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Basic Idea

Let Z1,Z2, ...,Zn be an i.i.d. sequence of standard normal random
variables.

The sum Sn =
∑n

k=1 Zk has distribution function

f (x) =
1√
2πn

e−
1

2n
x2
.

Given an interval (a, b), define a sequence of measure by

µn(a, b) =
√

2πn P(Sn ∈ (a, b)) =

∫ b

a
e−

1
2n
x2

dx

→ b − a.
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Previous Local Limit Work I

The LLT has been well-studied for certain cases. Amongst them are
the case of lattice random variables and the case of independent,
absolutely continuous random variables.

Some papers to consider include Shepp (1964) and Mineka and
Silverman (1970). We also refer the reader to the books by Ibragimov
and Linnik (1971), Petrov (1975), and Gnedenko (1962).

Linear random fields (l.r.f.) have been extensively studied in
probability and statistics.

Mallik and Woodroofe (2011) studied the CLT for l.r.f., Sang and
Xiao (2018) established exact moderate and large deviation
asymptotics for l. r. f. under moment or regularly varying tail
conditions.
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Previous Local Limit Work II

With a conjugate method, Beknazaryan, Sang, and Xiao (2019)
studied the Cramér type moderate deviation for l.r.f.

We refer to Sang and Xiao (2018) for a brief review on the study of
asymptotic properties for l.r.f. and to Koul, Mimoto, and Surgailis
(2016), Lahiri and Robinson (2016) and the reference therein for
recent developments in statistics.

To the best of our knowledge, the local limit result for l.r.f. has not
been established in the literature.
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Preliminary Stuff

{εi : i ∈ Zd} are i.i.d. random variables.
{ai : i ∈ Zd} is a collection of real numbers.
The linear random field (l.r.f.)

Xj =
∑
k∈Zd

akεj−k (1)

is defined on Zd .
Let Γd

n be a sequence of subsets of Zd . For example,
Γd
n = [−n, n]d ∩ Zd . For linear random fields,

Sn =
∑
j∈Γd

n

Xj =
∑
i∈Zd

bn,i εi (2)

with coefficients

bn,i =
∑
j∈Γd

n

aj−i . (3)
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First case

The εi have mean 0 and finite variance σ2
ε .∑

i∈Zd

a2
i <∞.

The field has short memory if
∑
i∈Zd

ai 6= 0 and
∑
i∈Zd

|ai | <∞.

The field has long memory if
∑
i∈Zd

|ai | =∞. In this case, we assume

that the sets Γd
n are constructed as a disjoint union of Jn discrete

rectangles.

B2
n = Var(Sn) = σε

∑
i∈Zd

b2
n,i . (4)
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CLT (Mallik and Woodroofe, 2011)

Let Sn and Bn be defined as in (2) and (4). Assume that Bn →∞. When
the field has long range dependence we additionally require that
Jn = o(B2

n), while otherwise no such restriction is required. Under these
conditions, Sn/Bn converges in distribution to the standard normal
distribution.
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Non-lattice distribution and Cramér condition

Denote the characteristic function of ε0 by ϕε(t) := E(exp{itε0}).
It is well known that ε0 not having a lattice distribution is equivalent
to |ϕε(t)| < 1 for all t 6= 0.

The Cramér condition means that lim sup|t|→∞ |ϕε(t)| < 1.

ε0 has a non-lattice distribution whenever ϕε(t) satisfies the Cramér
condition.
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Local limit theorem (Fortune, Peligrad and S., 2021)

Assume that the innovations have non-lattice distribution and Bn →∞. In
the long range dependence case, we additionally assume that the

innovations satisfy the Cramér condition and J
2/d
n log(Bn)

sup
i∈Zd |bn,i |

2/d → 0 as

n→∞. Under these conditions, for all continuous complex-valued
functions h(x) with |h| ∈ L1(R) and with Fourier transform ĥ real and
with compact support,

lim
n→∞

sup
u∈R

∣∣∣∣√2πBnEh(Sn − u)− [exp(−u2/2B2
n)]

∫
h(x)λ(dx)

∣∣∣∣ = 0, (5)

where λ is the Lebesgue measure.
Note: the condition can be improved to Jn = o(B2

n).
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Remark

The LLT is new also for d = 1.

For short memory case, we only require Bn →∞.

We have CLT & LLT for long memory l.r.f. over a sequence of
regions Γd

n which are a disjoint union of Jn discrete rectangles with
Jn = o(B2

n).

In practice it allows us to have disjoint discrete rectangles as spatial
sampling regions, and the number of sampling regions may increase
as the sample size increases.

The discrete spatial rectangular sampling regions also include
(
∏d

k=1[nk , nk ]) ∩ Zd where nk = nk for some k ’s. We may have a
single point region if the equality holds for all k ’s.
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Remark

By Hafouta and Kifer (2016) this result implies that (5) also holds for the
class of real continuous functions with compact support. So

lim
n→∞

sup
u∈R

∣∣∣∣√2πBnP(a + u ≤ Sn ≤ b + u)− [exp(−u2/2B2
n)](b − a)

∣∣∣∣ = 0,

for any a < b. In particular, since Bn →∞ as n→∞, then for fixed
A > 0,

lim
n→∞

sup
|u|≤A

∣∣∣∣√2πBnP(a + u ≤ Sn ≤ b + u)− (b − a)

∣∣∣∣ = 0.

If we further take u = 0, then,

lim
n→∞

√
2πBnP(Sn ∈ [a, b]) = b − a.
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One example

Assume that Γd
n are cubic, i.e., Γd

n = [−n, n]d ∩ Zd .

Put ai = l(‖i‖)G (i/‖i‖)‖i‖−β with β ∈ (d/2, d), where l(x) is slowly
varying at ∞ and G : Sd−1 → R+ is continuous on its domain

(
the

unit sphere in d-dimensional space
)
.

For this example we know that Bn ∝ n
3d
2
−β l(n) (see Surgailis, 1982,

Theorem 2).
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Domain of stable law case

The innovations εi satisfy P(|ε1| > x) = x−αL(x), where L(x) is a
slowly varying function at ∞, 0 < α < 2,

P(ε1 > x)

P(|ε1| > x)
→ c+ and

P(ε1 < −x)

P(|ε1| > x)
→ c− as x →∞.

Here 0 ≤ c+ ≤ 1 and c+ + c− = 1.

In the case α = 2, and E(ε2
1) =∞, P(|ε1| > x) = x−2L(x), where

L(x) is a slowly varying function at ∞. For this case define

h(x) = Eε2
1I (|ε1| ≤ x), for x ≥ 0.

h(x) is a slowly varying function at ∞.
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Domain of stable law case

Define

H(t) =

{
L(1/|t|) if 0 < α < 2
h(1/|t|) for α = 2.

(6)

We assume Conditions A : Eε1 = 0 if 1 < α ≤ 2 and ε1 has
symmetric distribution if α = 1.
the l.r.f. converges almost surely if and only if

∑
i∈Zd |ai |αH(ai ) <∞.

For the one-dimensional case d = 1, see Balan, Jakubowski and
Louhichi (2016) if 0 < α < 2 and Peligrad and Sang (2012) if α = 2.
Define

Bn = inf

{
x ≥ 1 :

∑
i

(|bni |/x)αH(bni/x) ≤ 1

}
. (7)

It is easy to see that∑
i

(|bni |/Bn)αH(bni/Bn)→ 1 (8)
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Limit theorem (Peligrad, S., Xiao and Yang, 2021+)

Let Sn be the partial sum of (1) and Bn be defined as in (7). Assume
Condition A and Bn →∞ as n→∞. In the case that 1 < α ≤ 2 and∑
i∈Zd

|ai | =∞, we additionally require that the sets Γd
n are constructed as a

disjoint union of Jn discrete rectangles, where Jn = o(Bq
n ), 1/p + 1/q = 1,

for some p > α if 1 < α < 2, and p = 2 if α = 2. Otherwise no such
restriction is required. Under these conditions, Sn/Bn converges in
distribution to a stable distribution.
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Remark

In McElroy and Politis (2003), the authors obtained the limit theorem
for the partial sums of l.r.f. over one rectangle under the conditions:
1 < α < 2, the coefficients {ai} are summable and mini ni →∞,
where ni is the size of the rectangle in the i-th dimension.

The result here is new even in one-dimensional case. Davis and
Resnick (1985) studied the limit theorem for the partial sums
Sn =

∑n
j=1 Xj of one-sided linear process under the condition the

coefficients are summable.
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Local limit theorem (Peligrad, S., Xiao and Yang, 2021+)

Let Sn be the partial sum of (1) and Bn be defined as in (7). Assume
Bn →∞ as n→∞. The innovations satisfy Condition A and have a
non-lattice distribution. If 1 ≤ α ≤ 2 and

∑
i∈Zd |ai | =∞, we further

assume that the innovations satisfy the Cramér condition, and the sum is
over Jn disjoint rectangles with Jn = o(Bq

n ), 1/p + 1/q = 1, for some
p > α if 1 < α < 2, and p = 2 if α = 2. Otherwise these additional
assumptions are not required. Then, for any function g on R which is
continuous and has compact support,

lim
n→∞

sup
u∈R

∣∣∣∣BnEg(Sn + u)− fL

(
u

Bn

)∫
g(t)λ(dt)

∣∣∣∣ = 0, (9)

where λ is the Lebesgue measure and fL is the density of limit law L of
Sn/Bn.
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Simulation

We use the one-dimensional linear process with ai = Γ(i+1−α)
Γ(1−α)Γ(i+1) ,

where 1
2 < α < 1. In particular, we use the fractionally integrated

(FARIMA(0, 1− α, 0)) processes Xj = (1− B)α−1εj =
∑∞

i=0 aiεj−i .

We assume that the innovations are i.i.d. Student’s t random
variables with 5 degrees of freedom.

The variance of the partial sum Sn =
∑n

j=1 Xj is

B2
n ∼ cαn

3−2αEε2/[(1− α)(3− 2α)Γ2(1− α)]

where

cα =

∫ ∞
0

x−α(1 + x)−αdx .

The variance formula for the partial sum of FARIMA(0, 1− α, 0) is
well known. See, for example, Wang, Lin and Gulati (2001).
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Simulation (cont)

Employing the MATLAB code of Fay et al. (2009), N replicates of
linear processes were generated, each of length n.

Specifically, we generated cases with N = 5, 000 and N = 10, 000
cross-referenced with n = 210, n = 212, and n = 214, and this was
done for each of the values α = 0.95, α = 0.70, and α = 0.55.

Once the data were obtained, the local limit measure of various
intervals was estimated by using relative frequency to estimate
P(Sn ∈ (a, b)) and using the estimate of Bn described above.

Sang (OLEMISS) Local Limit Theorem August 3, 2021 23 / 34



Introduction Main results Data analysis References

Table 1 I

Table: Local limit measure of the intervals (-100,0), (-50,50), and (0,100) using N
one-dimensional linear processes, each of length n, employing various long
memory cases using the FARIMA(0, 1− α , 0) model with t5 innovations.

n = 210 n = 212

N α = 0.95 α = 0.70 α = 0.55 α = 0.95 α = 0.70 α = 0.55
66 105 117 92 99 98

5× 103 90 99 115 101 95 108
67 99 97 90 96 108
67 97 105 91 98 101

1× 104 89 98 95 99 103 105
65 103 101 87 104 108
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Table 1 II

Table: Local limit measure of the intervals (-100,0), (-50,50), and (0,100) using N
one-dimensional linear processes, each of length n, employing various long
memory cases using the FARIMA(0, 1− α , 0) model with t5 innovations.

n = 214

N α = 0.95 α = 0.70 α = 0.55
95 91 122

5× 103 100 88 110
98 106 110
96 97 104

1× 104 101 97 98
98 98 92
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Table 2 I

Table: Local limit measure of the intervals (-50,0), (-25,25), and (0,50) using N
one-dimensional linear processes, each of length n, employing various long
memory cases using the FARIMA(0, 1− α , 0) model with t5 innovations.

n = 210 n = 212

N α = 0.95 α = 0.70 α = 0.55 α = 0.95 α = 0.70 α = 0.55
46 51 67 51 52 62

5× 103 50 47 54 49 49 43
46 48 48 49 43 46
46 48 50 49 52 43

1× 104 48 50 51 50 52 44
43 51 54 50 51 62
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Table 2 II

Table: Local limit measure of the intervals (-50,0), (-25,25), and (0,50) using N
one-dimensional linear processes, each of length n, employing various long
memory cases using the FARIMA(0, 1− α , 0) model with t5 innovations.

n = 214

N α = 0.95 α = 0.70 α = 0.55
49 45 61

5× 103 48 40 61
51 43 49
50 51 55

1× 104 50 45 49
51 47 43
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