Fourier Method on Sufficient Dimension Reduction in
Time Series

Tharindu P. De Alwis
(Joint work with Dr. S. Y. Samadi)

School of Mathematical and Statistical Sciences,
Southern Illinois University Carbondale

mktharinu87@siu.edu

CBMS Conference
July 30, 2021

Tharindu P. D. Alwis (SIUC) FMTS-CMS mktharindu87@siu.edu



@ Background of the Problem
© SDR in Time Series Models.
© Simulated Example.

@ Empirical Application.

© Key References.

Tharindu P. D. Alwis (SIUC) FMTS-CMS mktharindu87@siu.edu



Dimension Reduction (DR)

Dimension reduction is accomplished through one or both of the following
approaches:

(1) Sparsity: Reduce the dimensionality by selecting a subset of the
original predictors.

e Variable selection, often via penalization.

(2) Reducibility: Reduce dimensionality by (linear or nonlinear)
projection of the p-dimensional vector X onto d-dimensional vector

(d < p).

o (Sufficient) Dimension reduction.

Tharindu P. D. Alwis (SIUC) FMTS-CMS mktharindu87@siu.edu



Sufficient Dimension Reduction (SDR)

Basic regression setup:

@ Consider response Y € R and predictor X € RP.

@ PCA is not a reliable method for predictors reduction in regression as
it ignores the response variable.

@ When the mean response E[Y'|X] is of primary interest, then
SDR seeks n7 € RP*9 such that E[Y|X] depend on X only through
n’X, (Cook and Li, 2002).

E[YIX] = E[Y|n"X]
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SDR for Conditional moments

Central Mean Subspace (CMS)

@ These current techniques, attempt to construct a small number of
directions from the original predictors, i.e., X — 07X, n € RP*9,
d < p such that
Y 1L E[Y|X]ln"X

Or equivalently
E[Y|X] Z E[Y|n"X]. neR
o NSpan(n) = Sg[y|x)- known as central mean subspace (CMS).

@ If higher conditional moments are of interest, parallel definitions can
be made (Yin and Cook, 2002).

@ More specifically the second moment, i.e., central variance subspace
(CVS), denote by Syur(y|x)-
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SDR and CMS- Example

For many models, Sg[yx] = Syx:
Let X = (X1, --,Xs)" and & ~ N(0,02). Assume ¢ I X.

@ Consider the model
y =g(X1+0.5X3) +¢.
We have Sg(y|x) = Span(3;), where 3; = (1,0.5,0,0,0,0)".
@ Now consider the model
y = g(X1 +0.5X2) + Xse,

whereas, here Sgpy|x; = Span(B1), and Syay(v|x) = Span(3,) where
B, =(0,0,1,0,0,0)".
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SDR in Time Series Models

The Model

o Consider a general setting of univariate time series model for {y;}V ;
as
ye=g1(n"Ye 1) + xe, (1)
where gi(-) is an unknown smoothing link function and
Yeo1=(ye-1," 7)/t—p)T-
@ Xx:'s are white noise error terms or x; has a general heteroscedastic
structure as

Xt = gz(l'Tthl) €ty (2)
where ¢;'s are white noise terms, g»(+) is an unknown smoothing link
function, and X; 1 = (x7_;,-- . x7,) .
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SDR in Time Series Models

CMS and CVS in Time Series

@ As in the regression setup, we find 7 € RP*? st

for CMS:
D .
Ely:|Y:-1] = E[yt|nTYt_1], Goal: Estimate Sgqy,y, 1]

and for CVS:

D : .
Var(ye|Ye_1) = Var(ye|n"Y: 1), Goal: Estimate SVar(y:|Ye_1)
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Fourier Method- Time Series

o Let m(y, ;) = E[ys|Yt1 =1y, 1], and let us_1 =07 Y 1.

0
y;_q

P
m(ye1) = Mg, —&1(ur-1) € Sepv, - (3)

@ For any w € RP,

Pe(w) = /exp{inytl} <6y8t1m(yt1)> F(Ye-1)dYe 1,

(4)
= Bty |7 (G(Yer) + iw) expliw Y1} |

where G(Y:_1) = 8y - log f(Yeo1),
@ Nice property of ¥(w):

Has all information about 6y?_1 m(y¢—1) and it can be recover through
the inverse Fourier transform.
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Fourier Method- Time Series-CMS

@ Let s > t. Often Ys_1 and Y;_1 share some observations where
Yso1 = (Ys—1," a)/s—p)T, and k = |s — t|, then define,

m(Ys—1,Ye-1) = E[ys|(Ys—1 = ¥s_1, Y1 =¥ 1)]

o Lett=7,5=09, and p =3, then k =2, Yo = (¥6, y5, ya), and
Ys = (vs, ¥7, ¥6), where Yg and Yg share the observation ys.

@ In general, it can be shown that if kK < p, then Y;_1 and Ys_; would
have p — k observations in common.

@ Y, 1 and Y;_; are p-dependent” random variables, for more details
see Lehmann (1998).
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Estimation process of FMTS-CMS Count..

Therefore, we can consider following two cases on m(y._1,Y¥;_1) as
m(ys_1,¥:1) k<p
m _1 _ = 5
(y$ LYt 1) { m(y571) k > p ( )
Under condition k < p:

blw)= [ewtivTys 1) (5

L m()’sflv Yt1)> f(stl |Yt71)dy5717
= —Exe i) [ys (G(Ys_1|Yeo1) + iw) exp{inYs_l}} ,
(6)

where G(Ys-1|Y¢—1) = ay Iog f(Ys—1|Yeo1),
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Estimation process of FMTS-CMS Count..

@ Since Y, (w), Y, (w) € SEly.|Y._1]» then

o Define
Mpryrs= Re < / wt(w){bs(w)TW(w)dw>
_ / [as(w)ac(w) ™ + bs(w)be(w) | W(w)dw
@ Mgy7s is a real non negative definite matrix, and

S(MFMTS) = SE[}/t|Yt—1]'
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Estimation process of FMTS-CMS Count..

o Let , then
MemTs
2 2 T
E |yeys exp { - 2wl [valp + (G(¥e—1) — 04¥ss) (G(¥s—1) + 02Y1s) H k>p
= 2 2 T
E |yeys exp { - Zull¥sllD [ofvlp + (G(Ye—1) — o2 Yes) (G(¥s—1lye—1) + o5 ¥es) H k<p

where k = |s — t|, G(z) = % log f(z), and s = Yo 1 — Yi1-
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Fourier Method- Time Series- CMS

@ The empirical version of Mgy s is

N N
~ 1
MemTs = m Z g F/\/ITS Yt 1~)/t)~(Ys 1Ays))7
t=p+1s=p+

with
JemTs((Ye—1,¥¢), (Ys—1,Y5))

2 2
yiysexp - elBsll b 621, 4 (Glyeoy) — 02yes) (G(vam1) + 02yes) " | k>p

2 |yl 12 T
YtYs €xXp ‘w [UEVIP + (G(Yt—l) - J\zn/yts) (G(Ys—1|Yt—1) + USths) ] k<p

where k = |s — t|, G(z) = 55 log f(z), and yps = Yo 1 — ¥Yi1-
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Discrepancy Measure

o If A and B are two matrices, P4 = A(ATA)~AT and
Pz = B(B"B)"B7 are projection matrices, then

/1
r = gtr(PAPB)

is call the trace correlation, where d = rank(A) = rank(B).

@ Define N

D(S,8)=1-r (8)
0 0>D(S,8)>1,
o D(5,8)=0ifS=8 D(S,8)=1ifSLS
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Estimating p and d

1. B bootstrap time series samples of size N are generated by a fixed
block resampling procedures as {y,_gb) 4\’:1, b=1,---,B.

2. For each of the bootstrap time series samples {y,_gb)}?’:l and given p
and d, estimate Sg|,,|y,_,], and denote it by S®)(p, d).

3. Find the distance between S(®)(p, d) and S(p, d) as given in
Equation (8), and call it D(®)(p, d).

4. Finally, calculate the mean distance over all B samples as

B
- 1
—— (b)
D(p,d) = 5 > D®(p,d). (9)
j=1
@ We repeat the above 4 steps for all candidates p = {p1,---,p/} and
d={1,--- ,pi}fori=1,--- 1.
@ Therefore, for each p;,i =1,--- , I, we have a sequence

{J(Pi,d)}f/:l-
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Estimating p and d

@ For a given p;, the estimator 3,- is chosen to minimize the variability
{D(pi, d) P, and satisfy the condition d; < pi — 1 in order to
achieve the dimension reduction.

@ For each lag candidate p;, we obtain the estimator d;. The estimation
of (p, c7) is the pair which gives the minimum variability among all the
possible pairs of (p;, d;), d; < p; — 1.

@ For example, suppose candidate set p = {2,3,4,5,6}.

d=1 d=2 d=3 d=4 | d=b

D(2,1) 0

D(3,1) | D(3,2) 0

D(4,1) | D(4,2) | D(4,3) 0

D(5,1) | D(5,2) | D(5,3) | D(5,4) | O

@ We choose the estimated pair of (5, c?) which is the argument
minimum value for D(p, q).

Gl | W N|T
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Estimating tuning parameter o2,

1. B bootstrap time series samples of size N are generated by a fixed
block resampling procedure as {ytb)}t ,Lb=1,---.B.

2. For each of the bootstrap time series {Yt 1Yt )} and for given p

and d, estimate Sgpy,|y,_,], and denote it by S(b)( ) where
i=1,---,1

3. Now, calculate the distance between S(b)(afv’,) and 3(05‘,7,-) as given
in Equation (8), and call it D(b)(afw-).

4. Calculate the mean distance over all B bootstrap samples as

B
o) Z (b) W /) (10)
b=1

UJ

o The estimator 52, is chosen to argument minimize value of D(o?2 w,i
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Nadaraya-Watson (NW) Estimator

@ This is the only method available in literature to estimate TS-CMS by
Park et al. (2009).

@ The main goal is to estimate the directions in the mean function.
. . 8
That is, estimate the (mm(yt,l)).

@ This is based on optimizing a objective function over 7, thus required
relatively more computer power compare to proposed Fourier
transformation method.

@ In the following simulation examples, we compare the accuracy and
the execution time per iteration for NW method and FM method.
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Simulation Study

o Model 1:
yt = 0.5{cos(1.0)y;—1 — sin(1.0)y;_»}
+ 0.4 exp {—16 [cos(1.0)y:—1 — sin(l.O)yt,2]2} + 0.1ey,
@ Model 2:

ye = (7/2)(1//(5))(Ve—2 + 2ye—3) exp(—y7 1) + 0.2z,
@ Model 3:

1 1
Ve = o.s\st\\/l + \—@(yil +y2 4) + cos {0.1 + \ﬁ(yil + yt24)}7

o Model 4:

1
3—f(}/r 24 Yioa+ Yee6) + Xty Xt = ey | —=(2+ x>, +x2,),
V3 NG t—1 t—4
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Simulation Study- Results Model 1
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Figure: Mode 1 : D =1 — r and execution time per iteration.
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Simulation St

dy- Results Model 2
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Figure: Mode 2 : D =1 — r and execution time per iteration.
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Simulation Study- Results Model 3
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Figure: Mode 3 : D =1 — r and execution time per iteration.
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Simulation Study- Results Model 4
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Figure: Mode 4-CMS : D =1 — r and execution time per iteration.
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Simulation Study- Results Model 4
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Figure: Mode 4-CVS : D =1 — r and execution time per iteration, with N = 600.
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Canadian Lynx data

@ The Canadian Lynx Data is the annual number of the Canadian lynx
“trapped” in the Mackenzie River district of the North-West Canada
for the period 1821-1934.

@ The performances of the models are measured by mean absolute
relative error (MARE) and mean square relative error (MSRE) given

as
N

1 ,
MARE= 5~ > {lye = el Iy}
t:p-‘rl

(11)

N
1 .
MSRE= +—— > {(ye = 9)° /y:},
pt:p-l—l

where N is the sample size and p is the number of lags. Smaller
values of MARE and MSRE indicate a better fit.
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Canadian Lynx data-Previous models

e Park, et al. (2009) fitted the following model to the log;q of the
Canadian Lynx Data,

vy = 0.99 4 0.52y;_1 + 0.75d17t — 0.39d17t_1 — 0.13cos; + 0.07C0517t_1 -
(12)
where cos; = cos(3.87d1,+ — 3.44) and dy+ = ﬁIYt_l such that
7, = (0.9317, -0.0761, —0.1777, —0.3074) ".
@ There are three self-exciting threshold autoregressive (SETAR)
models already fitted for Canadian Lynx data.
e Tong (1990) fitted SETAR(2;2,2) to the log;, of this data
ye ={0.62 + 1.25y, 1 — 0.43y:_» + eV H(ye_p < 3.25) (13)
+{2.25 + 1.52y,_1 — 1.24y, 5 + €2 }(yr_n > 3.25),

where {5&1)}, and {55;2)} be a white noise sequences independent of
(ve—1,¥:—1)" and they are independent from each other.
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Canadian Lynx data-Previous models Count...

e Tong (1990) fitted SETAR(2;7,2) to the logq of if as

ye= {0.546 + 1.032y,_1 — 0.173y;_» + 0.171y,_3 — 0.43y;_4
10.332y,_5 — 0.284y;_6 + 0.210y,_7 + ¢V} (ye_0 < +3.116)

+{2.632 + 1.492y, 1 — 1.324y, 5+ €2} (e > 3.116).
(14)

e Tsay (1988) developed SETAR(3;1,7,2) with three thresholds as

ye ={0.083 + 1.096y; 1 + ¢t }/(ys_o < 2.373)
+{0.63 4+ 0.96y;—1 — 0.11y; o+ 0.23y;_3 — 0.61y;_4 + 0.48y;_5

—0.39y;_6 + 0.28y,_7 + €2}1(2.373 < y;_, < 3.154)

+{2.323 + 1.530y;_1 — 1.266y;_5 + €M (ye_p > 3.154),
(15)
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Canadian Lynx data- Estimating p and d

Table: Mean distance obtained for each pair (p,d). Here * indicates the optimal

~

value of (p,d), i.e., (p,d)=(2,1)

d=1 [ d=2 | d=3 | d=4
0.0001¥ | 0
0.0040 | 0.0032 | O
0.0020 | 0.0148 | 0.0115 | 0
0.0043 | 0.1634 | 0.0677 | 0.0100

oS~ W NT

@ The FMTS fitted model is,

Yi—1 = 0.4942 + 1.1706u; + + 0.0877sin(uy,¢) + 0.4495y:_10 + 0.2707y;_2o

—0.5262U1’t710 — 0.0394 sin(ulyt,lo) — 0.3169U1;t720 — 0.0237 sin(ul,t,go)
(16)

where vy ; = 73] Y;_1 and j; = (0.9576 — 0.2880)7.

Tharindu P. D. Alwis (SIUC) FMTS-CMS mktharindu87@siu.edu



Canadian Lynx data- Model comparison.

Table: Comparison of the performance of different time series models for the
Canadian Lynx data

Model Equation | MARE | MSPE n | no. of parameters
FMTS - (16) | 0.05826 | 0.01581 | 110 8
MSBC - (12) 0.0743 | 0.0254 | 110 10
Tong's - (13) 0.0594 | 0.0162 | 110 10
Tong's - (14) 0.0564 | 0.0137 | 110 13
Tsay's - (15) 0.0557 | 0.0130 | 110 17
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Canadian Lynx data-True vs Fitted values
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