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Operator Scaling Gaussian Random Fields

A scalar valued random field {X (x)}x∈Rd is called operator-scaling if for
some d × d matrix E with positive real parts of the eigenvalues and some
H > 0 we have

{X (cEx)}x∈Rd
f .d .
= {cHX (x)}x∈Rd for all c > 0, (1)

where
f .d .
= denotes equality of all finite-dimensional marginal distributions,

and cE = exp(E log c) where exp(A) =
∑∞

k=0
Ak

k! is the matrix exponential.

If E is diagonizable matrix, Eui = λiui , for i = 1, · · · , d , then

{X (ctui )}t∈R
f .d .
= {cH/λiX (tui )}t∈R for any c > 0.
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Operator Scaling Gaussian Random Fields

Explicit covariance functions of operator scaling Gaussian random field
(OSGRF) were proposed by Bierme, H. and Lacaux, C. (2018). They
define a function

υE ,H(x) =
( d∑
i=1

|〈x , ui 〉|2ai
)H

for all x ∈ Rd , (2)

where H ∈ (0, 1], and {1/ai = λi > 0, ui , i = 1, 2, · · · , d} are eigenvalues
and eigenvectors of a diagonizable matrix E .

(2) is a semi-variogram funtion for a centered Gaussian random field that
has operator scaling property (1).

Recall semi-variogram of X is defined by

υE ,H(h) =
1

2
E (X (x + h)− X (x))2.
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Assumption

(A1) υE ,H(x) in (2) with H ≤ 1 and a1 < a2, a1, a2 ∈ (0, 1).
(A2) The matrix E in (1) is diagonizable with eigenvalues λ2 6= λ1, and

E =

(
cos θ sin θ
− sin θ cos θ

)(
λ1 0
0 λ2

)(
cos θ − sin θ
sin θ cos θ

)
, for θ ∈ (0, π).

By assumption (A2), X has self-similarity along the directions u1, u2 with
the Hurst indices h1 = Ha1(= H/λ1), h2 = Ha2(= H/λ2), respectively.

{X (ctuj)}t∈R
f .d
= {chjX (tuj)}t∈R for any c > 0, j = 1, 2, (3)

where u1 = (cos θ,− sin θ) and u2 = (sin θ, cos θ).
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Estimation Strategy

Below is a brief explanation on how we will proceed to estimate
parameters, u1, u2, h1, h2.

First, using sample paths on the horizontal and vertical axis,
{X (t, 0),X (0, t), t ∈ [0, 1]}, we obtain estimate of θ, θ̂, and
û1 = (cos θ̂,− sin θ̂), û2 = (sin θ̂, cos θ̂).

Second, using the sample paths on the estimated eigenvector directions,
{X (tû1),X (tû2), t ∈ [0, 1]}, and self-similar property, we obtain Hurst
estimates ĥj , j = 1, 2.
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Estimation of Eigenvectors

Define for i = 2, · · · , n,

∇1X (i/n) = X

(
i/n
0

)
− 2X

(
(i − 1)/n

0

)
+ X

(
(i − 2)/n

0

)
, (4)

∇2X (i/n) = X

(
0
i/n

)
− 2X

(
0

(i − 1)/n

)
+ X

(
0

(i − 2)/n

)
. (5)

Note that {∇1X (i/n),∇2X (i/n), i = 2, · · · , n} are stationary processes
for a fixed n.
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Estimation of Eigenvectors

Define

Pn :=
n∑

i=2

∇1X (i/n)2

n − 1
, Qn :=

n∑
i=2

∇2X (i/n)2

n − 1
, (6)

and σ2P := limn var(n.5+2h1Pn), σ2Q := limn var(n.5+2h1Qn).

Lemma (2.2)

Under the assumptions (A1,A2), Pn and Qn are asymptotically
independent in a sense that σPQ := limn n

1+4h1cov(Pn,Qn) = 0, and

n.5+2h1

(
Pn − EPn

Qn − EQn

)
→d N(0,Σ),

where Σ11 = σ2P ,Σ22 = σ2Q ,Σ12 = σPQ = 0.
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Estimation of Eigenvectors

Define for i = 4, · · · , n,

∇∗1X (i/n) = X

(
i/n
0

)
− 2X

(
(i − 2)/n

0

)
+ X

(
(i − 4)/n

0

)
.

Let

P∗n :=
n∑

i=4

∇∗1X (i/n)2

n − 3
.
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Estimation of Eigenvectors

Lemma (2.3)

Under the assumptions (A1,A2),

i)
Pn

Qn
− EPn

EQn
= Op(n−.5),

ii)
EPn

EQn
−
(

cos θ

sin θ

)2h1

=

O
(
n2(a1−a2)(sin2(a2−h1) θ ∨ cos2(a2+h1) θ/ sin4h1 θ)

)
,

iii)
P∗n
Pn
− EP∗n

EPn
= Op(n−.5),

iv)
EP∗n
EPn

− 22h1 = O(n2(a1−a2) sin2a2 θ/ cos2h1 θ).

Jeonghwa Lee NSF/CBMS Conference, August 2021 9 / 33



Estimation of Eigenvectors

The estimation method for θ is the following:
Step 1) Estimate 2h1 by the ratio of P∗n and Pn.

2h̃1 = log

(
P∗n
Pn

)
/ log 2. (7)

Step 2) Estimate θ with 2h̃1 and Pn
Qn

.

θ̂n := cot−1
((

Pn

Qn

)1/2h̃1)
. (8)
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Estimation of Eigenvectors

Theorem (2.4)

Under the assumptions (A1,A2),

i) 2h̃1 − 2h1 = Op

(
n2(a1−a2)

sin2a2 θ

cos2h1 θ
∨ n−.5

)
, (9)

ii) θ̂n − θ = Op(n2(a1−a2) ∨ n−.5 sin2 θ). (10)
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Estimation of Hurst Indices

Define vector-valued functions Fu1 ,Fu2 , for any θc ∈ (0, π/2),

Fu1(θc) := (cos θc ,− sin θc), Fu2(θc) := (sin θc , cos θc).

Our estimators for uj , j = 1, 2, are

û1 := Fu1(θ̂n) = (cos θ̂n,− sin θ̂n), û2 := Fu2(θ̂n) = (sin θ̂n, cos θ̂n).

For an integer 2m << n, and a vector u ∈ [0, 1]2, |u| = 1, define

∇m(u)X (i/n) := X

(
i − 2m+1

n
u

)
− 2X

(
i − 2m

n
u

)
+ X

(
i

n
u

)
(11)

for i = 2m+1, · · · , n.
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Estimation of Hurst Indices

Generalizing Pn,Qn in (6), define for any constant θc ∈ (0, π/2),

Pm
n (θc) :=

n∑
i=2m+1

∇m(Fu1(θc))X (i/n)2

n − 2m+1 + 1
, (12)

Qm
n (θc) :=

n∑
i=2m+1

∇m(Fu2(θc))X (i/n)2

n − 2m+1 + 1
. (13)

Since,
Pm
n (θ̂n) ≈ Pm

n (θ), Qm
n (θ̂n) ≈ Qm

n (θ),

and
Pm
n (θ)

d
= 22mh1P1

n(θ), Qm
n (θ)

d
= 22mh2P1

n(θ),

(by self-similarity of X along the directions u1, u2)
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Estimation of Hurst Indices

we estimate h1 and h2 by log-regression of

{Pm
n (θ̂n);m = 1, 2, · · · , `n}, {Qm

n (θ̂n);m = 1, 2, · · · , `n}

on {2m log 2,m = 1, 2, · · · , `n}, respectively, for a fixed integer `n << n,
i.e.,

ĥ1 =
1

2

`n∑
m=1

wm log2 P
m
n (θ̂n), ĥ2 =

1

2

`n∑
m=1

wm log2Q
m
n (θ̂n), (14)

where
∑`n

m=1 wm = 0,
∑`n

m=1mwm = 1.
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Estimation of Hurst Indices

For any integers m,m′, limn cov(n.5+2h1Pm′
n (θ1), n.5+2h1Pm

n (θ2)) = 0.
Therefore, for any constant θc ∈ (0, π/2),

n.5+2h1


Pm
n (θc)− EPm

n (θc)
Qm

n (θc)− EQm
n (θc)

P0
n(0)− EP0

n(0)
Q0

n(0)− EQ0
n(0)

→d N(0,Σ∗),

where Σ∗ =

(
Σθc 0

0 Σ

)
, Σ,Σθc are diagonal matrices.

⇒ n.5+2h1

(
Pm
n (θc)− EPm

n (θc)
Qm

n (θc)− EQm
n (θc)

) ∣∣∣∣ (P0
n(0)

Q0
n(0)

)
→d N(0,Σθc ).
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Estimation of Hurst Indices

Since θ̂n is obtained from Pn = P0
n(0),Qn = Q0

n(0), given θ̂n = θc ,

n.5+2h1

(
Pm
n (θc)− EPm

n (θc)
Qm

n (θc)− EQm
n (θc)

)
→d N(0,Σθc ). (15)
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Estimation of Hurst Indices

For any constant θc ∈ (0, π/2), define

hθc1 :=
1

2

`n∑
m=1

wm log2 E (Pm
n (θc)), hθc2 :=

1

2

`n∑
m=1

wm log2 E (Qm
n (θc)).

Given that θ̂n = θc , ĥj converges to hθcj , for j = 1, 2. Also, as θ̂n converges

to θ, hθ̂nj converges to hj , for j = 1, 2.
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Estimation of Hurst Indices

Theorem (2.5)

In a fixed domain with the assumptions (A1,A2),
i)

|ĥ1 − h1| =

{
OP

(
n−.5−2h1 + n−2(a2−a1)−a2

)
if a2 − a1 > .25,

OP

(
n−.5−2h1 + n−(2+4a2)(a2−a1)

)
if a2 − a1 ≤ .25.

ii)

|ĥ2 − h2| = OP

(
n−.5−2h1 + n−(4a1−2)(a2−a1)

)
if a2 − a1 ≤ .25, a1 > .5.
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Estimation of Hurst Indices

proof. i) By (15) and the delta method, given θ̂n = θc , the estimator ĥ1
behaves as follows:

n.5+2h1(ĥ1 − hθc1 )→d N(0, σû1). (16)

Also, for hθc1 − h1, note that

E
(
∇m(Fu1(θc))X (i/n)2

)
= 8

(
ba1

(
22ma1

n2a1

)
+ ε2a21

(
22ma2

n2a2

))H

− 2

(
ba1

(
22(m+1)a1

n2a1

)
+ ε2a21

(
22(m+1)a2

n2a2

))H

= c∗h1

(
22mh1

n2h1

)(
1 +

c̃a2
c∗h1

Hε2a21 22m(a2−a1)n2a1−2a2 + o(ε2a21 n2a1−2a2)
)
, (17)

where ba1 = (u′1Fu1(θc))2a1 , ε1 = u′2Fu1(θc), and
c∗h1 = (8− 22h1+1)(u′1Fu1(θc))2h1 , c̃a2 = (8− 22(a2−a1+h1)+1)bH−1a1 . The last
equality follows by Taylor expansion. (17) implies that
hθc1 − h1 = O(ε2a21 n2a1−2a2).
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Estimation of Hurst Indices

Therefore, combining (16-17),

|ĥ1−h1| ≤ |ĥ1−hθc1 |+ |h
θc
1 −h1| = OP(n−.5−2h1) +O(ε2a21 n2a1−2a2). (18)

(18) was derived for fixed θ̂n = θc .
Since ε1 = u′2Fu1(θc) = u′2(cos θc ,− sin θc), ε1 varies with θ̂n, and it has
the order of (10). Therefore, ε2a21 n2a1−2a2 is of order n2(a1−a2)−a2 or
n−(2+4a2)(a2−a1) depending on whether a2 − a1 > .25 or a2 − a1 ≤ .25, and
the result follows.
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Estimation of Hurst Indices

ii) By (15) and the delta method, given θ̂n = θc ,

n.5+2h1(ĥ2 − hθc2 )→d N(0, σû2). (19)

For hθc2 − h2,

E
(
∇m(Fu2(θc))X (i/n)2

)
= 8

(
ε2a12

(
22ma1

n2a1

)
+ ba2

(
22ma2

n2a2

))H

− 2

(
ε2a12

(
22(m+1)a1

n2a1

)
+ ba2

(
22(m+1)a2

n2a2

))H

= c∗h2

(
22mh2

n2h2

)(
1 +

c̃a1
c∗h2

Hε2a12 22m(a1−a2)n2a2−2a1 + o(ε2a12 n2a2−2a1)
)
, (20)

where
ba2 = (u′2Fu2(θc))2a2 , ε2 = u′1Fu2(θc), c∗h2 = (8− 22h2+1)(u′2Fu2(θc))2h2 ,

and c̃a1 = (8− 22(a1−a2+h2)+1)bH−1a2 .
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Estimation of Hurst Indices

By (19-20), for fixed θ̂c = θc ,

|ĥ2−h2| ≤ |ĥ2−hθc2 |+ |h
θc
2 −h2| = OP(n−.5−2h2) +O(ε2a12 n2a2−2a1). (21)

ε2 = u′1Fu2(θc) varies with θ̂n = θc , and it is of order n−(4a1−2)(a2−a1) when
a2 − a1 ≤ .25 and a1 > .5, or divergent otherwise, therefore, the results
follow.
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Simulation

Simulation method for OSGRF on a grid was developed by Bierme, H. and
Lacaux, C. (2018) when semi-variogram is (2) with diagonal matrix E .

However, since we have diagonizable matrix E , the algorithm cannot be
used.

Moreover, the samples we need for the whole estimation procedure do not
fit a grid in a fixed domain, since we need not only
{X (i/n, 0),X (0, i/n), i = 0, 1, · · · , n}, but also
{X ((i/n)ûj), i = 0, 1, · · · , n, j = 1, 2} which do not lie in
{X (i/n, j/n), i , j = 0, 1, · · · , n}.
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Simulation

Instead, we take the following approach:
(1) From OSGRF with fixed parameters (θ, h1, h2,H), we obtained two
sample paths,

{X (i/n, 0), i = 0, 1, · · · , n}, {X (0, i/n), i = 0, 1, · · · , n},

that are independent of each other.
(2) From sample paths in (1), θ̂ is obtained.
(3) Along the estimated directions û1, û2, sample paths are obtained,

{X
(
(i/n)û1

)
, i = 0, 1, · · · , n}, {X

(
(i/n)û2

)
, i = 0, 1, · · · , n},

that are independent of each other and also independent of sample paths
in (1).
(4) Using the sample paths in (3), ĥ1, ĥ2, are computed.
We repeat (1)-(4) with various parameters (θ, h1, h2,H).
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Simulation

We proceed (1)-(4) with n = 213 for each set of (θ, h1, h2,H) where
θ ∈ {i/20 ∗ π/2, i = 1, · · · , 19} with various h1, h2,H, and obtain θ̂
and ĥ1, ĥ2 with m = 1, 2, 3, 4(= `n).

Sample paths were simulated by circulant embedding method
developed by Dietrich, C.R. and Newsam, G.N. (1997). This method
was independently applied to each sample path in (1) and (3), which
results in zero covariance between any two samples from different
sample paths. This is not assumed covariance in our model.

However, Pm
n (θ1),Pm′

n (θ2) are asymptotically independent when
θ1 6= θ2. Since we only use Pm

n (θ) from each sample path with
different θ for different sample path, our approach is justified to
investigate how estimators perform.
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Simulation Results

(A): h1 = .6, h2 = .7,H = 75 (B): h1 = .6, h2 = .7,H = .85,
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Simulation Results

(C): h1 = .1, h2 = .3,H = .4 (D): h1 = .1, h2 = .3,H = .8

(E): h1 = .2, h2 = .3,H = .4
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Simulation Results
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Simulation Results
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Simulation Results
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Simulation Results
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The End
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