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1. Problem

∂u(t , x)

∂t
= ∆u(t , x) + σ(u(t , x))Ẇ , t > 0, x ∈ R .

∆ =
∂2

∂x2 is the Laplacian and σ : R→ R is a nice function
(Lipschitz).
initial condition u(0, x) = u0(x) is continuous and bounded.

Ẇ = ∂2W
∂t∂x is centered Gaussian field with covariance

E(Ẇ (s, x)Ẇ (t , y)) = δ(s − t) |x − y |2H−2 .

Here 1/4 < H < 1/2
The product σ(u)Ẇ is taken in Skorohod sense.



Stochastic integral

For a function φ : R+ × R→ R, the Marchaud fractional
derivative Dβ

− is defined as:

Dβ
−φ(t , x) = lim

ε↓0
Dβ
−,εφ(t , x)

= lim
ε↓0

β

Γ(1− β)

∫ ∞
ε

φ(t , x)− φ(t , x + y)

y1+β
dy .

The Riemann-Liouville fractional integral is defined by

Iβ−φ(t , x) =
1

Γ(β)

∫ ∞
x

φ(t , y)(y − x)β−1dy .



Set

H = {φ : R+×R→ R | ∃ψ ∈ L2(R+×R) s.t . φ(t , x) = I
1
2−H
− ψ(t , x)}.

Proposition

H is a Hilbert space equipped with the scalar product

〈φ, ψ〉H = c1,H

∫
R+×R

Fφ(s, ξ)Fψ(s, ξ)|ξ|1−2Hdξds

= c2,H

∫
R+×R

D
1
2−H
− φ(t , x)D

1
2−H
− ψ(t , x)dxdt

= c2
3,β

∫
R2

[φ(x + y)− φ(x)][ψ(x + y)− ψ(x)]|y |2H−2dxdy ,



where

c1,H =
1

2π
Γ(2H + 1) sin(πH) ;

c2,H =

[
Γ

(
H +

1
2

)]2(∫ ∞
0

[
(1 + t)H− 1

2 − tH− 1
2

]2
dt +

1
2H

)−1

;

c2
3,β = (

1
2
− β)βc−1

2, 1
2−β

.

The space D(R+ × R) is dense in H.



Definition
An elementary process g is a process of the following form

g(t , x) =
n∑

i=1

m∑
j=1

Xi,j1(ai ,bi ](t)1(hj ,lj ](x),

where n and m are finite positive integers,
−∞ < a1 < b1 < · · · < an < bn <∞, hj < lj and Xi,j are
Fai -measurable random variables for i = 1, . . . ,n. The
stochastic integral of such an elementary process with respect
to W is defined as∫
R+

∫
R

g(t , x)W (dx ,dt) =
n∑

i=1

m∑
j=1

Xi,jW (1(ai ,bi ] ⊗ 1(hj ,lj ])

=
n∑

i=1

m∑
j=1

Xi,j
[
W (bi , lj)−W (ai , lj)−W (bi ,hj) + W (ai ,hj)

]
.



Definition
Let ΛH be the space of predictable processes g defined on
R+ × R such that almost surely g ∈ H and E[‖g‖2H] <∞. Then,
the space of elementary processes defined as above is dense
in ΛH .

For g ∈ ΛH , the stochastic integral
∫
R+×R g(t , x)W (dx ,dt) is

defined as the L2(Ω)-limit of stochastic integrals of the
elementary processes approximating g(t , x) in ΛH , and we
have the following isometry equality

E

([∫
R+×R

g(t , x)W (dx ,dt)
]2
)

= E
(
‖g‖2H

)
+c2

3,H

∫ ∞
0

∫
R2

E|g(t , x + y)− g(t , x)|2|y |2H−2dxdydt .



Definition (Strong solution)
u(t , x) is a strong (mild random field) solution if for all t ∈ [0,T ]
and x ∈ R the process {Gt−s(x − y)σ(u(s, y))1[0,t](s)} is

integrable with respect to W , where Gt (x) := 1√
4πt

exp
[
−x2

4t

]
is

heat kernel, and

u(t , x) = Gt ∗u0(x)+

∫ t

0

∫
Rd

Gt−s(x−y)σ(s, y ,u(s, y))W (dy ,ds)

almost surely, where

Gt ∗ u0(x) =

∫
Rd

Gt (x − y)u0(y)dy .



Definition (Weak solution)
We say the spde has a weak solution if there exists a
probability space with a filtration (Ω̃, F̃ , P̃, F̃t ), a Gaussian noise
W̃ identical to W in law, and an adapted stochastic process
{u(t , x) , t ≥ 0 , x ∈ R} on this probability space (Ω̃, F̃ , P̃, F̃t )
such that u(t , x) is a strong (mild) solution with respect to
(Ω̃, F̃ , P̃, F̃t ) and W̃ .



Want to study the existence and uniqueness of the solution
(strong or weak)



2. Difficulty
Denote ξt (x) = Gt ∗ u0(x).

Naive application of Picard iteration (v = un+1 and u = un):

v(t , x) = ξt (x) +

∫ t

0

∫
Rd

Gt−s(x − y)σ(s, y ,u(s, y))W (dy ,ds)

Then following isometry equality

E
(

v2(t , x)
)

= ξ2
t (x)

+c2
3,H

∫ t

0

∫
R2

E|Gt−s(x − y − z)σ(s, y + z,u(s, y + z))

−Gt−s(x − y)σ(s, y ,u(s, y))|2|z|2H−2dydzds
≤ · · ·+

c2
3,H

∫ t

0

∫
R2

EG2
t−s(x − y)|u(s, y + z)− u(s, y)|2|z|2H−2dydzds



One difficulty is that we cannot no longer bound
|σ(x1)− σ(x2)− σ(y1) + σ(y2)| by a multiple of
|x1 − x2 − y1 + y2| (which is possible only in the affine case).



3. Background

σ(u) = au + b: H > 1/4.

Balan, R.; Jolis, M. and Quer-Sardanyons, L.

SPDEs with affine multiplicative fractional noise in space with
index 1

4 < H < 1
2 .

Electronic Journal of Probability 20 (2015).

General σ(u) but with σ(0) = 0.

Hu, Yaozhong; Huang, Jingyu; Le, Khoa; Nualart, David;
Tindel, Samy

Stochastic heat equation with rough dependence in space.

Ann. Probab. 45 (2017), 4561-4616.



Introduce a norm ‖ · ‖Zp
T

for a random field v(t , x) as follows:

‖v‖Zp
T

:= sup
t∈[0,T ]

‖v(t , ·)‖Lp(Ω×R) + sup
t∈[0,T ]

N ∗1
2−H,pv(t),

where p ≥ 2, 1
4 < H < 1

2 ,

‖v(t , ·)‖Lp(Ω×R) =

[∫
R
E [|v(t , x)|p] dx

] 1
p

,

and

N ∗1
2−H,pv(t) =

[∫
R
‖v(t , ·)− v(t , ·+ h)‖2Lp(Ω×R)|h|

2H−2dh
] 1

2

.

When σ(0) = 0 we seek the solution in the space Zp
T

Theorem (Hu, Huang, Le, Nualart, Tindel, 2017)
When σ(0) = 0 and some nice conditions, the solution exists
uniquely in Zp

T .



However, when σ(0) 6= 0, we cannot show the solution is in Zp.
Even when σ(u) = 1 and u0 = 0 (additive noise) we cannot
show that the solution is in Zp.

We introduce the weighted Zp
T space. This weighted space is

bigger than Zp
T



4. Additive noise

Let uaff(t , x) be the solution to the stochastic heat equation with
σ(t , x ,u) = 1 and u0(x) = 0:

∂u(t , x)

∂t
=

1
2

∆u(t , x) + Ẇ , t > 0, x ∈ R .

Then, there are two positive constants cH and CH , independent
of T and L, such that

cH ρ(T ,L) ≤ E

 sup
0≤t≤T
−L≤x≤L

uaff(t , x)


≤ E

 sup
0≤t≤T
−L≤x≤L

|uaff(t , x)|

 ≤ CH ρ(T ,L) ,



where

ρ(T ,L) =

T
H
2 + T

H
2

√
log2

[
L√
T

]
if L2 > T ,

T
H
2 if L2 ≤ T .

There are two strictly positive random constants cε,H and
Cε,HH, independent of T and L, such that almost surely

cε,H

(
T

H
2 + T

H
2

√
log2

[
L√
T

])
≤ sup

(t ,x)∈Rε(T ,L)
uaff(t , x)

≤ sup
(t ,x)∈Rε(T ,L)

|uaff(t , x)| ≤ Cε,H

(
T

H
2 + T

H
2

√
log2

[
L√
T

])
,

where Rε(T ,L) = {(t , x) ∈ [0,T ]× [−L,L] : L ≥ T
1+ε

2 } for any
ε > 0.



Theorem
Let uaff(t , x) be the solution to the equation with σ(t , x ,u) = 1
and u0(x) = 0 and denote

∆huaff(t , x) := uaff(t , x + h)− uaff(t , x) .

Let θ ∈ (0,H) be given and let L >
√

t . Then, there are two
positive constants cH and CH,θ such that for sufficiently small
value of h satisfying 0 < |h| ≤ C(

√
t ∧ 1) for some constant C,

the following inequalities hold true:

cH |h|H
√

log2

[
L√
t

]
≤ E

(
sup

−L≤x≤L
∆huaff(t , x)

)

≤ E

(
sup

−L≤x≤L
|∆huaff(t , x)|

)
≤ CH,θt

H−θ
2 |h|θ

√
log2

[
L√
t

]
.



Theorem
Moreover, there are two (strictly) positive random constants cH
and CH,θ, independent of L ∈ R+ and
h ∈ [−C(

√
t ∧ 1),C(

√
t ∧ 1)] almost surely

cH |h|H
√

log2

[
L√
t

]
≤ sup
−L≤x≤L

∆huaff(t , x)

≤ sup
−L≤x≤L

|∆huaff(t , x)| ≤ CH,θt
H−θ

2 |h|θ
√

log2

[
L√
t

]
.



Let uaff(t , x) be the solution to the stochastic heat equation with
σ(t , x ,u) = 1 and u0(x) = 0 and denote

∆τuaff(t , x) := uaff(t + τ, x)− uaff(t , x) .

Then, for sufficiently small value of τ such that 0 < τ ≤ C(t ∧ 1)
for some constant C, we have

cHτ
H
2

√
log2

[
L√
t

]
≤ E

(
sup

−L≤x≤L
∆τuaff(t , x)

)

≤ E

(
sup

−L≤x≤L
|∆τuaff(t , x)|

)

≤ CH,θt
H
2−θτ θ

√
log2

[
L√
t

]
,

where 0 < θ < H/2 and the constants cH and CH,θ are
independent of L and τ .



We also have the almost sure version of the above result: if
0 < τ ≤ C(t ∧ 1), then we have

cHτ
H
2

√
log2

[
L√
t

]
≤ sup
−L≤x≤L

∆τuaff(t , x)

≤ sup
−L≤x≤L

|∆τuaff(t , x)|

≤ CH,θt
H
2−θτ θ

√
log2

[
L√
t

]
,

almost surely if L→∞, where 0 < θ < H/2, and random
constants cH and CH,θ are independent of L and τ .



Theorem (Talagrand majorizing measure theorem)
Let T be a given set and let {Xt , t ∈ T} be a centered Gaussian
process indexed by T . Denote d(t , s) = (E|Xt − Xs|2)

1
2 , the

associated natural metric on T .
Then

E
[

sup
t∈T

Xt

]
≈ γ2(T ,d) := inf

A
sup
t∈T

∑
n≥0

2n/2diam(An(t)) ,

where the infimum is taken over all increasing sequence
A := {An,n = 1,2, · · · } of partitions of T such that #An ≤ 22n

(#A denotes the number of elements in the set A), An(t)
denotes the unique element of An that contains t, and
diam(An(t)) is the diameter (with respect to the natural distance
d) of An(t).



Theorem (Sudakov minoration)
Let {Xti , i = 1, · · · ,L} be centered Gaussian family with natural
distance d and assume

∀p,q ≤ L, p 6= q ⇒ d(tp, tq) ≥ δ.

Then, we have

E
(

sup
1≤i≤L

Xti

)
≥ δ

C

√
log2(L),

where C is a universal constant.



Theorem (Borell)
Let {Xt , t ∈ T} be a centered separable Gaussian process on
some topological index set T with almost surely bounded
sample paths. Then E

(
supt∈T Xt

)
<∞, and for all λ > 0

P
{∣∣∣∣sup

t∈T
Xt − E

(
sup
t∈T

Xt

)∣∣∣∣ > λ

}
≤ 2 exp

[
− λ2

2σ2
T

]
, (1)

where σ2
T := supt∈T E(X 2

t ).



Define the natural metric:

d1((t , x), (s, y)) =
√

E|uaff(t , x)− uaff(s, y)|2 , (2)

Then

Lemma
Let d1((t , x), (s, y)) be the natural metric defined by (2). Then,
there are positive constants cH ,CH such that

cH(|x − y |H ∧ (t ∧ s)
H
2 + |t − s|

H
2 ) ≤ d1((t , x), (s, y))

≤ CH(|x − y |H ∧ (t ∧ s)
H
2 + |t − s|

H
2 )

(3)

for any (t , x), (s, y) ∈ R+ × R. Or

d1((t , x), (s, y)) � d1,H((t , x), (s, y)) := |x−y |H∧(t∧s)
H
2 +|t−s|

H
2 .

(4)

Proof: Need nice bounds of some integrals.



Proof of the upper bound for expectation
We use Talagrand’s majorizing measure theorem.

We choose the admissible sequences (An) as uniform partition
of T× L = [0,T ]× L such that card(An) ≤ 22n

.

[0,T ] =
22n−1−1⋃

j=0

[
j · 2−2n−1

T , (j + 1) · 2−2n−1
T
)
,

[−L,L] =
22n−2−1⋃

k=−22n−2

[
k · 2−2n−2

L, (k + 1) · 2−2n−2
L
)
.

Theorem 8 states

E

(
sup

(t ,x)∈T×L
uaff(t , x)

)
≤ Cγ2(T ,d)

≤ C sup
(t ,x)∈T×L

∑
n≥0

2n/2diam(An(t , x)) . (5)



Here An(t , x) is the element of uniform partition An that
contains (t , x), i.e.

An(t , x) =
[
j · 2−2n−1

T , (j + 1) · 2−2n−1
T
)

×
[
k · 2−2n−2

L, (k + 1) · 2−2n−2
L
)

such that j · 2−2n−1
T ≤ t < (j + 1) · 2−2n−1

T and
k · 2−2n−2

L ≤ x < (k + 1) · 2−2n−2
L. The diameter of An(t , x) with

respect to d1,H((t , x), (s, y)) defined in (4) can be estimated as

diam(An(t , x)) ≤ CH

[
T

H
2 ∧ (2−H2n−2

LH)
]

+ CH2−H2n−2
T

H
2 .



Let N0 be the smallest integer such that 2−2n−2
L ≤
√

T , i.e.
log2(log2(L/

√
T )) + 2 ≤ N0 < log2(log2(L/

√
T )) + 3. By (5) we

have

E

(
sup

(t ,x)∈T×L
u(t , x)

)

≤CH sup
(t ,x)∈T×L

 N0∑
n=0

2n/2diam(An(t , x)) +
∞∑

n=N0+1

2n/2diam(An(t , x))


≤CH sup

(t ,x)∈T×L
T

H
2

 N0∑
n=0

2n/2 +
∞∑

n=N0+1

2n/2

[
22N0−2

22n−2

]H
+ CHT

H
2

≤CHT
H
2

(√
log2

[
L√
T

]
+ 1

)
+ CHT

H
2 , (6)

where L >
√

T . This concludes proof of the upper bound when
L >
√

T .



When L ≤
√

T . The same uniform partition discussed above is
still applicable. We have

E

(
sup

(t ,x)∈T×L
|u(t , x)|

)

≤CH

( ∞∑
n=0

2n/2 sup
(t ,x)∈T×L

diam(An(t , x))

)

≤CHT
H
2

∞∑
n=0

2n/2 · 2−H2n−1
+ CHT

H
2 ≤ CHT

H
2 , (7)

because

sup
(t ,x)∈T×L

diam(An(t , x)) ≤ CH

([
2−2n−2

L
]H

+
[
2−2n−1

T
]H

2
)

≤ CH2−H2n−2
T

H
2 .

This completes the upper bounds in this case.



5. General Case
We introduce the weighted Zp

T space.

Let λ(x) ≥ 0 be a Lebesgues integrable positive function with∫
R λ(x)dx = 1. Introduce a norm ‖ · ‖Zp

λ,T
for a random field

v(t , x) as follows:

‖v‖Zp
λ,T

:= sup
t∈[0,T ]

‖v(t , ·)‖Lp
λ(Ω×R) + sup

t∈[0,T ]
N ∗1

2−H,pv(t),

where p ≥ 2, 1
4 < H < 1

2 ,

‖v(t , ·)‖Lp
λ(Ω×R) =

[∫
R
E (|v(t , x)|p)λ(x)dx

] 1
p

,

and

N ∗1
2−H,pv(t) =

[∫
R
‖v(t , ·)− v(t , ·+ h)‖2Lp

λ(Ω×R)
|h|2H−2dh

] 1
2

.



We make the following assumptions

(H1) σ(u) is at most of linear growth in u uniformly in t and x .
This means

|σ(u)| ≤ C(|u|+ 1) ,

and it is uniformly Lipschitzian in u, i.e. ∀ u, v ∈ R

|σ(u)− σ(v)| ≤ C|u − v | ,

for some constant C > 0.



Theorem
Let λ(x) = cH(1 + |x |2)H−1 satisfy

∫
R λ(x)dx = 1. Assume σ(u)

satisfies hypothesis (H1) and that the initial data u0 is in Lp
λ(R)

and

N ∗1
2−H,pu0 =

[∫
R
‖u0(·)− u0(·+ h)‖2Lp

λ(Ω×R)
|h|2H−2dh

] 1
2

is finite for some p > 3
H . Then, there exists a weak solution to

the stochastic heat equation with sample paths in C([0,T ]× R)
almost surely. In addition, for any γ < H − 3

p , the process u(·, ·)
is almost surely Hölder continuous on any compact sets in
[0,T ]× R of Hölder exponent γ/2 with respect to the time
variable t and of Hölder exponent γ with respect to the spatial
variable x.



Strong soluton

(H2) Assume that σ(t , x ,u) ∈ C0,1,1([0,T ]× R× R) satisfies the
following conditions: |σ′u(t , x ,u)| and |σ′′xu(t , x ,u)| are
uniformly bounded:

sup
t∈[0,T ],x∈R,u∈R

|σ′u(t , x ,u)| ≤ C ; (8)

sup
t∈[0,T ],x∈R,u∈R

|σ′′xu(t , x ,u)| ≤ C . (9)

Moreover, assume

sup
t∈[0,T ],x∈R

λ
− 1

p (x)
∣∣σ′u(t , x ,u1)− σ′u(t , x ,u2)

∣∣ ≤ C|u2 − u1| ,

(10)
where λ(x) = cH(1 + |x |2)H−1.



Theorem
Let σ satisfy the above hypothesis (H2) and that for some
p > 6

4H−1 , ‖u0‖Lp
λ(R) and N ∗1

2−H,p
u0 are finite. Then the equation

has a unique strong solution. Moreover, for any γ < H − 3
p , the

process u(·, ·) is almost surely Hölder continuous on any
compact sets in [0,T ]× R of Hölder exponent γ/2 with respect
to the time variable t and of Hölder exponent γ with respect to
the spatial variable x.



6. Some key estimates

Lemma
For any λ ∈ R, λ(x) = 1

(1+|x |2)λ
and T > 0, we have

sup
0≤t≤T

sup
x∈R

1
λ(x)

∫
R

Gt (x − y)λ(y)dy <∞.



Denote

Dt (x ,h) := Gt (x + h)−Gt (x) , D(x ,h) =
√
πD1/4(x ,h)

�t (x , y ,h) := Gt (x + y + h)−Gt (x + y)−Gt (x + h) + Gt (x) .

�(x , y ,h) =
√
π�1/4(x , y ,h) .

Then

Lemma
For any α, β ∈ (0,1), we have∫

R2
|Dt (x ,h)|2|h|−1−2βdhdx =

Cβ

t
1
2 +β

and ∫
R3
|�t (x , y ,h)|2|h|−1−2α|y |−1−2βdydhdx =

Cα,β

t
1
2 +α+β

.



Lemma

∫
R2
|Dt (x ,h)|2|h|2H−2λ(z − x)dxdh ≤ CT ,H tH−1λ(z),∫

R3
|�t (x , y ,h)|2|h|2H−2|y |2H−2λ(z − x)dxdydh ≤ CT ,H t2H− 3

2λ(z).
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