Some Local Properties of A Nonlinear Stochastic Heat Equation

Yimin Xiao

Michigan State University CBMS Conference, University of Alabama in Huntsville

August 2-6, 2021

- Parabolic SPDEs: Background
- 2 Approximation Theorems
- Local Properties of the Solution

10.1 A nonlinear stochastic heat equation

Consider a parabolic SPDE of the following form:

$$\frac{\partial}{\partial t}u_t(x) = \frac{1}{2}\Delta_{\alpha/2}u_t(x) + \sigma(u_t(x))\dot{W}_t(x), \qquad (1)$$

subject to $u_0(x) := U_0$ for all $x \in \mathbb{R}$, for some non-negative constant U_0 .

In the above $\Delta_{\alpha/2} = -(-\Delta)^{\alpha/2}$ denotes the fractional Laplacian of index $\alpha/2$, $\sigma : \mathbb{R} \to \mathbb{R}$ is non random and Lipschitz continuous, and \dot{W} denotes space-time white noise.

We assume $1 < \alpha \le 2$. According to Dalang (1999), this is a sufficient and necessary condition for (1) to have a mild solution that is a random field.

Let $p_t(x)$ denote the fundamental solution to the fractional heat operator $(\partial/\partial t) - \frac{1}{2}\Delta_{\alpha/2}$. Then

$$\widehat{p}_t(\xi) = \exp\left(-t|\xi|^{\alpha}/2\right) \qquad (t \ge 0, \xi \in \mathbb{R}).$$

The Plancherel theorem implies that: For all t > 0,

$$\|p_t\|_{L^2(\mathbb{R})}^2 = \frac{1}{2\pi} \|\widehat{p}_t\|_{L^2(\mathbb{R})}^2 = \frac{\Gamma(1/\alpha)}{\alpha \pi t^{1/\alpha}}.$$

Moreover,

$$p_t(0) = \sup_{x \in \mathbb{R}} p_t(x) = \frac{2^{1/\alpha} \Gamma(1/\alpha)}{\alpha \pi t^{1/\alpha}} \qquad (t > 0).$$

When $\sigma \equiv 1$ and $U_0 = 0$, the mild solution to (1) is given by

$$v_t(x) = \int_{(0,t)\times\mathbb{R}} p_{t-s}(y-x) W(\mathrm{d} s \, \mathrm{d} y). \tag{2}$$

Then $\{v_t(x)\}\$ is a continuous, centered Gaussian random field, and many of its properties can be established (e.g., when $\alpha = 2$, Swanson (2007),Tudor and X. (2007), Lai and Nualart (2009), etc).

We will relate the local properties of $\{v_t(x)\}$ to those of the solution to (1).

General case: moment estimates

In general (1) is interpreted as

$$u_t(x) = U_0 + \int_{(0,t) \times \mathbb{R}} p_{t-s}(y-x)\sigma(u_s(y)) W(\mathrm{d} s \, \mathrm{d} y).$$
(3)

We will make use of the following two results:

For all $k \in [2, \infty)$ there exists a constant $A_{k,T}$ such that:

$$\mathbb{E}\left(|u_t(x)|^k\right) \le A_{k,T}; \quad \text{and} \\ \mathbb{E}\left(\left|u_t(x) - u_{t'}(x')\right|^k\right) \le A_{k,T}\left(|x - x'|^{(\alpha - 1)k/2} + |t - t'|^{(\alpha - 1)k/(2\alpha)}\right)$$

uniformly for all $t, t' \in [0, T]$ and $x, x' \in \mathbb{R}$.

When t > 0 is fixed, Foondun, Khoshnevisan and Mahboubi (2015) have studied some properties of the function $x \mapsto u_t(x)$ by relating it to a fractional Brownian motion through the Gaussian process $\{v_t(x), x \in \mathbb{R}\}$.

Khoshnevisan, Swanson, X. and Zhang have considered some properties of the function $t \mapsto u_t(x)$, when $x \in \mathbb{R}$ is fixed.

By combining the results of the two papers, one can derive some local properties of the sample function $(t, x) \mapsto u_t(x)$.

In the following, we will focus on the behavior of $t \mapsto u_t(x)$, when $x \in \mathbb{R}$ is fixed, and present some results in Khoshnevisan, Swanson, X. and Zhang.

The BDG Inequality

For every $t \ge 0$, let \mathscr{F}_t^0 denote the σ -algebra generated by $\int_{(0,t)\times\mathbb{R}} \varphi_s(y) W(\mathrm{d}s \,\mathrm{d}y)$ as φ ranges over all elements of $L^2(\mathbb{R}_+\times\mathbb{R})$. We complete every such σ -algebra, and make the filtration $\{\mathscr{F}_t\}_{t\ge 0}$ right continuous. The following BDG Inequality is Proposition 4.4 in Khoshnevisan (2014).

Lemma 10.2

If $h \in L^2([0,t] \times \mathbb{R})$ for all t > 0 and $\Phi \in \mathcal{L}^{\beta,2}$ for some $\beta > 0$. Then, for every real number $k \in [2,\infty)$, we have

$$\left\|\int_{(0,t)\times\mathbb{R}} h_s(y)\Phi_s(y) W(\mathrm{d} s \,\mathrm{d} y)\right\|_k^2 \leq 4k \int_0^t \mathrm{d} s \int_{-\infty}^\infty \mathrm{d} y \ [h_s(y)]^2 \|\Phi_s(y)\|_k^2.$$

10. 2 Approximation Theorems

Notation $\mathcal{D}_{\varepsilon}$: For any $\varepsilon > 0$ and random field $\{X_t(x)\}_{t \ge 0, x \in \mathbb{R}}$, denote

$$(\mathcal{D}_{\varepsilon}X)_t(x) := X_{t+\varepsilon}(x) - X_t(x) \qquad (t \ge 0, x \in \mathbb{R}).$$

Theorem 10.1 [KSXZ]

For every $k \in [2, \infty)$ there exists a finite constant $A_{k,T}$ such that uniformly for all $\varepsilon \in (0, 1)$, $x \in \mathbb{R}$, and $t \in [0, T]$,

$$\mathbb{E}\Big(\big|(\mathcal{D}_{\varepsilon}u)_t(x)-\sigma(u_t(x))(\mathcal{D}_{\varepsilon}v)_t(x)\big|^k\Big)\leq A_{k,T}\,\varepsilon^{\mathcal{G}_{\alpha}k},$$

where

$$\mathcal{G}_{lpha} := rac{2(lpha-1)}{3lpha-1}.$$

For $x \in \mathbb{R}$ fixed, we write the increment of $t \mapsto u_t(x)$ as

$$u_{t+\varepsilon}(x) - u_t(x) := \mathscr{J}_1 + \mathscr{J}_2, \qquad (4)$$

where

$$\mathscr{J}_{1} := \int_{(0,t)\times\mathbb{R}} \left[p_{t+\varepsilon-s}(y-x) - p_{t-s}(y-x) \right] \sigma(u_{s}(y)) W(\mathrm{d}s \,\mathrm{d}y);$$

$$\mathscr{J}_{2} := \int_{(t,t+\varepsilon)\times\mathbb{R}} p_{t+\varepsilon-s}(y-x) \sigma(u_{s}(y)) W(\mathrm{d}s \,\mathrm{d}y).$$
(5)

Step 1: Estimation of \mathcal{J}_2

Define

$$\widetilde{\mathscr{J}_2} := \sigma(u_t(x)) \int_{(t,t+\varepsilon)\times\mathbb{R}} p_{t+\varepsilon-s}(y-x) W(\mathrm{d} s \, \mathrm{d} y).$$

Lemma 10.3

For every $k \in [2, \infty)$ there exists a finite constant $A_{k,T}$ such that for all $\varepsilon \in (0, 1)$,

$$\sup_{x \in \mathbb{R}} \sup_{t \in [0,T]} \mathbb{E}\left(\left| \mathscr{J}_2 - \widetilde{\mathscr{J}_2} \right|^k \right) \le A_{k,T} \varepsilon^{(\alpha-1)k/\alpha}.$$
(6)

To prove (6), we first consider

$$\mathscr{J}_2 - \mathscr{J}'_2 = \int_{(t,t+\varepsilon)\times\mathbb{R}} p_{t+\varepsilon-s}(y-x) [\sigma(u_s(y)) - \sigma(u_s(x))] W(\mathrm{d} s \, \mathrm{d} y).$$

By the BDG inequality and Lemma 10.1, we have

$$\begin{split} \|\mathscr{J}_{2} - \mathscr{J}_{2}'\|_{L^{k}(\Omega)}^{2} \\ &\leq 4k \int_{t}^{t+\varepsilon} \mathrm{d}s \int_{-\infty}^{\infty} \mathrm{d}y \ [p_{t+\varepsilon-s}(y-x)]^{2} \left\|\sigma(u_{s}(y)) - \sigma(u_{s}(x))\right\|_{k}^{2} \\ &\leq A \int_{t}^{t+\varepsilon} \mathrm{d}s \int_{-\infty}^{\infty} \mathrm{d}y \ [p_{t+\varepsilon-s}(y-x)]^{2} \left\|u_{s}(y) - u_{s}(x)\right\|_{k}^{2} \\ &\leq A \int_{0}^{\varepsilon} \mathrm{d}s \int_{-\infty}^{\infty} \mathrm{d}y \ [p_{s}(y)]^{2} \left(|y|^{\alpha-1} \wedge 1\right) \\ &\leq A\varepsilon^{2(\alpha-1)/\alpha}. \end{split}$$

Next we consider $\mathscr{J}_2' - \widetilde{\mathscr{J}_2}$. The same argument gives:

$$\begin{split} \left\| \mathscr{J}_{2}^{\prime} - \widetilde{\mathscr{J}_{2}} \right\|_{L^{k}(\Omega)}^{2} \\ &\leq A \int_{t}^{t+\varepsilon} \mathrm{d}s \int_{-\infty}^{\infty} \mathrm{d}y \, \left[p_{t+\varepsilon-s}(y) \right]^{2} \| u_{s}(x) - u_{t}(x) \|_{L^{k}(\Omega)}^{2} \\ &\leq A \int_{t}^{t+\varepsilon} \| p_{t+\varepsilon-s} \|_{L^{2}(\mathbb{R})}^{2} \, |s-t|^{(\alpha-1)/\alpha} \, \mathrm{d}s \\ &\leq A \varepsilon^{2(\alpha-1)/\alpha}. \end{split}$$

Step 2: Estimation of \mathcal{J}_1

Let
$$a = 2\alpha/(3\alpha - 1) \in (0, 1)$$
, and write

$$\mathscr{J}_1 = \mathscr{J}_{1,a} + \mathscr{J}'_{1,a},$$

where

$$\mathscr{J}_{1,a} := \int_{(0,t-\varepsilon^a)\times\mathbb{R}} \left[p_{t+\varepsilon-s}(y-x) - p_{t-s}(y-x) \right] \sigma(u_s(y)) W(\mathrm{d} s \, \mathrm{d} y),$$

$$\mathscr{J}_{1,a}' := \int_{(t-\varepsilon^a,t)\times\mathbb{R}} \left[p_{t+\varepsilon-s}(y-x) - p_{t-s}(y-x) \right] \sigma(u_s(y)) W(\mathrm{d} s \, \mathrm{d} y).$$

By applying the BDG inequality and Lemma 10.1, one can verify that

$$\sup_{x\in\mathbb{R}}\sup_{t\in[0,T]}\mathbb{E}\Big(\left|\mathscr{J}_{1,a}\right|^k\Big)\leq A\,\varepsilon^{\left(\mathcal{G}_{\alpha}+\frac{1}{3\alpha-1}\right)k},$$

which is a lot smaller than $A \varepsilon^{\mathcal{G}_{\alpha}k}$.

To estimate $\mathscr{J}'_{1,a}$, we use the same strategy and introduce

$$\mathscr{J}_{1,a}'' := \int_{(t-\varepsilon^a,t)\times\mathbb{R}} \left[p_{t+\varepsilon-s}(y-x) - p_{t-s}(y-x) \right] \sigma(u_{t-\varepsilon^a}(y)) W(\mathrm{d} s \, \mathrm{d} y),$$

$$\widetilde{\mathscr{J}}_{1,a} := \sigma(u_{t-\varepsilon^a}(x)) \int_{(t-\varepsilon^a,t)\times\mathbb{R}} \left[p_{t+\varepsilon-s}(y-x) - p_{t-s}(y-x) \right] W(\mathrm{d} s \, \mathrm{d} y).$$

Note that the moments of $u_{t-\varepsilon^a}(x) - u_t(x)$ is negligible compared with the main term.

By the BDG inequality and Lemma 10.1, we can prove

Lemma 10.4

For every T > 0 and $k \in [2, \infty)$ there exists a finite constant $A_{k,T}$ such that uniformly for all $\varepsilon \in (0, 1)$, $x \in \mathbb{R}$, and $t \in [0, T]$,

$$\mathbb{E}\left(\left|\mathscr{J}_{1}-\sigma(u_{t}(x))\int_{(0,t)\times\mathbb{R}}\left[p_{t+\varepsilon-s}(y-x)-p_{t-s}(y-x)\right]W(\mathrm{d} s\,\mathrm{d} y)\right|^{k}\right)\\\leq A_{k,T}\,\varepsilon^{\mathcal{G}_{\alpha}k}.$$

Theorem 10.1 follows from Lemmas 10.3 and 10.4.

From Theorem 10.1 and an interpolation argument, we can derive the following result, which is useful for deriving local properties of $t \mapsto u_t(x)$ from those of the Gaussian process $t \mapsto v_t(x)$.

Theorem 10.2 [KSXZ]

For all T > 0, M > 0, and $q \in (0, \mathcal{G}_{\alpha})$,

$$\mathbb{E}\left(\sup_{t\in[0,T]}\sup_{\varepsilon\in[0,\eta]}\sup_{x\in[-M,M]}\left|(\mathcal{D}_{\varepsilon}u)_{t}(x)-\sigma(u_{t}(x))(\mathcal{D}_{\varepsilon}v)_{t}(x)\right|^{k}\right)=o\left(\eta^{kq}\right),$$

as $\eta \to 0^+$.

By a Borel-Cantelli argument, we obtain the following a.s. uniform approximation bound:

Corollary 10.3

For all T > 0, M > 0, and $q \in (0, \mathcal{G}_{\alpha})$,

 $\sup_{t\in[0,T]}\sup_{\varepsilon\in[0,\eta]}\sup_{x\in[-M,M]}|(\mathcal{D}_{\varepsilon}u)_t(x)-\sigma(u_t(x))(\mathcal{D}_{\varepsilon}v)_t(x)|=o\left(\eta^q\right),$

as $\eta \to 0^+$, almost surely.

Notice that $\mathcal{G}_{\alpha} > (\alpha - 1)(2\alpha)$, we derive from Corollary 10.3 and local properties of the Gaussian process $t \mapsto v_t(x)$ the following results.

10.3 Local Properties of the Solution

1. Law of the iterated logarithm

Theorem 10.4 [KSXZ]

Let $x \in \mathbb{R}$ be fixed. The following hold almost surely: If t > 0, then

$$\limsup_{\varepsilon \to 0^+} \frac{u_{t+\varepsilon}(x) - u_t(x)}{\varepsilon^{(\alpha-1)/(2\alpha)}\sqrt{2\log|\log\varepsilon|}} = \sigma(u_t(x))\sqrt{\frac{2^{1/\alpha}\Gamma(1/\alpha)}{(\alpha-1)\pi}}.$$
2 If $t = 0$, then

$$\limsup_{\varepsilon \to 0^+} \frac{u_\varepsilon(x) - U_0}{\varepsilon^{(\alpha-1)/(2\alpha)} \sqrt{2\log|\log\varepsilon|}} = \sigma(U_0) \sqrt{\frac{\Gamma(1/\alpha)}{(\alpha-1)\pi}}.$$

2. Weighted variation

For any t > 0 fixed and some integer n > 1, consider a partition $\{t_{j:n}\}_{i=0}^{k_n}$ of [0, t] by letting

$$t_{j:n} := jt\varepsilon_n \quad (0 \le j < k_n := \lfloor \varepsilon_n^{-1} \rfloor), \ t_{k_n:n} := t,$$

with "mesh size" ε_n . For a fixed $x \in \mathbb{R}$, we consider the following function

$$V_t^{(n,\varphi)}(x) := \sum_{j=0}^{k_n-1} \varphi\left(u_{t_{j:n}}(x)\right) \cdot \left|u_{t_{j+1:n}}(x) - u_{t_{j:n}}(x)\right|^{2\alpha/(\alpha-1)}$$

Here, $\varphi : \mathbb{R} \to \mathbb{R}$ is a non random and Lipschitz continuous function. When $\varphi \equiv 1$, $V_t^{(n,\varphi)}(x)$ is the " β -variation" of the function $s \mapsto u_s(x)$, in [0, t], where $\beta := 2\alpha/(\alpha-1)$.

Theorem 10.5 [KSXZ]

Choose and fix $x \in \mathbb{R}$, t > 0, and a non-random and Lipschitz continuous function $\varphi : \mathbb{R} \to \mathbb{R}$. Then,

$$\lim_{n\to\infty} V_t^{(n,\varphi)}(x) = \mathfrak{V}(\alpha) \int_0^t \varphi(u_s(x)) \left| \sigma(u_s(x)) \right|^{2\alpha/(\alpha-1)} \mathrm{d}s$$

in $L^2(\Omega)$ as $n \to \infty$, where $\mathfrak{V}(\alpha)$ is an explicit constant depending on α .

Moreover, if

$$\sum_{n=1}^{\infty} \varepsilon_n^{(\alpha-1)/(3\alpha-1)} < \infty,$$

then the preceding can be strengthened to almost-sure convergence.

Thank You!