Lu = ∂2u

∂t2 −∆u give the
stochastic heat and wave equation, respectively.

The solutions, when they exist, are in general non-Gaussian
random fields. We refer to Dalang (1999), Khoshnevisan
(2014) for more information.
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1.4 Multivariate Gaussian random fields
Consider a multivariate random field X = {X(t), t ∈ RN}
taking values in Rd defined by

X(t) = (X1(t), · · · ,Xd(t)), t ∈ RN. (10)

Their key features are:
the components X1, . . . ,Xd are dependent.

X1, . . . ,Xd may have different smoothness properties.

For any i, j = 1, . . . , d, define

Cij(s, t) := E[Xi(s)Xj(t)]. (11)

They are called the cross-covariance functions of X.
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(i) The multivariate Matérn random fields

Gneiting, Kleiber and Schlather (2010) introduced a class
of multivariate stationary Matérn models {X(t), t ∈ RN}
in (10) with marginal and cross-covariance functions of the
form

Cij(s, t) = M(s− t|νij, aij),

where
M(h|ν, a) :=

21−ν

Γ(ν)
(a|h|)νKν(a|h|).

and provided conditions for such matrix-valued functions
to form legitimate cross-covariance functions.
See also Apanansovich, Genton and Sun (2012), Kleiber
and Nychka (2013).
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The bivariate Matérn fields

Let X(t) = (X1(t),X2(t))′ be an R2-valued Gaussian field
whose covariance matrix is determined by

C(h) =

(
c11(h) c12(h)
c21(h) c22(h)

)
, (12)

where cij(h) := E[Xi(s + h)Xj(s)] are specified by

c11(h) = σ2
1M(h|ν1, a1),

c22(h) = σ2
2M(h|ν2, a2),

c12(h) = c21(h) = ρσ1σ2M(h|ν12, a12)

(13)

with a1, a2, a12, σ1, σ2 > 0 and ρ ∈ (−1, 1).
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Gneiting, et al. (2010) gave NSC for (12) to be valid. In
particular, if ρ 6= 0, one must have

ν1 + ν2

2
≤ ν12.

The parameters ν1 and ν2 control the smoothness of the
sample function t 7→ X(t).
For example, if ν1 > 1, then a.s. the sample function t 7→
X1(t) is continuously differentiable. This can be proved
using the spectral density.
Zhou and X. (2017, 2018) studied extreme values and esti-
mation problems for a class of bivariate random fields that
includes the bivariate Matérn fields.
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(ii). Multivariate random fields with stationary
increments

An Rd-valued Gaussian random field X = {X(t), t ∈ RN}
is said to have stationary increments if ∀ t0 ∈ RN ,

{X(t + t0)− X(t0), t ∈ RN} d
= {X(t)− X(0), t ∈ RN}.

A general framework for multivariate random fields with
stationary increments was provided by Yaglom (1957).

As an example, we consider a spacial class of operator
fractional Brownian motions.
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Operator fractional Brownian motions
Let D be a linear operator on Rd (or a d × d real matrix).
The operator norm of D is defined by

‖D‖ = max
|x|=1
|Dx|.

Denote the eigenvalues of D by
λk = αk + iβk, (k = 1, . . . , d).

We assume that
0 < α1 ≤ α2 ≤ · · · ≤ αd < 1. (14)

For any c > 0, we define the linear operator cD by

cD =
∞∑

k=0

(ln c)k

k!
Dk.
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(a). Moving average representation

One can define ofBm X = {X(t), t ∈ R} in Rd by using
the stochastic integration method:

X(t) =

∫
R

[
(t − r)

D− 1
2 I

+ − (−r)
D− 1

2 I
+

]
W(dr), (15)

where W is d-dimensional Brownian motion, is an operator
fractional Brownian motion with exponent D.

It has the following properties:
stationary increments.
(operator self-similarity) For every constant c > 0,

{X(c t), t ∈ R} d
= {cDX(t), t ∈ R}.
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(b). Harmonizable representation

The Gaussian random field Y = {Y(t), t ∈ RN} in Rd

defined by

Y(t) =

∫
RN

ei〈t,r〉 − 1

|r|D+N
2 I
W̃(dr), (16)

where W̃ is a complex-valued Gaussian random measure
on Rd with Lebesgue control measure and i.i.d. compo-
nents, is also an operator fractional Brownian motion with
exponent D.
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In order to verify that the stochastic integrals in (15) and
(16) are well defined, it is sufficient to verify respectively
that ∫

R

∥∥(t − r)
D− 1

2 I
+ − (−r)

D− 1
2 I

+

∥∥2dr <∞,

and ∫
RN

(1− cos〈t, r〉)
∥∥|r|−D−N

2 I
∥∥2dr <∞.

This is where condition (14) is needed.
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(iii). Operator-scaling and
operator-self-similar random fields

Li and X. (2011) constructed a large class of more general,
namely, operator-scaling and operator-self-similar random
fields with stationary increments.
Several authors have studied properties of these random
fields. See, for example,

Ercan Sönmez (2017, 2018, 2020).
Kremer and Scheffler (2019) for further development
and recent results.
Shen, Stilian, and Hsing (2020).
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(iv). Systems of stochastic partial differential
equations

There has been a lot of recent research on this topic, which
we do not discuss here.

in the subsequent sections, we will consider the systems of
stochastic heat and wave equations.
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(v). Matrix-valued Gaussian random fields
Let ξ = {ξ(t) : t ∈ RN

+} be a centered Gaussian random
field and let {ξi,j : i, j ∈ N} be a family of independent
copies of ξ.

Consider the symmetric d × d matrix-valued process X =
{Xi,j(t); t ∈ RN

+, 1 ≤ i, j ≤ d} defined by

Xi,j(t) =


ξi,j(t), i < j;√

2ξi,i(t), i = j;
ξj,i(t), i > j.

(17)

One may study statistical and sample path properties of the
eigenvalues of X.
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Thank you!
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