UNIVERSITY OF ALABAMA SYSTEM

Joint Doctoral Program in Applied Mathematics Joint Program Exam: Linear Algebra and Numerical Linear Algebra

TIME: THREE AND ONE HALF HOURS

May 12 2005

Instructions: Do 7 of the 8 problems for full credit. Include all work. Write your student ID number on every page of your exam.

- 1. Let $A = I + x \cdot y^*$, where $x, y \in \mathbb{C}^m \ (\neq 0)$ and I is the $m \times m$ identity matrix.
 - (a) Determine a necessary and sufficient condition on x, y so that A admits an eigenvalue decomposition. Then find such a decomposition.
 - (b) Determine a necessary and sufficient condition on x, y so that A admits an unitary diagonalization. Then find such a diagonalization.
- 2. Let $A, E \in \mathbb{R}^{m \times m}$ with $E \neq 0$ and (A + E) being singular.
 - (a) Prove

$$cond(A) \ge ||A||/||E||$$

for any matrix norm consistent with some vector norm.

(b) Suppose A is non-singular and $\mathbf{y} \in \mathbb{R}^m$ is non-trivial satisfying

$$||A^{-1}||_2 ||\mathbf{y}||_2 = ||A^{-1}\mathbf{y}||_2.$$

Show that equality holds in the relation (a) for the 2-norm for

$$E = -\mathbf{y}\mathbf{x}^T / \|\mathbf{x}\|_2^2, \qquad \mathbf{x} = A^{-1}\mathbf{y}.$$

(c) Use the inequality in (a) to get a lower bound for

$$cond_{\infty}(A) = ||A||_{\infty} ||A^{-1}||_{\infty}$$

for the matrix

$$A = \left(\begin{array}{ccc} 1 & -1 & 1 \\ -1 & \epsilon & \epsilon \\ 1 & \epsilon & \epsilon \end{array}\right)$$

where $0 < \epsilon < 1$.

- 3. Let $A \in \mathbb{R}^{n \times m}$ with $rank(A) = r \ge 0$.
 - (a) Show that for every $\epsilon > 0$, there exists a full rank matrix $A_{\epsilon} \in \mathbb{R}^{n \times m}$ such that $||A A_{\epsilon}|| < \epsilon$.
 - (b) Assume r > 0 and let $A = U\Sigma V^T$ be a SVD of A, with singular values $\sigma_1 \ge \sigma_2 \ge \cdots \ge \sigma_r > 0$. For each value $k = 0, 1, 2, \cdots, r 1$, define $A_k = U\Sigma_k V^T$ where Σ_k is the upper-left $k \times k$ sub-matrix of Σ . Show that
 - (i) $\sigma_{k+1} = ||A A_k||_2$.
 - (ii) $\sigma_{k+1} = \min\{\|A B\|_2 : B \in \mathbb{R}^{n \times m} \text{ and } rank(B) \le k\}.$
- 4. Let $A_1, A_2, \ldots, A_k \in F^{n \times n}$ such that A_1 has n distinct eigenvalues. Prove that there exists an invertible $P \in F^{n \times n}$ such that $P^{-1}A_jP$ is a diagonal matrix for each $1 \leq j \leq k$ if and only if $A_iA_j = A_jA_i$ for all $1 \leq i, j \leq k$.

- 5. (a) Let $x, y \in \mathbb{R}^n$ such that $x \neq y$ but $||x||_2 = ||y||_2$. Show that there exists a reflector Q of the form $Q = I 2uu^T$, where $u \in \mathbb{R}^n$ and $||u||_2 = 1$ such that Qx = y.
 - (b) Let $A = \begin{bmatrix} 4 & 4 & 1 \\ 3 & -2 & 7 \\ 0 & 3 & 1 \end{bmatrix}$. Use the Householder reflector to find an QR factorization for the matrix A, i.e., A = QR where Q is an orthogonal matrix and R is an upper triangular matrix.

6. Let
$$A = \begin{pmatrix} 1 & 1 \\ 1 & -2 \\ 1 & 3 \\ 1 & 0 \end{pmatrix}$$
.

- (a) Find an QR factorization of A by the Gram-Schmidt process.
- (b) Use the QR factorization from (a) to find the best least square fit by a linear function for (1, -2), (-2, 0), (3, 2) and (0, 3).
- 7. For which positive integers n does there exist $A \in \mathbb{R}^{n \times n}$ such that $A^2 + A + I = 0$. Justify your claim.
- 8. (In this problem, you may use Schur's factorization without proof).
 - (a) Let $A \in \mathbb{C}^{m \times m}$. Show that A is normal (i.e., $AA^* = A^*A$) if and only if there is an unitary matrix V such that $A = A^*V$.
 - (b) Assume that A is normal. Show that all eigenvalues of A are real if and only if A is hermitian.