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Overview of the Lectures

The principle aim of these lectures is to begin with general fundamental notions such as the

mathematics of Gaussian random fields and end by presenting a series of recent advances and

various powerful methods, as well as various open problems, from mathematics and statistics,

surrounding the general topic of “fractals” and “extremes”. Some of the problems will be

particularly suitable as research projects for graduate students and post-doctoral researchers.

The only prerequisites are a solid course in measure-theoretic probability, and a modest

knowledge of Brownian motion.

The following is a more detailed plan for the lectures.

1. Introduction: overview, applications, and salient features of random fields. (1 lecture)

Multivariate random fields (or spatial processes) have recently been the focus of much

attention in probability and statistics, due to their extensive applications as spatial or

spatio-temporal models in scientific areas where many problems involve data sets with

multivariate measurements obtained at spatial locations.

We present an overview on random fields and provide concrete examples of random fields

that are drawn from science and engineering.

We introduce important statistical characteristics such as self-similarity, operator-self-

similarity, anisotropy, long range dependence of random fields.

2. Construction of random fields. (1 lecture)

The mathematical theory of random fields developed by Itô (1954), Yaglom (1957, 1987),

Gihman and Skorohod (1974) provides an excellent framework for constructing and

studying multivariate random fields. This lecture will introduce systematic methods

for constructing univariate and multivariate Gaussian random fields, including charac-

terization of cross-covariance matrices and the spectral method. Interesting examples
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of multivariate Gaussian random fields that can be constructed by using these methods

include multivariate stationary Gaussian random fields with Matérn cross-covariance ma-

trix and operator fractional Brownian motion.

Another natural way to define multivariate random fields is through systems of stochastic

partial differential equations.

3. General methods for Gaussian random fields. (1 lecture)

This lecture introduces some fundamental methods for Gaussian random fields. These

include: reproducing kernel Hilbert space; the Karhunen-Loève expansion for univariate

and multivariate Gaussian random fields; the entropy method and chaining argument;

Dudley’s entropy bounds for supremum of Gaussian processes; and concentration in-

equalities.

4. Regularity of Gaussian random fields and exact modulus of continuity. (1 lecture)

Regularity properties such as continuity and differentiability of the sample functions of

Gaussian processes are important topics in probability theory and essential for statistical

applications.

Necessary and sufficient conditions for sample path continuity based on the metric en-

tropy or majorizing measure were established by Dudley (1967), Fernique (1975), and

Talagrand (1987).

The purpose of this module is to present methods for establishing exact uniform and

local modulus of continuity results for Gaussian random fields. The main technical tool

is the property of strong local nondeterminism.

5. Fractal properties of random fields. (1 lecture)

Fractal geometry is important for studying random fields with non-differentiable sam-

ple functions. We introduce Hausdorff and packing measure and dimensions and main

techniques for their computation.

We determine the Hausdorff dimensions of various random sets generated by multivariate

Gaussian random fields including the range, graph, level sets, and set of multiple points.

Local times and self-intersections local times are introduced for studying fractal prop-

erties of the level sets and the set of multiple points. The properties of strong local

nondeterminism are applied for establishing sharp regularity results on the local times.

6. Potential theory: Hitting probabilities and self-intersections. (1 lecture)

The lecture is concerned with hitting probabilities of Gaussian random fields and their

applications in studying the existence and Hausdorff dimensions of intersections.

Let X = {X(t), t ∈ RN} be a Gaussian random field with values in Rd. For any compact

sets E ⊂ RN and F ⊂ Rd, we study conditions on E and F for P
{
X(E) ∩ F 6= ∅

}
> 0.
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Only in a few special cases, this hitting probability problem has been solved. We will

present the necessary and sufficient conditions due to Khoshnevisan and Shi (1999),

Khoshnevisan and Xiao (2007, 2015), Dalang, Mueller, and Xiao (2017).

7. Analysis of stochastic partial differential equations (2 lectures)

In the first lecture on this module, linear SPDEs with Gaussian noise (including “white

noise” and “colored noise”) are introduced and studied. In this simple setting one can

learn many techniques that are useful for analyzing more complicated SPDEs. We de-

scribe various structural properties of the solutions to linear SPDEs that highlight the

effect of noise in the behavior of the solution.

Non-linear equations are introduced, and defined rigorously. General issues of existence

and uniqueness are addressed.

In the second lecture we study in detail more concrete families of SPDE models and

various local properties of these solutions. Typical examples of such local properties are

regularity theory (smoothness of the solution), the analysis of the local effect of noise,

and several of their consequences.

8. Extreme value theory of random fields. (2 lectures)

In the first lecture on this module, we introduce general bounds for the excursion prob-

abilities that can be obtained by applying the general methods for Gaussian random

fields.

In the second lecture, we apply the double sum method and the Euler characteristic

method to establish more precise approximations to the excursion probabilities. Some

tools from integral geometry will be introduced.

We will give examples of applications of excursion probabilities in statistics including

control of the false discovery rate in multiple testing and construction of confidence

bands for linear regression.
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